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INTRODUCTION 
 
Lung cancer remains a highly lethal disease, with a 5-
year survival rate of only 19% [1, 2]. Despite progress 
in treatment strategies, due to late diagnosis, the high 
mortality rate of lung cancer patients did not drop 
sharply [2]. Therapy of non-small cell lung cancer 

(NSCLC) patients has evolved over the past few years 
with the incorporation of targeted therapy and immune 
therapy. These changes have increased the importance 
of prognostic and predictive biomarkers [3]. However, 
various disease outcomes have been identified in 
patients with similar clinical and pathological features, 
suggesting that the current clinical prognostic factors 
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ABSTRACT 
 
Background: Lung cancer is a heterogeneous disease with a severe disease burden. Because the prognosis of 
patients with lung cancer varies, it is critical to identify effective biomarkers for prognosis prediction. 
Methods: A total of 2325 lung cancer patients were integrated into four independent sets (training set, 
validation set I, II and III) after removing batch effects in our study. We applied the microarray data algorithm 
to screen the differentially expressed genes in the training set. The most robust markers for prognosis were 
identified using the LASSO-Cox regression model, which was then used to create a Cox model and nomogram. 
Results: Through LASSO and multivariate Cox regression analysis, eight genes were identified as prognosis-
associated hub genes, followed by the creation of prognosis-associated risk scores (PRS). The results of the 
Kaplan-Meier analysis in the three validation sets demonstrate the good predictive performance of PRS, with 
hazard ratios of 2.38 (95% confidence interval (CI), 1.61–3.53) in the validation set I, 1.35 (95% CI, 1.06–1.71) in 
the validation set II, and 2.71 (95% CI, 1.77–4.18) in the validation set III. Additionally, the PRS demonstrated 
superior survival prediction in subgroups by age, gender, p-stage, and histologic type (p < 0.0001). The complex 
model integrating PRS and clinical risk factors also have a good predictive performance for 3-year overall 
survival. 
Conclusions: In this study, we developed a PRS signature to help predict the survival of lung cancer. By 
combining it with clinical risk factors, a nomogram was established to quantify the individual risk assessments. 
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may be insufficient to consistently predict individual 
clinical outcomes [4]. 
 
With the development of high-throughput technology, 
RNA-sequencing (RNA-seq) has been broadly used to 
identify more novel biomarkers in lung cancer research 
[5]. Talip Zengin et al. used the TCGA database to 
identify 12 risk genetic features to predict prognosis in 
patients with lung adenocarcinoma (LUAD), with the 
AUC values of 0.479 at 1 year, 0.571 at 2 years, 0.622 
at 5 years, and 0.676 at 10 years [6]. Shicheng Li et al. 
identified eight candidate genes related to survival in 
LUAD. Zuo, S et al. identified the six-gene signature 
with AUC values of more than 0.650 for 1, 2, 3, 4, and 
5-year overall survival (OS) in LUAD [5, 6]. However, 
the suggested signatures lack consistency among studies 
and provide limited prognostic information, partially 
due to the limited sample size and technical factors [7, 
8]. To date, all studies that have been executed in an 
attempt to find prognostic biomarkers for clinical use 
have failed to achieve higher sensitivity and specificity 
or are not easily to be validated in external cohorts with 
relatively small numbers [9–12]. 

In this study, an eight-gene prognostic signature was 
identified by evaluating the prognostic value of the 
related genes to formulate a prognosis-related risk score 
(PRS). Moreover, we incorporated genes signature and 
clinical parameters to establish a novel promising 
prognostic nomogram model with more accurate 
predictive ability than clinical risk factors for lung 
cancer patients. Our work may provide a reference for 
clinicians to formulate more rational treatment 
strategies, analyze the pathways and possible 
mechanisms that may affect the prognosis-related lung 
cancer, and evaluate the differentiation, calibration and 
clinical value of the model. 
 
MATERIALS AND METHODS 
 
Dataset preparation and samples information 
collection 
 
As shown in Figure 1, four sets of subjects were 
enrolled for preliminary and further verification of 
screened prognostic biomarkers. In this study, a total of 
2325 lung cancer patients who had clinical and 

 

 
 

Figure 1. A schematic flowchart for analyzing prognosis-related risk score in lung cancer. 



www.aging-us.com 2777 AGING 

follow-up annotations were included in a training set 
and three validation sets. Of these, 651 patients in the 
training set came from GSE30219, GSE37745 and 
GSE50081 (Affymetrix HG-U133 Plus 2.0 Array). 
These microarray datasets were downloaded from the 
gene expression omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/) and normalized 
using a robust multichip average (RMA) algorithm. 
After batch effects were removed using the combined 
association test (COMBAT) empirical Bayes method 
in the surrogate variable analysis (SVA) package, 
these datasets containing 651 qualified lung cancer 
patients that were further integrated into a new cohort 
as the training set. Moreover, similar datasets were 
processed on the same platform using the identical 
normalization method and log2 transformation. 
Validation set I contained a total of 259 lung cancer 
patients from GSE29013 and GSE31210, and 
validation set II included 441 lung cancer patients 
from GSE41271 and GSE42127. The fragments per 
kilobase per million (FPKM)-normalized RNA-seq 
data of 494 LUAD and 480 lung squamous cell 
carcinoma (LUSC) patients retrieved from The Cancer 
Genome Atlas (TCGA) were integrated as validation 
set III. We excluded patients with an overall survival 
(OS) of less than 30 days or with a vague or absent 
vital status. 
 
In addition, we also established the specificity 
validation sets of four other cancers, including liver 
hepatocellular carcinoma (TCGA-LIHC), colon 
adenocarcinoma (TCGA-COAD), stomach 
adenocarcinoma (TCGA-STAD), and breast invasive 
carcinoma (TCGA-BRCA). Supplementary Table 1 
shows the dataset information within  
each cohort. 
 
Identification of survival-related gene and functional 
enrichment analysis 
 
The average OS period of the patients in the training set 
was approximately 3 years, which is a critical point in 
time. DEGs were identified between alive and deceased 
subjects within 3 years using the linear models for 
microarray (LIMMA) package, with difference 
multiples >1.2 and p-value < 0.05 and were selected for 
further analysis. Furthermore, we performed Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis using the R package 
clusterpro filer at the level of p-value < 0.05 and false 
discovery rate <0.05. Additionally, the gene set 
enrichment analysis (GSEA) algorithm in R package 
gene set variation analysis (GSVA) was used to 
evaluate the biomarker performance in the training sets 
retrieved from the Molecular Signature Database 
(MSigDB) [13]. 

Candidate selection and signature establishment 
 
The least absolute shrinkage selection operator 
(LASSO) algorithm was used to identify the 306 DEG 
candidate genes with the best survival prediction 
features in the training sets. Subsequently, we 
performed multivariate Cox regression analysis based 
on the results of LASSO analysis. Cox proportional 
risk regression models were used to assess the 
importance of each candidate for OS. PRS were 
calculated as follows: PRS = expgene1 × βgene1 + expgene2 
× βgene2 + ⋯ + expgeneN × βgeneN by weighting 
normalized gene expression values according to their 
Cox coefficients. 
 
Study subjects in each dataset were divided into high- 
and low-risk groups according to the cut-off points of 
median risk scores. Kaplan-Meier (K-M) survival 
curves and time‐dependent receiver operating 
characteristic (survival‐ROC) were conducted to 
evaluate the prognostic value of the risk score model. 
The higher the calculated C-index, the more precise the 
prediction. 
 
Validation of the prognostic signature 
 
In the training set, a stratification analysis was 
performed to determine whether the prognostic 
signature could accurately predict patient survival in 
different clinical factor subgroups. The model's 
performance was further evaluated using the 
independent validation set. In addition, the specificity of 
the model was tested in four other vital cancers. Gene 
expression data from different sets were adjusted 
individually by subtracting the median expression value 
after log2 transformation. 
 
The PRS was combined with clinically informative 
variables to create a multivariate cox regression model 
(complex model) and a nomogram to visualize the 
predicted outcome for each patient. Additionally, the 
Hosmer-Lemeshow test was used to validate 
calibration curves that were established to improve the 
accuracy of nomogram prediction [14]. To accomplish 
this, we calculated the total score derived from the 
established nomogram for each patient in the 
validation set and generated a calibration curve with 
Cox regression [15]. 
 
Statistical analysis 
 
IBM SPSS Statistics 26 (IBM Corp., Armonk, NY, 
USA), GraphPad Prism 7.0 (GraphPad Software Inc, 
San Diego, CA, USA), the EmpowerStats software 
(http://www.empowerstats.com, X&Y solutions, Inc. 
Boston MA, USA) and R software (version 4.1.0, 

http://www.ncbi.nlm.nih.gov/geo/
http://www.empowerstats.com/
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http://www.r-project.org) were used to analyze data and 
plot graphs. LASSO logistic regression analysis was 
conducted using the glmnet package in R. Nomogram 
plots were established by the root mean squares (RMS) 
package. The pROC and survival-ROC packages were 
applied to analyze ROC and time-dependent ROC 
(tROC) curves. Independent sample t-tests or Mann-
Whitney U-tests were used to compare continuous 
variables, and chi-square tests were used to compare 
categorical variables. Statistical significance was 
defined as a p-value < 0.05. 
 
RESULTS 
 
Identification of the DEGs and the hub markers 
associated with prognosis in the training set 
 
A total of 651 lung cancer samples with the OS time 
over 30 days were analyzed. The LIMMA software was 
used to identify the DEGs between samples from alive 
or deceased patients with 3-year survival in lung cancer. 
Out of 14,052 genes, 306 met the threshold set (adjusted 
p-value < 0.05, |log2FC| >0.26), with 146 DEGs being 
down-expression and 160 being up-expression in the 
deceased group (Figure 2A, 2B). 

To determine the most robust prognostic indicators, 
LASSO-Cox regression models were used. To 
overcome over-fitting, tenfold cross-validation was used 
on the 306 DEGs associated with 3-year survival. The 
more robust prognostic candidates were investigated 
using the LASSO regression method with an optimal 
value of 0.1618 (Figure 2C). The results showed that all 
26 prognosis-related candidates had non-zero LASSO 
coefficients (Figure 2D). Subsequently, multiple 
stepwise Cox regression was used to determine the 
impact of the candidate genes, and eight hub markers 
were chosen to construct the risk model in lung cancer 
patients (Table 1). The expression profiles of these eight 
genes showed that elevated expression of secreted 
phosphoprotein 1 (SPP1), sodium-dependent phosphate 
transporter 1 (SLC20A1), and centromere protein H 
(CENPH) in lung cancer samples were risk factors for 
prognosis. In contrast, high-expression of MAGE 
family member E1 (MAGEE1), chromosome 16 open 
reading frame 54 (C16ORF54), potassium voltage-gated 
channel subfamily S member 3 (KCNS3), tripartite 
motif containing 68 (TRIM68) and cytochrome B5 
domain containing 2 (CYB5D2) were protective factors 
for prognosis (Figure 2E). In addition, the expression of 
the eight genes was significantly different between 

 

 
 
Figure 2. Differential expression and LASSO-Cox regression results of DEGs. (A, B) Heatmap plot and volcano plot represents the 
expression of 306 DEGs between samples from alive and deceased patients based on 3-year survival data, satisfying the criteria of adjusted 
p-value < 0.05, |log2FoldChange| >0.26. (C, D) 26 genes considered the more correlated with prognosis were identified by LASSO 
regression method. (E) Coefficients of eight genes estimated by multivariate Cox regression. (F) Expression profiles of eight hub genes 
between samples from alive and deceased patients with 3-year survival data. 

http://www.r-project.org/
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Table 1. The eight hub markers identified distinguish alive from deceased patients based on 3-year survival data. 

Gene symbol Protein name 
(UniProt accession) 

Log2FC 
(dead/alive) Known functions Relation to cancer 

SPP1 secreted 
phosphoprotein 1 0.43 

Functions to control the survival, 
growth, differentiation and effector 

function of tissues and cells 

Implicated in tumorigenesis in various 
cancer types [16, 17] Over expressed in 

lung neoplasms [18, 19] 

SLC20A1 Sodium-dependent 
phosphate transporter 1 0.27 High-affinity inorganic 

phosphate:sodium symporter activity 
High expression of SLC20A1 mRNA 

inhibits the progress of lung cancer [20] 

KCNS3 
Potassium voltage-

gated channel 
subfamily S member 3 

−0.47 Involved in energy metabolism 
The expression is related to breast cancer 

and lung cancer, promoted metastasis 
[21, 22]  

TRIM68 Tripartite motif 
containing 68 −0.31 Enhances the transcriptional activity of 

the AR [23] 
Preferentially expressed in prostate 

cancer cells [23] 

CYB5D2 Cytochrome b5 domain 
containing 2 −0.29 Interacting selectively and non-

covalently with heme 

Downregulation of CYB5D2 is 
associated with breast cancer progression 

[24] 

CENPH Centromere protein H 0.39 Negative regulation of cysteine-type 
endopeptidase activity 

Higher expression levels of CENPH 
tended to have worse OS in lung cancer 

[25] 

MAGEE1 MAGE family member 
E1 −0.26 Participating in specific biological 

processes 

The expression of MAGEE1 is 
correlated with tumor-cell proliferation 

of NSCLC [26] 

C16ORF54 Chromosome 16 open 
reading frame 54 −0.37 Protein amino acid binding and integral 

component of membrane 

Tobacco Smoke Pollution results in 
decreased expression of C16ORF54 

mRNA in lung cancer [27] 
 
samples from alive or deceased patients with 3-year 
survival in lung cancer (Figure 2F). The K-M survival 
curve analysis revealed that the expression of these 
eight genes is significantly associated with lung cancer 
prognosis (Supplementary Figure 1). 
 
Construction and validation of the PRS in lung 
cancer 
 
The predictive model was constructed using the eight 
hub markers identified using the multiple Cox 
regression method. The risk score of each patient was 
calculated based on the cox coefficients: PRS = 0.1223 
× expression level of SPP1 + 0.1862 × expression level 
of SLC20A1 – 0.0909 × expression level of KCNS3 –
0.1693 × expression level of TRIM68 – 0.2490 × 
expression level of CYB5D2 + 0.1954 × expression 
level of CENPH – 0.2869 × expression level of 
MAGEE1 – 0.1069 × expression level of C16ORF54. 
 
The cut-off value was determined automatically based 
on the median risk score, and lung cancer patients were 
divided into the low- (n = 390) and high-risk (n = 259) 
groups using the cut-off value of −2.39. As illustrated in 
Figure 3A, the distribution of the PRS, OS time, and 
heatmap for the eight-gene signature in the training set 
is shown from top to bottom. Furthermore, the tROC 
analysis revealed that PRS was the most accurate 
predictor of OS (Supplementary Figure 2). The AUC of 
this PRS model in 1-year, 3-year, 5-year was 0.72, 0.75, 
and 0.71, respectively (Figure 3B). Moreover, the K-M 
survival analysis revealed that the patients had worse 

OS in the high-risk group than in the low-risk group 
(HR = 2.72; 95% confidence interval (CI), 2.26 to 3.27, 
p < 0.0001), and the C-index of the PRS for predicting 
survival was 0.67; 95% CI, 0.65 to 0.70 (Figure 3C). 
 
Validation of PRS signature in the subgroup and 
independent lung cancer validation sets 
 
To confirm the prognostic robustness of PRS features 
and complex models across cohorts, we further 
validated it in the three independent external cohorts 
described earlier. Similarly, in each of the three 
validation sets, patients in the high-risk group had 
poorer outcomes, while those in the low-risk group had 
a higher survival rate (Figure 4A–4C). K-M analysis 
confirmed that the predicted high-risk group had a 
significantly shorter time to death (Figure 4D–4F), 
indicating good predictive performance of the PRS, 
with a HR of 2.38; 95% CI, 1.61 to 3.53 in validation 
set I, 1.35; 95% CI, 1.06 to 1.71 in validation set II, and 
2.71; 95% CI, 1.77 to 4.18 in validation set III. 
 
Subsequently, a stratified analysis was performed to 
assess whether PRS characteristics could predict the 
probability of patient survival in the same subgroup of 
clinical factors. Patients in the training cohort were 
classified clinically by p-stage (I/II/III-IV) (Figure 5A), 
histological type (glandular/squamous) (Figure 5B), 
gender (female/male) (Figure 5C, 5D) and age (<65/≥65) 
(Figure 5E, 5F). The results showed that PRS 
characteristics could divide patients with the same age, 
sex, p-stage, and histological type into high-risk and low-
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risk groups. In each tier, OS was shorter in patients with 
high-risk scores than in patients with low-risk scores (p < 
0.001) (Figure 5). As a result of the above analysis, the 
HR does not change significantly across subgroups, and 
the PRS is an independent risk factor of lung cancer 
prognosis. It has predictive value in different people. In 
addition, to further prove the specificity of PRS as a 
prognostic factor of lung cancer in the clinic, we tested it 
in four other primary global cancers. The results showed 
that PRS signature was not  associated with the prognosis 

of liver cancer, bowel cancer, gastric cancer, or breast 
cancer (Supplementary Figure 3), indicating that the PRS 
signature is only related to the prognosis of lung cancer. 
 
Prognostic nomogram for OS 
 
A total of 614, 259, 438, and 740 patients with full-
scale five clinical annotations including age, sex (male 
or female), histology (LUAD, LUSC or other), p-stage 
(I, II, III or IV) and PRS (low or high) were extracted

 

 
 
Figure 3. Characteristics of PRS signature in the training cohort. (A) Risk scores distribution, survival status, and gene expression 
patterns of patients in high- and low-risk groups in the training cohort. (B) Time-dependent ROC analysis for predicting OS. (C) Survival 
curves and C-index for high- and low-risk groups. 
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from the training, validation I, II, and III sets, 
respectively (Table 2). In the training set, multivariate 
Cox regression analysis revealed that these five variables 
were correlated with the prognosis of lung cancer, with 
PRS being the most significant predictor of overall 
survival in the Cox model (complex model) (Figure 6A). 
These variables were used to construct a decision tree to 
improve risk stratification for overall survival. As shown 
in Figure 6B, only p-stage and PRS remained in the 
decision tree, with three different risk subgroups 
identified. To quantify the risk assessment and survival 
probability for individual patients, a nomogram 
incorporating PRS and other clinicopathological features 
was constructed (Figure 6C). Furthermore, we calculated 
the value of each covariate of patient No. 350 
(GSM1213824) and mapped it to the corresponding 
score, calculated the total score, and its probability at 3-
year and 5-year survival. The calculated values were 
0.757 and 0.881. For 3- or 5-year survival, the probability 
calibration plot revealed the best agreement between 
nomogram prediction and actual observation (45-degree 
dotted line) (Figure 6D), indicating that the nomogram is 
highly accurate. When compared to other features, the 
nomogram exhibited the most powerful and stable ability 

for survival prediction, with an average AUC greater than 
0.7, significantly better than the pathological p-stage 
(Figure 6E). 
 
At the same time, the complex model combining 
PRS, and clinical risk factors also had a good 
predictive performance of 3-year survival, namely 
0.788, 0.709 and 0.614, respectively in the three 
validation sets (Supplementary Figure 4). 
 
Functional analysis of the survival-related DEGs 
 
To further understand the underlying mechanism of the 
survival-related DEGs, we analyzed 306 DEGs between 
samples from alive or deceased patients with 3-year 
survival in the training set. Enrichment analyses 
involved the KEGG, GO functional enrichment and 
GSEA of hallmark in MSigDB. The genes were divided 
into 3 categories: biological process, cellular 
component, and molecular function according to the GO 
terms (Figure 7A–7C). The most abundant groups were 
nuclear division, chromosomal region, and cofactor 
binding, respectively, in the three categories. We 
discovered that pathways involving the cell cycle, 

 

 
 
Figure 4. Evaluating PRS signatures in validation sets. (A–C) Risk score distribution and survival status of patients in high- and low-
risk groups in validation sets. (D–F) Survival curves in validation sets. 
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cellular senescence, oocyte meiosis, and the p53 
signaling pathway were enriched in KEGG (Figure 7D). 
Additionally, the GSEA results based on the hallmark 
gene sets in MSigDB indicated that these DEGs were 
primarily associated with not only HALLMARK G2M 
CHECKPOINT (normalized enrichment score (NES) = 
−1.30, p < 0.001), but also HALLMARK E2F 
TARGETS (NES = 2.024, p < 0.001) (Figure 7E–7G). 
The top pathway and hallmark:cell cycle and E2F 
TARGETS clarified the division of activity in lung 
cancer cells. We summarized a working model of the 
activated pathways in Figure 8. 
 
DISCUSSION 
 
Lung cancer, one of the most common malignant 
tumors worldwide, claims over one million deaths each 

year and has a dismal 5-year survival rate [28]. Thus, 
changes in the prognosis of lung cancer patients may 
occur long before detectable clinicopathological 
abnormalities, highlighting the correlation between 
biomarkers such as the expression of specific genes 
(i.e., hub genes) and lung cancer prognosis [29, 30]. 
Many studies at the biological and clinical levels have 
suggested the link between gene mutation sites and 
disease progression, and the use of high-throughput 
sequencing data based on omics to make more accurate 
diagnosis and prognosis predictions for lung cancer 
patients, so as to formulate individualized treatment 
plans on this basis to bring greater benefits to the 
prognosis of patients [31]. 
 
The current cancer progression prediction is mainly 
based on disease manifestations and the 

 

 
 
Figure 5. PRS as a valuable predictor for OS in subgroups. PRS discriminated high-risk patients with different clinicopathological 
characteristics, including (A) p-stage, (B) histological type, (C, D) gender, and (E, F) age. 
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Table 2. Clinical characteristics and PRS model of lung cancer patients in the training and validation sets. 

Exposure 
Training set Validation set I Validation set II Validation set III 

N = 614 N = 259 N = 438 N = 740 

Age 64.29 ± 10.55 60.4 ± 7.9 65.0 ± 9.9 66.1 ± 9.5 
Gender − − − − 
Male 404 (65.8%) 133 (51.4%) 230 (52.5%) 453 (61.2%) 
Female 210 (34.2%) 126 (48.6%) 208 (47.5%) 287 (38.8%) 
Histology − − − − 
LUAD 308 (50.2%) 234 (90.3%) 309 (70.5%) 476 (64.3%) 
LUSC 164 (26.7%) 25 (9.7%) 120 (27.4%) 264 (35.7%) 
Other 142 (23.1%) 0 9 (2.1%) 0 
P-stage − − − − 
I 402 (65.5%) 186 (71.8%) 237 (54.1%) 383 (51.8%) 
II 125 (20.4%) 56 (21.6%) 81 (18.5%) 192 (26.0%) 
III 77 (12.5%) 17 (6.6%) 114 (26.0%) 135 (18.2%) 
IV 10 (1.6%) 0 6 (1.4%) 30 (4.0%) 
PRS − − − − 
Low-risk 369 (60.0%) 129 (49.8%) 220 (49.8%) 487 (50.0%) 
High-risk 245 (40.0%) 130 (50.2%) 221 (50.2%) 487 (50.0%) 

 
Tumor-Node-Metastasis staging system of American 
Joint Commission on Cancer (AJCC). However, both 
methods' static representations of clinicopathologic 
factors fail to account for the genetic heterogeneity of 
cancer, limiting their predictive value [11]. Recent 
studies have shown that gene mutations and expression 
disorders are associated with disease progression and 
therapeutic response in lung cancer [32–34]. However, 
these current biomarkers, such as epidermal growth 
factor receptor (EGFR) and Kirsten rat sarcoma virus 
(KRAS) oncogene homologs, do not fully represent the 
complex mechanisms of lung cancer progression [35, 
36]. Larsen et al. developed a 54-gene signature in 
LUAD [10], but the combined accuracy in predicting 
recurrence is only 69% (79% sensitivity, 59% 
specificity). Sheng et al. reported a new biological 
marker discovery pathway, which integrates RNA 
sequencing (RNA-seq) and clinical data to identify 
progression gene signatures (PGSs) based on survival 
genes, and discovered 22 LUAD-PGS genes and 23 
LUSC-PGS genes that have a high predictive value (area 
under the curve (AUC) = 0.85, 0.92, respectively) [11]. 
This model needs to be further optimized to facilitate 
clinical implementation. Recently, Xie et al. developed a 
prognostic model for death due to extensive-stage 
squamous cell lung cancer (SCLC), with an unadjusted 
concordance (C)-index of 0.714 [12]. 
 
In this study, through more rigorous identification, 
identified eight independent prognostic genes to 

establish a risk score for assessing the survival 
probability in the training set. As shown in Table 1, 
several of the gene signatures we identified have been 
investigated in various types of tumors. For example, 
MAGEE1 was associated with important clinical and 
molecular features in glioma [37, 38], and can be 
considered an important marker in determining the 
prognosis of glioblastoma [39]. More importantly, the 
expression of MAGEE1 is correlated with tumor-cell 
proliferation of NSCLC [26]. As a gene that is 
overexpressed in breast, bladder, colorectal, head and 
neck, liver, lung, and esophageal cancers [40], SPP1 
has the potential to influence not only the occurrence 
and progression of LUAD, but also to serve as an 
independent prognostic marker and a novel therapeutic 
target [41–43]. High SLC20A1 expression is 
associated with poor prognoses in basal-like breast 
cancers, longue cancer and esophageal 
adenocarcinoma [44–46]. CENPH was found to drive 
the molecular changes during the pathologic stages of 
LUAD [47], and patients with a higher expression 
level of CENPH tended to have a poorer OS [25]. We 
constructed PRS signatures containing these eight 
genes under a novel pipeline to support prognosis and 
OS prediction of lung cancer. The 8-gene PRS and the 
complex model both had predictive effects in three 
large cohorts, with AUCs exceeding 70% or even 
80%. Taken together, these results suggest that the 
variable expression of 8-gene model is associated with 
different prognosis in lung cancer, and may serve as a 



www.aging-us.com 2784 AGING 

prognostic biomarker as well as a treatment target for 
lung cancer patients. 
 
The prognostic value of PRS features was further 
validated in another two independent sets. PRS was able 

to identify high-risk patients in both validation groups, 
implying that it can be used as a reliable risk factor for 
the overall population. Patients with higher PRS had 
poorer survival compared to those with lower PRS. In 
addition, when combined with clinical risk factors, a 

 

 
 
Figure 6. Combination of the PRS signature and clinical features improves survival prediction in training sets. (A) A decision 
tree was constructed to improve risk stratification. (B) Multivariate Cox regression model (complex model). (C) Survival nomogram for 
quantifying risk assessment for individual patients. (D) Calibration analysis revealed a high degree of accuracy in predicting survival at 3 or 
5 years. (E) Among all clinical variables, tROC analysis demonstrated that the nomogram was the most stable and powerful predictor 
of OS. 
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Figure 7. Enrichment analyses of DEGs. (A) Biological process. (B) Cellular component. (C) Molecular function. (D) KEGG pathway 
analysis. (E–G) GSEA analysis using hallmark gene sets from MSigDB. 
 

 
 
Figure 8. Working model of major enrichment pathways in lung cancer. Proteins activated by CDC7, DBF4, CYCE, MCM, and 
CDC6 promote DNA replication, in addition to promoting cell amplification, particularly transcription factor E2F, which is regulated by 
numerous genes. In addition, upregulation of the transcription activity of E2F promotes Skp2 regulation of the PI3K/AKT pathway, thereby 
potentially promoting the occurrence of lung cancer. 
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column line plot was built for the risk quantification in 
individual patients. ROC analysis showed that PRS had 
considerable risk predictive power for OS, and 
calibration analysis showed that nomogram survival 
prediction results were extremely close to actual 
survival. 
 
In addition, we note the enrichment results, which 
mainly include the cell cycle. Interestingly, the GSEA 
results from the hallmark gene sets were also enriched 
for genes encoding cell cycle-related targets of the E2F 
transcription factor. Our data uncovered differential 
expression of multiple genes, including CDC6, CDC7, 
DBF4, MCM and CycE (Figure 8). Most of them may 
induce SQLC through DNA replication and cell cycle 
pathway [48]. Minichromosome maintenance complex 
component 4 (MCM4), a highly expressed gene in 
NSCLC, is required for the proliferation of NSCLC 
cells [49]. MCM proteins, including MCM2-7, are also 
required for replication initiation and elongation [50]. In 
addition, Skp2 activated PI3K/AKT pathway activities 
by upregulating the transcription activity of E2F, 
thereby potentially promoting the occurrence of lung 
cancer [51]. These results suggest that the 
transcriptional regulation through E2F may be a novel 
therapeutic target in lung cancer. 
 
Although our study reveals the feasibility of a new 
approach to biomarker discovery that integrates cancer 
survival and overall genetic profiling data, important 
questions remain to be addressed in order to facilitate 
the clinical implementation of PRS in clinical 
prognostic testing. Our data demonstrate the feasibility 
of using PRS as a clinical test; however, large-scale 
clinical studies are needed to statistically validate the 
ability of PRS to define patients at high risk for poor 
prognosis. Future studies will also aim to develop new 
companion therapies for PRS and other biomarker 
discovery pipelines. 
 
CONCLUSIONS 
 
To predict OS in patients with lung cancer, we 
constructed an eight-gene based PRS that was further 
validated in another three validation sets as well as 
other cancer sets. Because PRS was found to be 
associated with independent and specific risk factor for 
lung cancer, patients with higher PRS had poorer 
survival outcome. By combining genes signature with 
clinical features, we developed a nomogram model to 
quantify the risk for individual patients. This model can 
also be used to identify patients who may benefit from 
adjuvant therapy, allowing for more personalized 
treatment in lung cancer. In addition, enrichment 
analysis revealed that the key genes were associated 
with the cell cycle and E2F targets. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. The K-M survival curve analyses of 8-genes. (A) MAGEE1; (B) C16ORF54; (C) SPP1; (D) SLC20A1; (E) 
KCNS3; (F) TRIM68; (G) CYB5D2; (H) CENPH. 
 

 
 

Supplementary Figure 2. The tROC analysis of the PRS. 
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Supplementary Figure 3. The PRS as a valuable predictor for OS in other cancers. (A, B) TCGA-COAD; (C, D) TCGA-LIHC; (E, F) 
TCGA-STAD; (G, H) TCGA-BRCA. 
 

 
 
Supplementary Figure 4. ROC analysis of the complex model in validation sets. (A) the validation set I; (B) the validation set II; (C) 
the validation set III.  
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Supplementary Table 
 
Supplementary Table 1. Information on the datasets in the training and validation sets. 

Cohorts Datasets Year Country Sample N 

Training set 
GSE30219 2011 France lung cancer 274 
GSE37745 2012 Sweden NSCLC 196 
GSE50081 2013 Canada NSCLC 181 

Validation set I 
GSE29013 2011 USA NSCLC 55 
GSE31210 2011 Japan LUAD 204 

Validation set II 
GSE41271 2012 USA lung cancer 268 
GSE42127 2012 USA NSCLC 173 

Validation set III 
TCGA-LUAD 2014 USA LUAD 494 
TCGA-LUSC 2014 USA LUSC 480 

Specificity validation set 

TCGA-LIHC 2015 USA LIHC 343 

TCGA-COAD 2015 USA COAD 423 
TCGA-STAD 2015 USA STAD 337 

TCGA-BRCA 2015 USA BRCA 1039 
 
 
 


