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ABSTRACT

Skin cutaneous melanoma (SKCM) is one of the most aggressive and life-threatening cancers with high
incidence rate, metastasis rate and mortality. Early detection and stratification of risk assessment are essential
to treat SKCM and to improve survival rate. The aim of this study is to construct an immune-related IncRNAs
(immIncRNAs) prognosis risk model to identify immune biomarkers for early diagnosis, prognosis assessment
and target immunotherapy of SKCM. For this purpose, we identified 46 immIncRNAs significantly correlated
with SKCM prognosis to construct the prognostic risk model and patients were stratified into the high- and low-
risk subgroups according to the developed model. The predictive efficiency of this model has been proved by K-
M survival analysis and receiver operating characteristic curve. Moreover, CIBERSORT algorithms confirmed
that there were differences in immune cell infiltration between the high- and low-risk groups. Functional
enrichment analysis further indicated that immIncRNAs were related to a variety of immune response process
signaling pathways, suggesting that relevant immIncRNAs could play an important role in the immune
regulation of SKCM. Finally, subgroup analysis and multiple Cox regression analysis further proved the stability
of the model. In summary, we successfully constructed a 46 immincRNA-related prognostic risk score model
with excellent predictive efficacy and provided more possibilities to investigate the immune regulation
mechanisms and to develop immunotherapy of SKCM.

INTRODUCTION

Skin cutaneous melanoma (SKCM) is one of the
most aggressive and life-threatening cancers [1]. The
number of the new cases of cutaneous melanoma is
increasing in recent years. Moreover, the prognosis
is poor due to early metastasis which is the main cause
of death of malignant skin tumors [2]. Therefore,
early detection of SKCM and stratification of risk
assessment are essential to treat SKCM and to improve
survival rate.

Many studies reveal that misregulation of gene
expression program is a key mediator in SKCM [3-5].
Long non-coding RNAs (IncRNAs) are defined as a
type of RNA that is longer than 200 nucleotides and not
translated into protein [6]. Considering that IncRNAs
contain various transcripts, all of them can modulate
gene expression in specific ways on a basis of cell type,
developmental stage and function [7, 8]. IncRNAs play
major roles in misregulation of gene expression [7, 8].
Despite a sea of previous works focusing on the
function of IncRNAs and their mechanisms of action,
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the roles of IncRNAs in SKCM still remain elusive
[9, 10]. Early studies have primarily analyzed that major
possible influential factors of IncRNAs for SKCM
development and progression often occur in the process
of cell proliferation, apoptosis and differentiation,
such as survival-associated mitochondrial melanoma—
specific onco-genic non-coding RNA (SAMMSON)
and SRA-like non-coding RNA (SLNCR1) [11-14].

Furthermore, as one of the most immunogenic tumors,
the role of immune regulation and immunotherapy of
SKCM are always the central issues [15]. More extended
studies have identified tumor microenvironment as
an important mediator associated with SKCM [16].
Evidences from Dummer’s and Bruno’s studies showed
that dysregulation of the immune system could be
a main cause of SKCM. And as a promising KCM
treatment strategy, immunotherapy has triggered
considerable recent research interest [17, 18]. Hence,
precise regulation of immune genes expression leading
to build a robust immune system does count. Whereas
mechanisms of immune-related coding gene regulation
have been extensively reported [19, 20], less is known
about the regulation mechanisms of immune-related
IncRNAs (immIncRNAs) in SKCM. Several known
immIncRNAs have been proved to serve as a significant
part in SKCM so far [21]. For example, the IncRNA
THRIL regulates TNF-o release and global gene
expression in human monocytic THP-1 cells [22]. The
IncRNA SAMMSON knockdown drastically decreases
the viability of melanoma cells irrespective of their
transcriptional cell state and BRAF, NRAS or TP53
mutational status [11]. Therefore, further studies on
IncRNAs and their roles in immune regulation are
warranted to identify immunotherapy targets in SKCM.

In this study, we systematically identified immIncRNAs
that were involved in SKCM, created and further
validated prognostic risk model of SKCM. Overall,
we propose that exploration of SKCM- related
immIncRNAs reveals formation mechanism, immune
regulation mechanism and immunotherapy of SKCM,
as well as lays a solid foundation on evaluating the
clinical prognosis of SKCM.

RESULTS
Preparation of SKCM data sets

First, a total of 472 SKCM samples including expression
data of related 60498 genes were downloaded from
TCGA database. At the same time, preliminary statistics
on the phenotypic data of these samples was performed,
turning out that the number of paracancer samples was
far less than that of cancer samples (1:47.1). Therefore,
expression data of normal samples were downloaded

from GTEx database, and expression matrix of skin
samples were extracted to successfully identify the
differential expressed IncRNAs. Gene expression data of
471 cancer samples and 555 normal samples were finally
obtained after integration. After that, a total of 14,081
expressed IncRNAs were obtained, by integrating gene
expression data.

Next, the immIlncRNA information was downloaded
from the immLnc database, and a total of 12,499
immIncRNAs were obtained.

Identification of differentially expressed IncRNAs
(DE-IncRNAs) in SKCM

The MDS (Multidimensional Scaling) diagram showed
that the cluster of homogeneous samples was obvious
and the difference of heterogeneous samples was
significant. Based on the threshold abs(log,FC) > 1
and FDR < 0.05, 7836, DE-IncRNAs were screened
out, among which 5637 were upregulated and 2199
were downregulated (Figure 1A). Moreover, 100 DE-
IncRNAs were randomly selected to draw a heat map
shown in Figure 1B (in the form of logx(x+1) for
plotting data). The heat map clearly showed that the
expressions of these DE-IncRNAs were indeed
different between normal samples and tumor samples.
The standardized data were extracted for subsequent
weighted co-expression network analysis.

The integration of DE-immIncRNAs

We further integrated the shared DE-IncRNAs (7836) and
immIncRNAs (12,499), and obtained the overlapping part
shown in Figure 2 as DE-immIncRNAs (6,897) for
subsequent WGCNA analysis.

WGCNA analysis

WGCNA analysis was carried out on 6897 DE-
immIncRNAs. First, logx(x+1) transformation was
performed on the analysis data. Then, 5079 IncRNAs
with the first 75% median absolute deviation and
MAD at least greater than 0.01 were screened for
subsequent analysis. The soft-thresholding power was
determined as 4 (power=4) based on the filtering
threshold R"2 > 0.85 (Figure 3A). To ensure a scale-
free network, the selected power value was tested.
There was a negative correlation between K and p(k)
(correlation coefficient 0.87), indicating that the
selected power value could establish a scale-free
network (Figure 3B). The network was constructed by
one-step method with Power =4, and similar modules
were merged with height < 0.25 as the threshold. In
the end, only two modules were identified,
turquoise=4248, Blue =138, unclassified (grey)=693
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Figure 1. Differential expression analysis and heatmap of DE-IncRNAs in SKCM. (A) Volcano plot of 7836 DE-IncRNAs between
SKCM and normal tissues. The Volcano plot was drawn with -log10 (p-value) as the vertical axis and log2 (Fold Change) as the horizontal axis.
The dotted line was the threshold line. The horizontal dotted line represented p-value=0.05, and the vertical dotted line represented logFC<-
1 and logFC>1. The red dots represented significantly upregulated DE-IncRNAs and the blue dots represented significantly downregulated DE-
IncRNAs in SKCM tissues. The grey dots represented genes that were not differentially expressed. (B) Heat map of randomly selected 100 DE-
IncRNA genes between SKCM and normal tissues. The red and blue bars represented the tumor samples and normal samples, respectively.
And the evolution from red to blue represented the expression level of genes. The bluer zones indicated higher expression while the redder

zones indicated lower expression.
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(Figure 3C). In order to further identify the key
module with strongest correlation with SKCM, the
correlation diagram between modules was drawn by
combining phenotypic data. The results showed that
turquoise module was clustered with tumor phenotype
(Figure 3D). The correlation analysis of module and
phenotype data further indicates that turquoise module
has a high correlation with tumor with a correlation
coefficient of 0.99 (P-value < 0.0001), which further
indicates that IncRNAs in this module have a stronger
correlation with SKCM, so IncRNAs in this module
were selected for subsequent analysis (Figure 3E).

Univariate Cox regression analysis of IncRNAs in
key modules

To identify immIncRNAs associated with SKCM
prognosis, 457 cancer samples which provided valid
survival data were collated from the initial 471 cancer
samples downloaded from TCGA for subsequent
analysis. On this basis, batch univariate Cox regression
analysis was carried out for 4248 IncRNAs in turquoise
module. A set of 721 immIncRNAs in turquoise module
were identified to have a significant association with
prognosis of SKCM (P < 0.05). The IncRNAs in the
first 6 positive phase relation values were further
selected to draw the K-M curve to confirm the
univariate Cox regression analysis results. The higher
expression level of IncRNAs in the curve had a
significant positive impact on survival (P-value <
0.0001), Hazard ratio was all greater than 1.8, and the

imm_IncRNAs

interval of 97.5%CI was greater than 1, indicating that
univariate Cox regression analysis results were reliable
(Figure 4).

Establishment of immlncRNAs prognosis risk
scoring model

Lasso regression dimension reduction was ulteriorly
performed on 721 IncRNAs with significant correlation
with prognosis identified by univariate Cox regression
analysis. The method of cross-validation is first used to
identify the minimum lambda value namely Lambda.min
with the purpose of building the best model. Optimum
46 ImmIncRNA with more significant prognostic value
were filtered out under the Lambda.min to establish an
immIncRNAs prognosis risk scoring model (Figure 5).
To later verify the prediction effectiveness of the
model more comprehensively, we cut data via R
package caret and obtained 320 training sets and 137
testing sets considering there were lack of IncRNAs-
related data sets and no suitable external data sets
were found. Moreover, in the process of model
construction, the code set.seed (1) was used to set the
seed as 1 to realize the reproducibility of results. Then,
the risk score (-0.2055-4.3401) of each sample in
training sets was further calculated by using the
formula in the method. The 320 samples were divided
into high- and low-risk groups using the median
(1.9550) as the cutoff point, and 160 of the high-
and low-risk groups were obtained respectively for
subsequent analysis.

DE IncRNAs

6897

Figure 2. Venn diagram showing the number of common IncRNAs within DE-IncRNAs and immIncRNAs (DE-immincRNAs).

Www.aging-us.com 3033

AGING



A Scale independence Mean connectivity B . Check Scale free topology
Histogram of k scale RA2= 0.87 , slope= -1.22

2 =
- 891012141513202224252530 3 1 o
567 Qo —
<]
o | 3 Q
S
o™
&
o
2 o | o B8
%. ° 2 g+ -
T z - - ~
T < 2 2 £
3 o 2 & 8 =7
= £ s S =
g ERSa =
=) 3 T 2 =4
S o =)
-2 s \C o
3 o 3 2 2
© =
® 3
(=]
£ ° g -
s 2 e
= o
3 3
o
g 4 o o
6.
1 o A 789101214 1618202224262830 f ' I ! ! UL B L
T T T T T T T T T T 0 200 400 600 800 14 18 22 26
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Soft Threshold (power) Soft Threshold (power) k |°g10(k)
C Cluster Dendrogram D Eigengene adjacency heatmap
e
© 1w
T |E
o
o _| =
3
e
5 o 4 o _|
£ ° o

0.0
L
MEblue

tumor

8
o
3
g
k=
L
s

Eigengene adjacency heatmap

o :_

E

normal
1
. 0.8
MEturquoise
X MEDbI
0.5 ue 0.6
MEblue 0 04
MEturquoise
-05 02
MEgrey tumor
-1 0

[

normal MEblue

tumor normal

MEturquoise tumor

Figure 3. WGCNA analysis outcome. (A) Soft threshold filtering. The left diagram showed the relationship between the filtering threshold
RA2 and the soft-thresholding power. The horizontal solid line indicated the screening threshold R2>0.85. And the right diagram showed the
association between the mean connectivity and the soft-thresholding power. (B) Detection of the soft threshold of the network. The sloping
solid line represented the fitted curve. There was a negative correlation between K and p(k) (correlation coefficient 0.87), indicating that the
selected power value could establish a scale-free network. (C) Cluster dendrogram of the DE-immIncRNAs. Each branch on the upper side of
the figure represented a IncRNA; On the bottom side of the figure, the attribution of IncRNA was marked corresponding to that on the top
side, and each color represented a module. (D) Phenotypic dependent inter-module cluster diagram to visualize the relationships between
different modules and phenotypes. (E) Heat map of correlation between the immIncRNA module and clinical phenotype. The value of the
correlation coefficient decreased continuously from red to blue, and the redder zones indicated stronger positive correlation while the bluer
zones indicated stronger negative correlation.
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Figure 4. Univariate Cox regression analysis of IncRNAs in key modules. The K-M curves of the first 6 IncRNAs that were significantly
correlated with disease prognosis, AC121338.1 (A), AC116366.2.C (B), LINC01914 (C), AF165147.1 (D), VIM-AS1 (E), SATB1-AS1 (F). High and
low expression was shown in red and green, respectively.

A

Top 20 of Hazard ratio

IncRNAs pvalue Hazard ratio
AC121338.1 <0.001 1.978(1.509-2.591) —
AC116366.2 <0.001 1.905(1.457-2.492) —
LINCO1914 <0.001 1887(1441 _247) ._._. 199 198 199 196 187 176 155 143 132 10278 51 30 21 12 3
AF165147.1 <0.001 1.881(1.44-2.457) —— T N
VIM-AS1 <0.001 1.854(1.416-2.426) +——@—— E R
SATB1-AS1T  <0.001 1.831(1.403-2.389) ——— VBN e U0
LINC02328  <0.001 1.82(1.392-2.379) — 2 i
AC093726.1 <0.001 1.82(1.391-2.381) — ° - o
AC060766.6 <0.001 1.796(1.369-2.355) +——l— o=
AC025171.4 <0.001 1.782(1.363-2.33) +——l—— —_— 2 S
NRIR <0.001 1.769(1.354-2.31) ——l—
LINCO1675 <0.001 1.764(1.351-2.304) —— 3 |
DDR1-DT <0.001 1.759(1.346-2.3) —— °
AC010619.3 <0.001 1.759(1.343-2.304) ———— o
AL5924942  <0.001 1.749(1.337-2.287) ——— EN
AC006272.1 <0.001 1.743(1.335-2.276) ———
CCRS5AS <0.001 1.736(1.33-2.266) ——W——— . . . a >
LINC02453  <0.001 1.712(1.31-2.237) ————— Log ()
AC011899.3 <0.001 1.703(1.303-2.225) —l——
LINC00943 <0.001 1.7(1.303-2.219) ——@—
16 20 24

Hazard Ratio

Top 10 of Coefficients

LINCO1785
UGDH-AS1

LINC02518
AC093607.1

TRDN-AS1

—
AC011447.3

MIR99AHG

Z95114.1

LINC01208

AC015921.1

0.00 0.05 010 0.15 0.20

Figure 5. Lasso regression performed by Cox regression results. (A) The HR and p-value of selected IncRNAs with the top 20 of HR

using the univariable Cox HR regression (p <0.001).

(B) Cross-validation determined the optimal value of the penalty parameter

(Lambda.min). Partial likelihood deviation curves were plotted against lambda. Dotted vertical lines were drawn at the optimal values by
using the minimum criterion (left) and 1 standard error of the minimum criterion (1-SE criterion) (right). (C) The coefficients of selected

IncRNAs with the top 10 of coefficients.
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Prediction effectiveness analysis and verification of
prognosis risk scoring model

The K-M analysis was first performed for high- and
low-risk groups in training sets using survival data to
verify the prediction effectiveness of the model. The K-
M curve showed that the low-risk group had a highly
significant positive impact on survival (p-value < 0.001)
(Figure 6A). Risk scores and survival duration and
statue of each sample suggested that the prognosis of
patients in the low-risk group was obviously better than
that of patients in the high-risk group (Figure 6D, 6E).
All the above results indicated that the model had a
brilliant prediction effectiveness. In addition, the model
was further used to predict the survival of the samples
through the predict function, and the ROC curve was
drawn. The ROC curve revealed that the AUC value
was 0.909, which manifested that the model was highly
precise (Figure 6F). The heat map of IncRNAs
expression in high- and low-risk groups was shown in
Figure 6G.

External data set validation of prognosis model

The prediction effectiveness of this model for prognosis
of SKCM patients was further validated in the 137
testing sets. In the K-M curve, the influence of high-
and low-risk group on survival reached an extremely
significant level (P-value < 0.0031) (Figure 7A). Risk
scores and survival duration and statue of each sample
suggested that the prognosis of patients in the low-risk
group was obviously better than that of patients in the
high-risk group (Figure 7D, 7E). These results indicate
that our model can effectively predict prognosis of
SKCM patients.

Immune cell infiltration analysis between high- and
low-risk groups

Since the model was established based on immIlncRNA,
in order to further explore the relationship between
risk score and tumor immune microenvironment,
immune cell infiltration analysis was performed using
TIMER and R packet CIBERSORT algorithms.
CIBERSORT analysis showed the proportions of 22
immune cells infiltrated in the high- and low-risk
groups (Figure 8A, 8B). The overall proportion of T-
cell subtypes was higher in the low-risk group, while
the overall proportion of macrophage subtypes was
higher in the high-risk group. But the B cell
subtypes did not differ significantly between the
two subgroups. While the results of TIMER
analysis showed that the proportions of B cells,
CD8+T cells, CD4+ T cells, neutrophils, macrophages,
and dendritic cells were all higher in the low-risk
group (Figure 8C).

Stability analysis of the model

In order to verify if the model was stable in different
age, gender and tumor condition, univariate Cox
regression analysis of survival data and risk grouping
was performed within the different subgroups. The K-M
curves for the different subgroups showed that survival
was consistently lower in the high-risk group than in the
low-risk group (P<0.0001) (Figure 9). This further
indicates that the established model is relatively stable
and has a brilliant prediction effectiveness regardless of
the distribution of T stage, N stage, age and gender in
the sample.

Univariate and multivariate Cox regression analysis
verification

To further explore if risk score could be used as an
independent factor for prognostic prediction and to verify
the stability of the model application, univariate and
multivariate Cox regression analysis was performed for
other factors affecting SKCM. Firstly, four possible
SKCM influencing factors, including age, gender, TNM
stage and tumor stage were selected from phenotypic
data, and 5 factors were obtained by adding IncRNA risk
score. Next, univariate Cox regression analysis was
performed for the 5 factors with survival data alone
(Figure 10). Results demonstrated that IncRNA risk score
had the strongest correlation with SKCM, Hazard ratio
was the highest, and the correlativity was significant
(HR=2.425, 95% CI=1.970-2.984, P <0.0001).
Moreover, TNM stage (HR=2.088, 95%CI=1.445-
3.017, P <0.0001) and tumor stage (HR=2.365,
95%CI=1.644-3.401, P <0.0001) also visibly related
with  SKCM. However, the 97.5% CI (Confidence)
interval of these two factors is relatively larger. It implies
that the prediction results based on these two factors may
be unstable. Additionally, the correlation between age
(HR=1.531, 95%CI=1.072-2.186, P =0.019), gender
(HR=0.902, 95%CI=0.626-1.301, P =0.581) and
SKCM was weak, especially for gender factors, the
correlativity was not significant. The above factors were
further integrated to carry out multivariate Cox regression
analysis. The results showed that IncRNA risk score
remained the strongest correlation with SKCM, Hazard
ratio was the highest, and the correlativity was significant
(HR =2.384, 95%CI=1.924-2.953, P <0.0001). Hazard
ratio was also high in TNM stage (HR=1.613,
95%CI=1.107-2.348, P <0.0001) and tumor stage
(HR=2.152, 95%CI=1.477-3.315, P <0.0001). From
multivariate Cox regression analysis, we also found that
Hazard ratios of all factors were reduced compared with
univariate Cox regression analysis. Therefore, a
combination of some important factors may produce a
better prognostic effect, while the prognostic effect of
single factors is relatively unstable.
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Enrichment analysis via Co-IncRNA

Eventually, functional enrichment analysis was applied
to explore the possible role of the 46 immIncRNA in the
immune regulation of SKCM. A total of 2997 Co-
expressed mRNAs of 46 IncRNAs in the model were
extracted from the Skin (TCGA SKCM Pathologic
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related pathways (Figure 11A). CC enrichment mainly
obtained Golgi bodies, vacuoles and other organelles as
well as acetyltransferase complex pathways (Figure 11B).
MF enrichment mainly obtained ubiquitin protein
transferase activity, GTPase activity, acetyltransferase
activity and other pathways (Figure 11C). KEGG
enrichment mainly obtained protein degradation related
and fatty acid metabolism related pathways (Figure 11D).
These results are consistent with the immune response
process, suggesting that related IncRNAs may play an
important role in the immune regulation of SKCM.

DISCUSSION

SKCM is one of the most aggressive skin malignancies
[1]. The prognosis is poor due to early metastasis, which
is the main cause of death [2]. Therefore, early detection
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was the survival time. The blue dots represented survival and red represented death, respectively. (F) The ROC curve of the testing sets. The
grey dotted line was the random line, the blue curve was the AUC curve. (F) The heat map of IncRNAs expression in high- and low-risk groups.
The red and blue bars represented the low-risk group and the high-risk group. And the evolution from red to blue represented the expression
level of genes. The bluer zones indicated higher expression while the redder zones indicated lower expression. The horizontal coordinates of
Figure 6D, 6E represented samples with increasing risk score. The 69 samples on the left were low-risk group, and the 68 samples on the right

were high-risk group.
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correlations with prognosis, and effectively differentiated
the SKCM into the high- and low-risk groups. Our
analyses clearly indicate that this model has accurate
and stable predictive efficiency. Furthermore, we also
conducted immune cell infiltration analysis and
immIncRNAs function enrichment analysis, and the
results showed that there were differences in immune cell
infiltration between the high- and low-risk groups, and
immIncRNAs were related to a variety of immune
response process signaling pathways, suggesting that
relevant immIncRNAs may play an important role in the
immune regulation of SKCM.

A few of the 46 selected immIncRNAs have been
reported to be associated with the progression and
prognosis of other tumors. MIR99AHG (also known as
MONK), for example, highly expresses in acute
megakaryocytic leukemia (AMKL) cell lines, and

MONK knockout impacts the proliferation of leukemia
cell lines and inhibits the growth of AMKL cancer
samples [24]. Moreover, it is reported that MIR99AHG
expression is up-regulated in gastric cancer, which is
associated with clinical progression and poor prognosis
of gastric cancer [25]. MIR99AHG is also used to build
prognostic risk score models in many tumors, including
head and neck squamous cell carcinoma, lung squamous
cell carcinoma, breast cancer, and carcinogens [26-28].
All these suggest that MIR99AHG is a potential tumor
biomarker that can be used for prognostic assessment
and to guide targeted therapy. However, there have been
no reports on its role and mechanism in SKCM, so
further research is needed. LINC00691 has also been
confirmed to be highly expressed in gastric cancer
patients, which simultaneously promotes the expression
of epithelial growth factor to accelerate the proliferation
and invasion of gastric cancer cells [29]. RT-qPCR
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Figure 8. Immune cell infiltration analysis between high- and low-risk group. (A, C) The proportions of 22 immune cells infiltrated in
the high- and low-risk groups from CIBERSORT analysis. (B) The proportions of B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages,
and dendritic cells infiltrated in the high- and low-risk groups from TIMER analysis. The horizontal axis of Figure B, C was the immune cells,
and the vertical axis was the cell infiltration proportion. High-risk and low-risk groups were marked in red and blue, respectively.
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detection and survival analysis from more than 100
clinical samples reveal that the expression of
LINCO00691 is also up-regulated in non-small cell lung
cancer, which is associated with poor prognosis [30].
Upregulation of LINC00691 is also found in renal cell
carcinoma [31]. PRRT3-ASI1 is a novel IncRNA that has
been shown to be associated with the proliferation of
prostate cancer cells. PRRT3-AS1 silencing will inhibit
the proliferation of prostate cancer cells and promote
apoptosis and autophagy [32]. In addition, PRRT3-AS1
regulates glioblastoma cells proliferation and metastasis
through MAPK signaling pathways [33]. A recent study
uncovers that PRRT3-AS1 is associated with poor
prognosis of hepatocellular carcinoma [34]. This also
suggests that PRRT3-AS1 may play an important role in
the proliferation of cancer cells and is associated
with poor prognosis of cancer. The specific roles of
these immIncRNAs and the others of 46 immIncRNAs
in the SKCM are worthy of further experimental
verification and study, which will greatly contribute to
understanding formation and development mechanism of
SKCM and target immunotherapy. It also lies a more
solid foundation for the prognosis assessment and
improvement of the prognosis of patients.
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To further explore the specific relationship between
immIncRNA and immune regulation and the mechanisms
of immIncRNA in SKCM biological processes, we
performed immune cell infiltration analysis using
TIMER and R packet CIBERSORT algorithms. Both
algorithms indicated that there were significant
differences in immune cell infiltration in high- and
low-risk groups. Considering the different calculation
methods of the two algorithms and the difference in
the prediction sensitivity of different cells, the results
of the two algorithms are inevitably different. But
for key cells, such as CD8'T cells, the results obtained
by the two algorithms were consistent, that is, in the
low-risk group, the proportion of CD8" T cells
infiltrated was significantly increased. This is consistent
with previous findings that T cell infiltration increases
survival in SKCM patients and is associated with
better prognosis [35]. Moreover, studies have confirmed
that CD8'T cells can infiltrate into tumor tissue sites
and kill tumor cells [36]. Tumor-associated
macrophages (TAM), however, can promote the
metastasis and invasion of tumor cells to other sites
through the contact with tumor cells and molecular
transfer [37]. Therefore, our results clearly reveal
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Figure 9. Stability Analysis of the model. K-M curves drawn within different subgroups according to high- (red) and low-(green)risk
groups to verify whether the model was stable in different age, gender and tumor condition.
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Figure 10. Univariate and multivariate Cox regression analysis verification. Univariate and multivariate Cox analysis results for other
factors affecting SKCM including IncRNA risk score, age, gender, TNM stage and tumor stage. The vertical dotted line represented HR=1. We
considered HR>1 as a survival disadvantage and HR<1 as a survival advantage.
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that the imbalance of T cell and macrophage ratio will
significantly affect the prognosis and the response to
immunotherapy. The functional enrichment analysis of
the selected immIncRNA also reveals that the
signal pathway is involved and is consistent with the
immune response, which confirms that immlncRNA
may play an important role in the immune regulation
of SKCM.

The 46 immIncRNAs screened can be used as brilliant
tumor markers, which can be used to create a
prognostic model, develop immunotherapy, provide
more research directions and possibilities for the
immune regulation mechanism of SKCM. Herein, all
our conclusions are based on bioinformatics analysis.
In our next step, we will select several important
immIncRNA to further verify and understand true
mechanisms by in vitro and in vivo experiments. In
addition, in order to correlate the obtained data with
clinical practice, we retrieved the top 150 differentially
expressed genes according to high- and low-risk
groups and put them into the Connectivity Map
(CMAP) database in an attempt to screen potential
small molecule drugs related to SKCM. Taking q-
value < 0.05 as the threshold, we finally obtained 3
small molecule drugs with certain therapeutic
potential. They are PCO-400, AM-251 and talipexole
(Supplementary Table 1). These drugs may provide
therapeutic targets for future research.

In conclusion, we successfully constructed a 46
immIncRNA-related prognostic risk score model with
excellent predictive efficacy. Different prognoses of
high- and low-risk groups were associated with certain
immIncRNA expression imbalance, different immune
cell infiltration, and multiple immune reactive-related
signaling pathways. Our study provides a good way to
evaluate the clinical prognosis of SKCM, and also
provides more possibilities for the research on the
immune regulation mechanism and immunotherapy of
SKCM.

CONCLUSIONS

In summary, we successfully constructed a 46
immIncRNA-related prognostic risk score model with
excellent predictive efficacy. Different prognoses of
high- and low-risk groups were associated with certain
immIncRNA expression imbalance, different immune
cell infiltration, and multiple immune reactive-related
signaling pathways. Our study provides a good method
for the clinical early diagnosis and prognostic judgment
of SKCM, and also provides more possibilities to
investigate the immune regulation mechanisms and to
develop immunotherapy of SKCM.

MATERIALS AND METHODS
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Data download

(1) Download SKCM expression data from UCSC
TCGA database:
https://gdc.xenahubs.net/download/ TCGA-
SKCM.htseq counts.tsv.gz; Full metadata
simultaneous acquisition of Phenotypic data and
Survival data for each sample

(2) Download normal human expression data from
GTEx database and extract expression matrix:
https://toil.xenahubs.net/download/gtex gene expe
cted count.gz; Full metadata

(3) Access immIncRNA related information from
immLnc database:
http://bio-bigdata.hrbmu.edu.cn/ImmInc/

(4) Download human gtf file (Homo_ sapiens.
GRCh38.99.¢gtf.gz) from Ensembl database and
access information of IncRNA and symbol:
http://www.ensembl.org/info/data/ftp/index.html

Skin cutaneous melanoma (SKCM) differential
expression analysis

Differential expression analysis LncRNAs were
obtained by R package edgeR. The forms of
expression matrix in two databases were both log,**D.
Then the counts were drawn by round(2”a-1). Due to
batch effects between TCGA cancer samples and
GTEx samples, the standardized expression profile
was obtained by TMM normalization method built in
edgeR. Furthermore, the differential expression genes
were obtained by threshold value of abs (log2FC) > 1
and FDR < 0.05. The expression matrix used in
subsequent analysis was standardized expression
profile.

Integration of DE-IncRNAs

Venn diagrams of DE-IncRNAs and immIncRNA were
plotted using R package VennDiagram. Shared DE-
immIncRNAs were integrated by merge formula for
subsequent WGCNA.

Weighted gene co-expression network analysis
(WGCNA)

Weighted gene co-expression network analysis was
performed on DE-immIncRNAs via R package
WGCNA, which obtained the strongest correlativity
module with tumor for subsequent analysis.

Univariate Cox regression analysis of IncRNAs in
key modules

To deeply mine IncRNAs related to tumor in modules,
we further extracted IncRNAs from cancer samples.

As shown in Table 1, combined with survival data
(samples without existent survival data were
excluded), we used R-package survival and survminer
to carry out batch Cox single-factor regression analysis
and K-M curve drawing, respectively. After regression
analysis, significant IncRNAs were screened with P <
0.05 as the threshold for subsequent lasso regression
analysis.

Establishment of immIncRNAs prognosis risk scoring
model via lasso regression analysis

Lasso regression was used to reduce the dimension of
the significantly correlated IncRNAs obtained in the
previous step, and construct risk scoring model, which
mainly depended on the R-package glmnet. To build
more accurate regression models, lambda screening
was carried out by cross validation. Then we selected
models corresponding to lambda.min. The expression
matrix of related genes in the model was further
extracted, and the risk score of each sample was
calculated by the following formula. The samples were
divided into high-risk group (High Risk) and low-risk
group (Low Risk) by using median as a cutoff for later
model validation.

RScore; = Z exp;x B;

i=1

Prediction effectiveness analysis and verification of
prognosis risk scoring model

According to the above analysis, the high- and low-
risk groups were obtained. Combined with the survival
data, the K-M curve was drawn, and p-value < 0.01
was judged as significant model construction, then the
predict function in R was further used to predict the
results, and the AUC value of the model was
calculated, and then the ROC curve was drawn with
AUC > 0.8 to judge the accuracy of the model
construction.

External data set validation of prognosis model

Because there were lack of IncRNAs-related data sets,
and no suitable external data sets were found, we cut
data via R package caret and obtained training sets
possessing about two-thirds of the total data and
testing sets possessing rest of the total data. We
calculated the risk scores of the testing set. Similarly,
the data were divided into high-risk group and low-
risk group. Then according to survival data, we plotted
K-M curves and got significant P-value (p-
value<0.01), which identified this model with better
predictive effects than others.
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Table 1. Survival data statistics.

Event=0 Event=1

Samples

235

222

Table 2. Sample classification method of model validation verification.

T stage N stage Age Sex
T1+T2+T3 (150) NO (157) >60 years (176) Male (205)
T4a+T4b (102) NI+N2+N3 (123)  <=60 years (144) Female (115)

Immune cell infiltration level analysis of high-risk
group and low-risk group was calculated through
TIMER and CIBERSORT algorithm

CIBERSORT algorithm can infer the proportion of 22
immune cells in the sample according to the expression
of some genes. Firstly, the expression data of
characteristic genes were extracted from the complete
expression data to obtain expression matrix of
characteristic genes. Then, combined with the existing
immune cell signature file, the proportion of immune
cells in different groups was calculated by using R-
package CIBERSORT. At the same time, box plots
were formed by Wilcoxon rank sum test to facilitate the
comparison of 22 immune cell infiltration levels
between the low-risk group and the high-risk group.
TIMER can also analyze immune cell infiltration.
TIMER 2.0 (https:/cistrome.shinyapps.io/timer/) is a
platform for analyzing the infiltration of immune cells
in tumor tissues based on RNA-Seq expression profiling
data. It mainly provides the infiltration of six types of
immune cells including B cells, CD4" T cells, CD8" T
cells, neutrophils, macrophages and dendritic cells. We
uploaded the expression information and analyzed the
immune cell infiltration in high- and low-risk groups on
this platform.

Stability analysis of the model

In order to verify whether the model was stable in
different age, gender and tumor condition, we divided
training set samples into different groups according to
the method of Table 2 (samples without relevance were
excluded), used univariate Cox regression analyses in
groups and plotted K-M curves of high-risk group and
low-risk group. By calculating whether p-value was
significant, the model could be proved to be stable.

Univariate and multivariate Cox regression analysis
verification

To verify whether risk scores were independent
prognostic factors, we performed univariate regression

analyses on other factors in the training set. Other factors
included age, gender, TNM (tumor node metastasis
classification) staging and tumor stage. To ensure
consistency with follow-up analysis, all samples were
required to contain the information mentioned above.
Then we had multivariate Cox regression analyses on
overall prognosis of above 5 factors to prove that the
prognostic effect of risk score was more significant than
other factors.

Enrichment analysis via Co-IncRNA

Since there are only protein-coding gene functions in
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia
of Genes and Genomes) functional database, we
needed networking with IncRNA and mRNA. By
analyzing and searching for mRNA co-expression with
IncRNA, Co-IncRNA database built co-expression
networks between mRNA and IncRNA. In addition,
Co-IncRNA database studied the function via GO
and KEGG of co-expressed mRNA. The web of the
database: http://bio-bigdata.hrbmu.edu.cn/Co-LncRNA/.

Co-expressed mRNA from IncRNAs in the model was
used from Skin (TCGA SKCM pathologic stage).
Expression identification chose linear regression
calculation, coef>2 and p-value<0.001. Then, functional
annotations were performed via R package clusterProfiler.

Availability of data and materials

The data used to support the findings of this study are
available.

Abbreviations

SKCM: skin cutaneous melanoma; immincRNAs:
immune-related IncRNAs; IncRNAs: long non-coding
RNAs; SAMMSON: survival-associated mitochondrial
melanoma-specific onco-genic non-coding RNA;
SLNCRI1: SRA-like non-coding RNA; AMKL: acute
megakaryocytic leukemia; TAM: tumor- associated
macrophages.
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SUPPLEMENTARY MATERIALS
Supplementary Table

Supplementary Table 1. List of small molecule drugs with some therapeutic potential for SKCM.

pert_iname cell_iname pert_type pert_idose pert_itime moa target_name raw_cs fdr_q_nlogl0 norm_cs
PCO-400 VCAP trt_cp 10 uM 6h Potassium channel activator KCNIJ8|ABCC9 -0.58 15.65 -1.78
Cannabinoid 1t
AM-251 A549 trt_cp 10 uM 6h annapmolc receptor CNRI|GPRIS|GPRSS ~ -0.58 15.65 -18
- antagonist
Adrenergic receptor
talipexole VCAP trt_cp 10 uM 6h agonist|Dopamine receptor ~ DRD2|HTR3A|ADRA2A  -0.56 1.45 -1.72

agonist
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