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INTRODUCTION 
 

Immune-checkpoint inhibitor (ICI) therapies have 

shown unprecedented durable responses in patients with 

advanced-stage cancers, including the success of anti-

programmed cell death protein 1 (PD-1), anti-

programmed death-ligand 1 (PD-L1) and anti-cytotoxic 

T-lymphocyte-associated protein 4 (CTLA-4), but the 

response rate is only 10%-40% [1, 2]. Therefore, it is 

important to identify the biomarkers that can accurately 

predict the ICI-therapy response.  
 

More and more studies showed tumor mutation burden 

(TMB) is a clinical useful biomarker for identifying 

patients who benefited from ICI treatment [3, 4]. 

Recently, a pan-cancer study showed combining POLE 

and POLD1 mutation status into a simple model also 

can efficiently predict response to ICI therapy [5]. TP53 

is one of the most frequently mutated gene in human 

cancers and has been formulated in a large number of 

studies for functions and mechanisms [6]. In brief, wild-

type p53 plays a vital role in maintaining genomic 

stability and preventing oncogenesis by regulating many 

cellular processes, including promoting cell growth 

arrest, DNA repair, modulating autophagy and cancer 

metabolism [7], and TP53 is highly mutated in about 

50% of human cancers. BRAF, is located on human 

chromosome 7 and encodes a RAS-regulated serine-
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ABSTRACT 
 

Immunotherapy with checkpoint inhibitors, such as PD-1/PD-L1 blockage, is becoming standard of practice for 
an increasing number of cancer types. However, the response rate is only 10%-40%. Thus, identifying 
biomarkers that could accurately predict the ICI-therapy response is critically important. We downloaded 
somatic mutation data for 46,697 patients and tumor-infiltrating immune cells levels data for 11070 patients, 
then combined TP53 and BRAF mutation status into a biomarker model and found that the predict ability of 
TP53/BRAF mutation model is more powerful than some past models. Commonly, patients with high-TMB 
status have better response to ICI therapy than patients with low-TMB status. However, the genotype of 
TP53MUTBRAFWT in high-TMB status cohort have poorer response to ICI therapy than the genotype of 
BRAFMUTTP53WT in low-TMB status (Median, 18 months vs 47 month). Thus, TP53/BRAF mutation model can add 
predictive value to TMB in identifying patients who benefited from ICI treatment, which can enable more 
informed treatment decisions. 
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threonine kinase that plays a part in ERK/MAPK 

signaling pathway. At the same time, the pathway is not 

only involved in regulating cellular biological functions, 

but is also related to tumor formation [8]. Up to this 

day, mutations in BRAF have been reported extensively 

in a variety of benign and malignant tumors [9, 10]. 

Comparing with POLE and POLD1, the mutation of 

TP53 and BRAF are more common in human cancer, 

and TP53 and BRAF had been shown to be linked to 

ICI therapies responses [11, 12].  

 

In this study, we combined TP53 and BRAF mutation 

status into a biomarker model and found that the predict 

ability of TP53/BRAF mutation model is more powerful 

than POLE/POLD1 mutation model, and the 

combination of TP53/BRAF mutation model and TMB 

can more accurately predict the response to ICI therapy. 

Furthermore, we propose several possible molecular 

signaling pathways for the effect of TP53/BRAF 

mutations on the predictive value of ICI treatment 

response. 

 

MATERIALS AND METHODS 
 

In this study, somatic mutation data for 46,697  

patients were downloaded from cBioPortal 

(https://www.cbioportal.org) [13]. All nonsynonymous 

mutations were taken into account. The overall survival 

(OS) of 1,661 patients who received ICI therapy was 

defined from the date of the first ICI treatment to the 

time of death or most recent follow-up, and TMB was 

defined as the total number of somatic nonsynonymous 

mutations normalized to the total number of megabases 

sequenced [14].  

 

The data of tumor-infiltrating immune cells levels for 

11070 patients from TCGA by CIBERSORT14 was 

download from Tumor Immune Estimation Resource 

(TIMER) version 2.0 [15] (http://timer.cistrome.org/ 

infiltration_estimation_for_tcga.csv.gz). The expression 

profiles of mRNAs and clinical survival data of 33 tumor 

types were obtained from the Pan-Cancer Atlas (https:// 

gdc.cancer.gov/about-data/publications/pancanatlas). 

 

The limma package V3.34.9 in R was used to identify 

differentially expressed mRNAs. Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analyses were identified and visualized using R packages 

“clusterProfiler”. The cBioPortal online analysis tool was 

used for mutual exclusivity analysis between TP53 

mutation and BRAF mutation. For survival analysis, 

Kaplan-Meier survival curves were generated and 

compared using the log-rank test, and the Cox regression 

model was used for multivariate survival analysis. 

Statistical tests were done with R software (version 

4.0.2). Statistical significance was set at p values less 

than 0.05. Ethical approval was waived because we used 

only publicly available data and materials in this study. 

 

Availability of data and materials 

 

The datasets presented in this study can be found in 

online repositories. The names of the repositories and 

accession numbers can be found in the article material. 

 

RESULTS 
 

TP53/BRAF mutation model has high frequency 

 

The prevalence of TP53 and BRAF mutations in 46,697 

patients with different cancer types is summarized in 

Figure 1. The mutation frequencies of TP53 and BRAF 

(33.51% and 5.30%) were significantly higher than that 

of POLE and POLD1 (2.74% and 1.45%). The 

relationships between TP53 mutation and BRAF 

mutation are mutually exclusive (Table 1).  

 

TP53/BRAF mutation model can predict 

immunotherapeutic effect and prognosis of patients 

 

Based on the mutually exclusive relationship between 

TP53 mutation and BRAF mutation, we explored the 

immunotherapy response in patients with different 

combinations of TP53 mutation and BRAF mutation. 

Patients were divided into four genotypes, patients with 

BRAF mutation alone (BRAFMUTTP53WT) showed 

favorable survival (Median, 47 months), while those 

with TP53 mutation alone (TP53MUTBRAFWT) had the 

worst survival (Median, 13 months). Patients with both 

mutations or neither mutation (TP53MUTBRAFMUT or 

TP53WTBRAFWT) showed moderate survival (Median, 

27 months and 20 months, respectively) (Figure 2A).  

 

In multivariable Cox regression analysis, TP53/BRAF 

mutation model and TMB were independent predictive 

factors for identifying patients who benefited from ICI 

treatment (both P<0.0001). However, POLE/POLD1 

mutation model and MSI were not independent 

predictive factors (both P>0.05) (Table 2).  

 

Patients in high-TMB status group (the median TMB as 

cutoff) had longer OS than patients in low-TMB status 

group (median, 27 months vs 15 month; P =0.000031, 

Figure 2B). When stratified by TMB status, TP53/BRAF 

mutation model was still a statistically significant model 

for predicting ICI-therapy response. In both high-TMB 

status group and low-TMB status group, TP53/BRAF 

mutation model can successfully divide patients into 

three risk stratification: good response genotype 

(BRAFMUTTP53WT), intermediate response genotype 

(TP53MUTBRAFMUT or TP53WTBRAFWT), and poor 

response genotype (TP53MUTBRAFWT) (Figure 2C, 2D).  

https://www.cbioportal.org/
http://timer.cistrome.org/infiltration_estimation_for_tcga.csv.gz
http://timer.cistrome.org/infiltration_estimation_for_tcga.csv.gz
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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Figure 1. Prevalence of TP53/BRAF mutations in pan-cancer. 
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In addition, the TP53/BRAF mutation model remained a 

statistically significant model when stratified according 

to patients' clinical information. Regardless of gender or 

age, TP53/BRAF mutation model can still classify 

patients into three risk stratification (Supplementary 

Figure 1A–1D). 

 

We further performed MSI analysis and found that the 

low-MSI status group had a better prognosis (median, 

19 months vs 15 month; P=0.0095, Supplementary 

Figure 1E). Exactly like the TMB model, MSI status 

can also stratify patients with mutated genetic risk 

(Supplementary Figure 1F, 1G). 

 

TP53/BRAF mutation is an immune-related model 

 

It is generally admitted that CD8+ T cells are directly 

involved in antitumor cytotoxic responses, and 

accumulating evidence indicates that tumor-infiltrating 

CD8+ T cells predict the efficacy of ICI therapy [16–18]. 

 

 
 

Figure 2. Associations of TP53 and BRAF mutation types with prognosis in patients treated with immune checkpoint 
inhibitors. (A) Patients with the BRAF mutation alone had the best prognosis, while patients with TP53 mutation alone had the worst 

prognosis. Patients with mutations in both or none had median survival. (B) Patients in high-TMB status group had longer OS than patients in 
low-TMB status group. (C, D) In both high-TMB/low-TMB status groups, TP53MUTBRAFWT indicated poorer OS, while BRAFMUTTP53WT did the 
opposite. BRAF indicates B-Raf Proto-Oncogene, Serine/Threonine Kinase gene; TP53 indicates tumor protein p53 gene; MUT indicates 
mutant genes; WT indicates wild type genes; TMB indicates tumor mutation burden; MSI indicates microsatellite instable. 
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Table 1. Mutual exclusivity analysis between TP53 mutation and BRAF mutation in the whole cohort, 
TCGA subset, and MSKCC subset. 

Cohorts 
TP53WT 

BRAFWT 

TP53MUT 

BRAFWT 

BRAFMUT 

TP53WT 

TP53MUT 

BRAFMUT 

Log2  

odds ratio 
p-value q-value 

Whole cohort 27745 13519 1642 646 -0.309 <0.001 <0.001 

TCGA subset 5683 3661 636 209 -0.971 <0.001 <0.001 

MSKCC subset 798 691 119 53 -0.959 <0.001 <0.001 

TCGA, The Cancer Genome Atlas; MSKCC, Memorial Sloan Kettering Cancer Center. 

 

Table 2. Univariate and multivariable association of the TP53/BRAF mutation model with overall survival 
in 1,661 patients who received ICI therapy. 

Parameters 
Univariate  Multivariable 

HR (95%CI) p value  HR (95%CI) p value 

Gender 0.88 (0.77-1.01) 0.078  0.89 (0.77-1.02) 0.09 

Age 1.00 (0.99-1.00) 0.071  1.00 (0.99-1.00) 0.449 

POLE/POLD1 mutation model 0.62 (0.45-0.84) 0.002  0.87 (0.63-1.21) 0.399 

TMB 0.98 (0.98-0.99) <0.0001  0.98 (0.97-0.99) <0.0001 

MSI 0.98 (0.97-1.00) 0.044  1.01 (0.99-1.03) 0.235 

Cancer type 0.95 (0.93-0.98) <0.0001  0.96 (0.94-0.98) 0.0003 

TP53/BRAF mutation model 1.41 (1.26-1.58) <0.0001  1.42 (1.26-1.60) <0.0001 

TMB, tumor mutation burden; MSI, microsatellite instable. 

 

The data from TCGA showed that patients with high 

tumor-infiltrating CD8+ T cells had longer OS than 

patients with low tumor-infiltrating CD8+ T cells (Figure 

3A). We investigated whether TP53/BRAF mutation was 

correlated with the level of tumor-infiltrating CD8+ T 

cells. Patients with BRAFMUTTP53WT showed the highest 

level of tumor-infiltrating CD8+ T cells, patients with 

TP53MUTBRAFMUT or TP53WTBRAFWT showed moderate 

level of tumor-infiltrating CD8+ T cells, and patients with 

TP53MUTBRAFWT showed the lowest level of CD8+ T 

cells (Figure 3E). In addition, we further analyzed the 

correlation between other typical tumor-infiltrating 

immune cells and patient outcomes (Figure 4B–4D), as 

well as TP53/BRAF mutation (Figure 3F–3H). 

 

In addition to tumor-infiltrating immune cells, we also 

analyzed the relationship between TP53/BRAF 

mutation model and other immune-related genes. 

Several representative genes were selected, such as 

immune-suppress genes, like S100A8 and S100A9 in 

myeloid-derived suppressor cells (MDSC), LRP1 in 

Regulatory T cells; major histocompatibility complex 

(MHC) related genes (HlA.DPA1, HlA.DPB1); and 

immune checkpoints related gene PDCD1. And The 

violin diagrams about the relative expression quantity of 

each group was drawn (Supplementary Figure 2). 

Mechanism prediction of TP53/BRAF mutation 

model 

 

To understand the mechanism of oncogenesis underlying 

TP53/BRAF mutation correlates with response to ICI, 

functional enrichment characterization of different 

expression mRNAs between TP53MUTBRAFWT and 

BRAFMUTTP53WT was performed by GO and KEGG 

analysis. According to GO analysis, we found that the 

enriched GO terms were including T cell activation and 

lymphocyte differentiation. Moreover, KEGG pathway 

analysis indicated that most of different expression 

mRNAs were involved in PI3K−Akt signaling pathway, 

MAPK signaling pathway, Rap1 signaling pathway, 

chemokine signaling pathway, and AMPK signaling 

pathway in cancer (Figure 4).  

 

DISCUSSION 
 

Up to this day, ICI therapies have shown powerful 

responses in cancer patients. However, the rate is not 

ideal enough, and the methods have the potential to play 

a greater role in the clinic. It’s critical to build more 
effective biomarker models and stratify the patients for 

predicting prognosis and applying better individualized 

treatments.  
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Figure 3. Associations of overall survival and TP53 and BRAF mutation types with tumor-infiltrating immune cells. (A, B) 
Patients with low tumor-infiltrating CD8+ T cells/activated NK cells had shorter OS than patients with high tumor-infiltrating CD8+ T 
cells/activated NK cells. (C, D) Patients with low tumor-infiltrating regulatory T cells /activated myeloid dendritic cells had shorter OS than 
patients with high regulatory T cells /activated myeloid dendritic cells. (E–H) The level of tumor infiltrating CD8+ T cells was correlated with 
the mutation of TP53/BRAF. Data was from TCGA database.  
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In the POLE/POLD1 mutation model, patients with either 

POLE or POLD1 mutations was associated with better 

ICI therapy response and longer OS than the wild-type 

population (34months vs 18months) [5]. However, the 

POLE/POLD1 mutation model was not a significant 

predictive factor for ICI therapy response after multi-

variable adjustment of TMB and TP53/BRAF mutation 

model. TP53/BRAF mutation model was a powerful and 

independent predictive factor for identifying patients who 

benefited from ICI treatment. In advanced tumors, TP53 

and BRAF mutations are more common than POLE and 

POLD1 mutations, and TP53/BRAF mutation model is 

better than POLE/POLD1 mutation model in predicting 

ICI treatment response. 

 

The biological implications of a mutually exclusive TP53 

mutation and BRAF mutation are not understood at 

present. As mentioned above, TP53 is a tumor suppressor 

gene involved in the regulation of cell growth [19], BRAF 

is an oncogene involved in cellular responses to growth 

signals [20]. Missense mutations, insertions or deletions 

of TP53 lead to TP53 inactivation are very common. 

BRAF mutations, such as BRAF V600E mutations, cause 

the continuous activation of the downstream MEK-ERK 

signaling pathway [21]. In this study, concurrent TP53 

mutation and BRAF mutation was seen in a small number 

of patients. Tumors carrying both TP53 mutations and 

BRAF mutations are less likely to response to ICI therapy 

than those showing only BRAF mutation. This could 

account for the TP53 inactivation and BRAF activation 

might be genetically redundant, and that alteration in both 

genes does not confer a further advantage.  

 

The molecular mechanisms explaining the effects of 

TP53/BRAF mutation on predictive value for ICI 

therapy response are presently unknown. Previously, we 

have shown statistically that the level of tumor-

infiltrating CD8+ T cells is correlated with TP53/BRAF 

mutations, which may be one of the causes. According 

to KEGG analysis, we found five enriched signaling 

pathways closely related to tumor immunity. The 

PI3K−Akt signaling pathway plays a critical role in T 

and B cell development [22, 23]. The BRAF-MAPK 

signaling pathway correlates with the production of 

various immunosuppressive factors in regulating 

cancer-immune evasion [24]. The Rap1 signaling 

pathway activation leads to increased integrin affinity, 

leukocytes arrest rolling and actively lymphocyte 

migration and adhesion [25–27]. Chemokines signaling 

pathway are key molecules involved in the migration 

and homeostasis of immune cells [28]. The AMPK 

signaling pathway is involved in shaping the activity of 

lymphocytes [29, 30]. The above pathways may explain 

potential reasons why TP53/BRAF mutation of cancer 

patients contributes to the ICI therapy response. More 

detailed and specific studies are needed to elucidate the 

precise molecular mechanisms.  

 

In this study, we show that a novel TP53/BRAF mutation 

model provides significant information about the 

stratification of response to ICI-therapy. Commonly, 

patients with high-TMB status have better response to 

ICI therapy than patients with low-TMB status. However, 

the genotype of TP53MUTBRAFWT in high-TMB status 

cohort have poorer response to ICI therapy than the 

genotype of BRAFMUTTP53WT in low-TMB status 

(Median, 18 months vs 47 month). Thus, TP53/BRAF 

mutation model can add predictive value to TMB in 

identifying patients who benefited from ICI treatment, 

which can enable more informed treatment decisions. 

 

 
 

Figure 4. (A) Gene ontology (GO) and (B) Kyoto encyclopedia of gene and genomes (KEGG) pathway analysis of different expression mRNAs 
between TP53MUTBRAFWT and BRAFMUTTP53WT.  
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CONCLUSIONS 
 

we combined TP53 and BRAF mutation status into a 

biomarker model which owns the ability to be more 

efficient than the POLE/POLD1 mutation model, and 

the combination of TP53/BRAF mutation model and 

TMB can more accurately predict the response to ICI 

therapy. 
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Supplementary Figure 1. Relationship between TP53 and BRAF Mutation Types and Prognosis in Patients Treated with Immune 

Checkpoint Inhibitors in Different Stratification of Clinical Parameters (A, B) Overall survival of different TP53/BRAF mutation types in 
different age groups (age<60 and >60). (C, D) Overall survival of different TP53/BRAF mutation types in different gender groups (women and 
men). (E) Patients in high-MSI status group had longer OS than patients in low-MSI status group. (F, G) Overall survival of different TP53/BRAF 
mutation types in high/low MSI groups. 
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Supplementary Figure 2. Associations of TP53 and BRAF Mutation Types and Immune-related Genes (A–F) TP53/BRAF mutation model 

was significantly related to the expression of immune-related genes, that include myeloid-derived suppressor cells (MDSC), major 
histocompatibility complex (MHC), and immune checkpoints related genes. 


