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ABSTRACT

Immunotherapy with checkpoint inhibitors, such as PD-1/PD-L1 blockage, is becoming standard of practice for
an increasing number of cancer types. However, the response rate is only 10%-40%. Thus, identifying
biomarkers that could accurately predict the ICI-therapy response is critically important. We downloaded
somatic mutation data for 46,697 patients and tumor-infiltrating immune cells levels data for 11070 patients,
then combined TP53 and BRAF mutation status into a biomarker model and found that the predict ability of
TP53/BRAF mutation model is more powerful than some past models. Commonly, patients with high-TMB
status have better response to ICl therapy than patients with low-TMB status. However, the genotype of
TP53MUTBRAFYT in high-TMB status cohort have poorer response to ICI therapy than the genotype of
BRAFMVTTP53"T in low-TMB status (Median, 18 months vs 47 month). Thus, TP53/BRAF mutation model can add
predictive value to TMB in identifying patients who benefited from IClI treatment, which can enable more
informed treatment decisions.

INTRODUCTION patients who benefited from ICI treatment [3, 4].
Recently, a pan-cancer study showed combining POLE
and POLD1 mutation status into a simple model also

can efficiently predict response to ICI therapy [5]. TP53

Immune-checkpoint inhibitor (ICI) therapies have
shown unprecedented durable responses in patients with

advanced-stage cancers, including the success of anti-
programmed cell death protein 1 (PD-1), anti-
programmed death-ligand 1 (PD-L1) and anti-cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), but the
response rate is only 10%-40% [1, 2]. Therefore, it is
important to identify the biomarkers that can accurately
predict the ICI-therapy response.

More and more studies showed tumor mutation burden
(TMB) is a clinical useful biomarker for identifying

is one of the most frequently mutated gene in human
cancers and has been formulated in a large number of
studies for functions and mechanisms [6]. In brief, wild-
type p53 plays a vital role in maintaining genomic
stability and preventing oncogenesis by regulating many
cellular processes, including promoting cell growth
arrest, DNA repair, modulating autophagy and cancer
metabolism [7], and TP53 is highly mutated in about
50% of human cancers. BRAF, is located on human
chromosome 7 and encodes a RAS-regulated serine-
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threonine kinase that plays a part in ERK/MAPK
signaling pathway. At the same time, the pathway is not
only involved in regulating cellular biological functions,
but is also related to tumor formation [8]. Up to this
day, mutations in BRAF have been reported extensively
in a variety of benign and malignant tumors [9, 10].
Comparing with POLE and POLD1, the mutation of
TP53 and BRAF are more common in human cancer,
and TP53 and BRAF had been shown to be linked to
ICI therapies responses [11, 12].

In this study, we combined TP53 and BRAF mutation
status into a biomarker model and found that the predict
ability of TP53/BRAF mutation model is more powerful
than POLE/POLD1 mutation model, and the
combination of TP53/BRAF mutation model and TMB
can more accurately predict the response to I1CI therapy.
Furthermore, we propose several possible molecular
signaling pathways for the effect of TP53/BRAF
mutations on the predictive value of ICI treatment
response.

MATERIALS AND METHODS

In this study, somatic mutation data for 46,697
patients  were  downloaded from  cBioPortal
(https://www.chioportal.org) [13]. All nonsynonymous
mutations were taken into account. The overall survival
(OS) of 1,661 patients who received ICI therapy was
defined from the date of the first ICI treatment to the
time of death or most recent follow-up, and TMB was
defined as the total number of somatic nonsynonymous
mutations normalized to the total number of megabases
sequenced [14].

The data of tumor-infiltrating immune cells levels for
11070 patients from TCGA by CIBERSORT was
download from Tumor Immune Estimation Resource
(TIMER) version 2.0 [15] (http://timer.cistrome.org/
infiltration_estimation_for_tcga.csv.gz). The expression
profiles of mMRNAs and clinical survival data of 33 tumor
types were obtained from the Pan-Cancer Atlas (https://
gdc.cancer.gov/about-data/publications/pancanatlas).

The limma package V3.34.9 in R was used to identify
differentially expressed mRNAs. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were identified and visualized using R packages
“clusterProfiler”. The cBioPortal online analysis tool was
used for mutual exclusivity analysis between TP53
mutation and BRAF mutation. For survival analysis,
Kaplan-Meier survival curves were generated and
compared using the log-rank test, and the Cox regression
model was used for multivariate survival analysis.
Statistical tests were done with R software (version
4.0.2). Statistical significance was set at p values less

than 0.05. Ethical approval was waived because we used
only publicly available data and materials in this study.

Availability of data and materials

The datasets presented in this study can be found in
online repositories. The names of the repositories and
accession numbers can be found in the article material.

RESULTS
TP53/BRAF mutation model has high frequency

The prevalence of TP53 and BRAF mutations in 46,697
patients with different cancer types is summarized in
Figure 1. The mutation frequencies of TP53 and BRAF
(33.51% and 5.30%) were significantly higher than that
of POLE and POLD1 (2.74% and 1.45%). The
relationships between TP53 mutation and BRAF
mutation are mutually exclusive (Table 1).

TP53/BRAF  mutation model can  predict
immunotherapeutic effect and prognosis of patients

Based on the mutually exclusive relationship between
TP53 mutation and BRAF mutation, we explored the
immunotherapy response in patients with different
combinations of TP53 mutation and BRAF mutation.
Patients were divided into four genotypes, patients with
BRAF mutation alone (BRAFMYTTP53WT) showed
favorable survival (Median, 47 months), while those
with TP53 mutation alone (TP53MYTBRAFWT) had the
worst survival (Median, 13 months). Patients with both
mutations or neither mutation (TP53MUTBRAFMUT or
TP53WTBRAFYT) showed moderate survival (Median,
27 months and 20 months, respectively) (Figure 2A).

In multivariable Cox regression analysis, TP53/BRAF
mutation model and TMB were independent predictive
factors for identifying patients who benefited from ICI
treatment (both P<0.0001). However, POLE/POLD1
mutation model and MSI were not independent
predictive factors (both P>0.05) (Table 2).

Patients in high-TMB status group (the median TMB as
cutoff) had longer OS than patients in low-TMB status
group (median, 27 months vs 15 month; P =0.000031,
Figure 2B). When stratified by TMB status, TP53/BRAF
mutation model was still a statistically significant model
for predicting ICI-therapy response. In both high-TMB
status group and low-TMB status group, TP53/BRAF
mutation model can successfully divide patients into
three risk stratification: good response genotype
(BRAFMUTTP53WT)  intermediate response genotype
(TP53MUTBRAFMUT or TP53WTBRAFWT), and poor
response genotype (TP53MYTBRAFWT) (Figure 2C, 2D).
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Figure 1. Prevalence of TP53/BRAF mutations in pan-cancer.
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In addition, the TP53/BRAF mutation model remained a
statistically significant model when stratified according
to patients’ clinical information. Regardless of gender or
age, TP53/BRAF mutation model can still classify
patients into three risk stratification (Supplementary
Figure 1A-1D).

We further performed MSI analysis and found that the
low-MSI status group had a better prognosis (median,
19 months vs 15 month; P=0.0095, Supplementary
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Figure 1E). Exactly like the TMB model, MSI status
can also stratify patients with mutated genetic risk
(Supplementary Figure 1F, 1G).

TP53/BRAF mutation is an immune-related model
It is generally admitted that CD8+ T cells are directly
involved in antitumor cytotoxic responses, and

accumulating evidence indicates that tumor-infiltrating
CDB8+ T cells predict the efficacy of ICI therapy [16-18].

B Overall survival for different TMB status
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Figure 2. Associations of TP53 and BRAF mutation types with prognosis in patients treated with immune checkpoint
inhibitors. (A) Patients with the BRAF mutation alone had the best prognosis, while patients with TP53 mutation alone had the worst
prognosis. Patients with mutations in both or none had median survival. (B) Patients in high-TMB status group had longer OS than patients in
low-TMB status group. (C, D) In both high-TMB/low-TMB status groups, TP53MUTBRAFWVT indicated poorer OS, while BRAFMUTTP53WT did the
opposite. BRAF indicates B-Raf Proto-Oncogene, Serine/Threonine Kinase gene; TP53 indicates tumor protein p53 gene; MUT indicates
mutant genes; WT indicates wild type genes; TMB indicates tumor mutation burden; MSI indicates microsatellite instable.
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Table 1. Mutual exclusivity analysis between TP53 mutation and BRAF mutation in the whole cohort,

TCGA subset, and MSKCC subset.

Cohorts TPSSUT - TPSSWHT BRAFMUT - TRS3MT L.og2 . p-value  g-value
BRAFWT BRAFWT  TP53WT  BRAFMYT  odds ratio

Whole cohort 27745 13519 1642 646 -0.309 <0.001 <0.001

TCGA subset 5683 3661 636 209 -0.971 <0.001 <0.001

MSKCC subset 798 691 119 53 -0.959 <0.001 <0.001

TCGA, The Cancer Genome Atlas; MSKCC, Memorial Slo

Table 2. Univariate and multivariable association of
in 1,661 patients who received ICI therapy.

an Kettering Cancer Center.

the TP53/BRAF mutation model with overall survival

Univariate Multivariable

Parameters

HR (95%CI) p value HR (95%CI) p value
Gender 0.88 (0.77-1.01) 0.078 0.89 (0.77-1.02) 0.09
Age 1.00 (0.99-1.00) 0.071 1.00 (0.99-1.00) 0.449
POLE/POLD1 mutation model  0.62 (0.45-0.84) 0.002 0.87 (0.63-1.21) 0.399
TMB 0.98 (0.98-0.99) <0.0001 0.98 (0.97-0.99) <0.0001
MSI 0.98 (0.97-1.00) 0.044 1.01 (0.99-1.03) 0.235
Cancer type 0.95 (0.93-0.98) <0.0001 0.96 (0.94-0.98) 0.0003
TP53/BRAF mutation model 1.41 (1.26-1.58) <0.0001 1.42 (1.26-1.60) <0.0001

TMB, tumor mutation burden; MSI, microsatellite instable.

The data from TCGA showed that patients with high
tumor-infiltrating CD8+ T cells had longer OS than
patients with low tumor-infiltrating CD8+ T cells (Figure
3A). We investigated whether TP53/BRAF mutation was
correlated with the level of tumor-infiltrating CD8+ T
cells. Patients with BRAFMUTTP53WT showed the highest
level of tumor-infiltrating CD8+ T cells, patients with
TP53MUTBRAFMUT or TP53WTBRAFWYT showed moderate
level of tumor-infiltrating CD8+ T cells, and patients with
TP53MUTBRAFWT showed the lowest level of CD8+ T
cells (Figure 3E). In addition, we further analyzed the
correlation between other typical tumor-infiltrating
immune cells and patient outcomes (Figure 4B—4D), as
well as TP53/BRAF mutation (Figure 3F—-3H).

In addition to tumor-infiltrating immune cells, we also
analyzed the relationship between TP53/BRAF
mutation model and other immune-related genes.
Several representative genes were selected, such as
immune-suppress genes, like S100A8 and S100A9 in
myeloid-derived suppressor cells (MDSC), LRP1 in
Regulatory T cells; major histocompatibility complex
(MHC) related genes (HIA.DPA1, HIA.DPB1); and
immune checkpoints related gene PDCD1. And The
violin diagrams about the relative expression quantity of
each group was drawn (Supplementary Figure 2).

Mechanism prediction of TP53/BRAF mutation
model

To understand the mechanism of oncogenesis underlying
TP53/BRAF mutation correlates with response to ICI,
functional enrichment characterization of different
expression mMRNAs between TP53MYTBRAFWYT and
BRAFMUTTP53WT \was performed by GO and KEGG
analysis. According to GO analysis, we found that the
enriched GO terms were including T cell activation and
lymphocyte differentiation. Moreover, KEGG pathway
analysis indicated that most of different expression
mRNAs were involved in PI3K—Akt signaling pathway,
MAPK signaling pathway, Rapl signaling pathway,
chemokine signaling pathway, and AMPK signaling
pathway in cancer (Figure 4).

DISCUSSION

Up to this day, ICI therapies have shown powerful
responses in cancer patients. However, the rate is not
ideal enough, and the methods have the potential to play
a greater role in the clinic. It’s critical to build more
effective biomarker models and stratify the patients for
predicting prognosis and applying better individualized
treatments.
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Figure 3. Associations of overall survival and TP53 and BRAF mutation types with tumor-infiltrating immune cells. (A, B)
Patients with low tumor-infiltrating CD8+ T cells/activated NK cells had shorter OS than patients with high tumor-infiltrating CD8+ T
cells/activated NK cells. (C, D) Patients with low tumor-infiltrating regulatory T cells /activated myeloid dendritic cells had shorter OS than
patients with high regulatory T cells /activated myeloid dendritic cells. (E-H) The level of tumor infiltrating CD8+ T cells was correlated with
the mutation of TP53/BRAF. Data was from TCGA database.
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In the POLE/POLD1 mutation model, patients with either
POLE or POLD1 mutations was associated with better
ICI therapy response and longer OS than the wild-type
population (34months vs 18months) [5]. However, the
POLE/POLD1 mutation model was not a significant
predictive factor for ICI therapy response after multi-
variable adjustment of TMB and TP53/BRAF mutation
model. TP53/BRAF mutation model was a powerful and
independent predictive factor for identifying patients who
benefited from ICI treatment. In advanced tumors, TP53
and BRAF mutations are more common than POLE and
POLD1 mutations, and TP53/BRAF mutation model is
better than POLE/POLD1 mutation model in predicting
ICI treatment response.

The biological implications of a mutually exclusive TP53
mutation and BRAF mutation are not understood at
present. As mentioned above, TP53 is a tumor suppressor
gene involved in the regulation of cell growth [19], BRAF
is an oncogene involved in cellular responses to growth
signals [20]. Missense mutations, insertions or deletions
of TP53 lead to TP53 inactivation are very common.
BRAF mutations, such as BRAF V600E mutations, cause
the continuous activation of the downstream MEK-ERK
signaling pathway [21]. In this study, concurrent TP53
mutation and BRAF mutation was seen in a small number
of patients. Tumors carrying both TP53 mutations and
BRAF mutations are less likely to response to ICI therapy
than those showing only BRAF mutation. This could
account for the TP53 inactivation and BRAF activation
might be genetically redundant, and that alteration in both
genes does not confer a further advantage.

The molecular mechanisms explaining the effects of
TP53/BRAF mutation on predictive value for ICI

A GO analysis
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therapy response are presently unknown. Previously, we
have shown statistically that the level of tumor-
infiltrating CD8+ T cells is correlated with TP53/BRAF
mutations, which may be one of the causes. According
to KEGG analysis, we found five enriched signaling
pathways closely related to tumor immunity. The
PI3K—Akt signaling pathway plays a critical role in T
and B cell development [22, 23]. The BRAF-MAPK
signaling pathway correlates with the production of
various immunosuppressive factors in regulating
cancer-immune evasion [24]. The Rapl signaling
pathway activation leads to increased integrin affinity,
leukocytes arrest rolling and actively lymphocyte
migration and adhesion [25-27]. Chemokines signaling
pathway are key molecules involved in the migration
and homeostasis of immune cells [28]. The AMPK
signaling pathway is involved in shaping the activity of
lymphocytes [29, 30]. The above pathways may explain
potential reasons why TP53/BRAF mutation of cancer
patients contributes to the ICI therapy response. More
detailed and specific studies are needed to elucidate the
precise molecular mechanisms.

In this study, we show that a novel TP53/BRAF mutation
model provides significant information about the
stratification of response to ICl-therapy. Commonly,
patients with high-TMB status have better response to
ICI therapy than patients with low-TMB status. However,
the genotype of TP53MUTBRAFWVT in high-TMB status
cohort have poorer response to ICI therapy than the
genotype of BRAFMUTTP53WT in low-TMB status
(Median, 18 months vs 47 month). Thus, TP53/BRAF
mutation model can add predictive value to TMB in
identifying patients who benefited from ICI treatment,
which can enable more informed treatment decisions.
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Figure 4. (A) Gene ontology (GO) and (B) Kyoto encyclopedia of gene and genomes (KEGG) pathway analysis of different expression mRNAs

between TP53MUTBRAFWT and BRAFMUTTP53WT,

WWWw.aging-us.com

2874

AGING



CONCLUSIONS

we combined TP53 and BRAF mutation status into a
biomarker model which owns the ability to be more
efficient than the POLE/POLD1 mutation model, and
the combination of TP53/BRAF mutation model and
TMB can more accurately predict the response to ICI
therapy.
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Supplementary Figure 1. Relationship between TP53 and BRAF Mutation Types and Prognosis in Patients Treated with Immune
Checkpoint Inhibitors in Different Stratification of Clinical Parameters (A, B) Overall survival of different TP53/BRAF mutation types in
different age groups (age<60 and >60). (C, D) Overall survival of different TP53/BRAF mutation types in different gender groups (women and
men). (E) Patients in high-MSI status group had longer OS than patients in low-MSI status group. (F, G) Overall survival of different TP53/BRAF
mutation types in high/low MSI groups.
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Supplementary Figure 2. Associations of TP53 and BRAF Mutation Types and Immune-related Genes (A—F) TP53/BRAF mutation model
was significantly related to the expression of immune-related genes, that include myeloid-derived suppressor cells (MDSC), major
histocompatibility complex (MHC), and immune checkpoints related genes.

www.aging-us.com

2879

AGING



