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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the most common 

type of primary liver cancer and a serious threat to 

human health, hindering social and economic 

development [1, 2]. Currently, HCC is the fifth most 

common type of cancer worldwide [3]. HCC has a high 

mortality rate and is the second leading cause of cancer 

death [4]. Early-stage HCC can be treated by 
radiofrequency ablation, trans-arterial therapy, and 

surgical resection [5]. Unfortunately, a large proportion 

of HCC patients are diagnosed with advanced-stage 

disease because the symptoms of early-stage HCC are 

not obvious [6]. Treatment for advanced HCC is often 

limited [7]. In recent years, targeted therapy and 

immunotherapy have achieved good initial results in the 

treatment of HCC [8]. Targeting therapy with sorafenib 

for HCC and immunotherapy with immune checkpoint 

inhibitors such as nivolumab are both promising 

treatment options [9]. It is worth mentioning that the 

immune microenvironment of HCC plays an indelible 
role in its onset, progression, and response to treatment 

[10]. It is time to study the immune microenvironment 

of HCC further. 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and is often associated with a 
poor prognosis. The main reason for this poor prognosis is that inconspicuous early symptoms lead to delayed 
diagnosis. Treatment options for advanced HCC remain limited and ineffective. In this context, the exploration 
of the immune microenvironment in HCC becomes attractive. In this study, we divided HCC into immune cell 
and non-immune cell subtypes, by single-cell sequencing analysis of GEO dataset GSE146115. We found 
differentially expressed genes in the two subtypes, which we used to construct a prognostic model for HCC 
through Cox and Lasso regressions. Our prognostic model can accurately evaluate the prognosis of HCC 
patients, and provide a reference for the design of immunotherapy for HCC. 
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As the frontier of genomics, single-cell sequencing 

technology is developing rapidly [11]. This allowed us 

to precisely study the immune landscape of multiple 

cells in HCC. Moreover, it provides a way to cluster and 

annotate cells to better understand tumour immune 

mechanisms, the emergence of drug resistance, and 

changes in cell differentiation in HCC [12]. Single-cell 

sequencing technology will bring exciting breakthroughs 

in tumour genomics in the future. 

 

In this study, we first used single-cell sequencing 

analysis to perform dimension reduction, clustering, and 

cell annotation for HCC. This is where we were able  

to divide the different cells from HCC into immune  

and non-immune groups. We then investigated the 

differential gene expression between the two immune 

subsets and constructed a prognostic model of HCC 

based on these genes. This prognostic model can 

accurately assess the prognosis of HCC patients and is 

related to the immune microenvironment and drug 

sensitivity. Our study can provide a new idea for the 

diagnosis and treatment of HCC. 

 

RESULTS 
 

Quality control of single-cell sequencing data 

 

By setting the criteria for screening the cells, we ended 

up with 2,587 cells. As shown in Figure 1A, we found 

that gene expression levels in each cell of the four 

samples were in the range of 300-7,000, and the 

distribution was relatively uniform. At the same time, we 

 

 
 

Figure 1. Quality control of single-cell sequencing data. (A) Gene expression levels in each cell of the 4 samples were in the range of 
300-7000, and the distribution was relatively uniform. At the same time, we found that the percentage of mitochondrial genes was almost 0, 
and the percentage of red blood cell genes was less than 1, and the scores of G2M phase and S phase of the cell cycle were evenly distributed 
in the four samples. (B) Cells are evenly distributed in the four samples, and the number of genes is positively correlated with the expression 
level of genes, with a correlation of 0.8. (C) We selected 300 hypervariable genes from all the genes, which are in red, and the first 10 genes 
were flagged.  
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also found that mitochondrial genes were almost 0%, 

and red blood cell genes were <1%, with the scores 

of G2M and S phases of the cell cycle evenly 

distributed in the four samples. Figure 1B shows that 

cells are evenly distributed in the four samples, and 

the number of genes is positively correlated with 

their expression level (0.8). The above results suggest 

that the cells obtained by filtering can be used for 

subsequent analysis. In Figure 1C, we selected 300 

hypervariable genes, which are in red, and the first 

ten genes were flagged.  

 

Acquisition of characteristic genes associated with 

immune subtypes 

 

After dimension reduction through PCA, we found that 

the cells were organized in nine clusters. Figure 2A 

showed the distribution of the first ten differential genes 

in each cluster. The expression of the first ten genes in 

each cluster is significantly higher than in other clusters. 

In Figure 2B, 2C, we can find the distribution of these 

nine clusters, and the cluster labels corresponding to 

immune cells are 5, 6, 7, and 8. We then explored the 

differentiation trajectory of immune and non-immune 

cells. Figure 2D–2F shows the difference in timing of 

cell differentiation. As cells differentiate from the deeper 

blue branches to the lighter blue branches, non-immune 

cells differentiate earlier than immune cells. Then, we 

obtained 526 genes related to immune subtypes by using 

the Findmarkers function. 

 

Enrichment analysis of immune subtypes-related 

genes 

 

We then performed enrichment analysis of the genes 

associated with immune subtypes, and presented the first 

five important gene sets as a circle diagram. We found 

that these genes were mainly associated with protein 

translation and mRNA degradation (Figure 3A, 3B). 

Figure 3C, 3D illustrates that these genes were mainly 

associated with antigen presentation and immune cell 

differentiation. 

 

 
 

Figure 2. Acquisition of characteristic genes associated with immune subtypes. (A) After dimension reduction through PCA, 

we found that the cells were clustered into 9 clusters. It can be seen that the expression of the first 10 genes in each clus ter is 
significantly higher than that in other clusters. (B, C) We can find the distribution of these 9 clusters, and the cluster labels 
corresponding to immune cells are 5,6,7, and 8. Cells can be divided into immune cells and non-immune cells. (D–F) We then explored 
the differentiation trajectory of immune and non-immune cells. With the time change of cell differentiation, that is, cells differentiate 
from the deeper blue branches to the lighter blue branches, the differentiation states of immune cells and non -immune cells are 
different, and the differentiation time of non-immune cells may be earlier. Then we obtained 526 genes related to immune subtypes by 
using the Findmarkers function. 
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Construction of the prognostic model 

 

Through univariate Cox analysis, we finally obtained 

eleven genes related to immune subtypes with 

prognostic values. As shown in Figure 4A, there were 

seven genes with hazard ratio (HR) >1, which were 

marked in red, and four genes with HR <1, which were 

marked in green. Then, we performed Lasso regression 

analysis on these eleven genes, and the minimum 

lambda value was 0.023. We finally obtained seven 

modelling genes (Figure 4B, 4C), which were ADH4, 

ANP32B, FTCD, PON1, SPP1, SQSTM1, and YBX1. 

Risk score = ADH4*(-0.050) + ANP32B*0.136 + 

FTCD*(-0.038) + PON1(-0.040) + SPP1*0.015 + 

SQSTM1*0.182 +YBX1*0.376. We then divided the 

sample into high-risk and low-risk groups, based on 

the median risk score. 

Evaluation of the value of the prognostic model 

 

We then evaluated the value of the model. In Figure 5A, 

5B, we found that patients in the high-risk group had a 

poorer prognosis in both the TCGA and ICGC datasets 

(P <0.05). Then, to verify the accuracy of the risk score 

in prognostic diagnosis, we plotted the ROC curves for 

1, 2, and 3 years of the two data sets (Figure 5C, 5D). 

We found that the area under the curve (AUC) for 1 year 

and 2 years in both data sets was greater than 0.7, and 

the AUC for 3 years was close to 0.7, suggesting that the 

prognostic model has good stability and accuracy in 

predicting the prognosis of patients. We found that genes 

ADH4, FTCD, and PON1 were highly expressed in the 

low-risk group, while ANP32B, SPP1, SQSTM1, and 

YBX1 were highly expressed in the high-risk group 

(Figure 6A–6F). Moreover, with the increase of risk 

 

 
 

Figure 3. Enrichment analysis of immune subtypes-related genes. (A, B) In GO enrichment analysis, we found that these genes were 

mainly associated with protein translation and mRNA degradation. (C, D) In KEGG enrichment analysis, we found that these genes were 
mainly associated with antigen presentation and immune cell differentiation. 
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value, the proportion of HCC patients who died 

increased. We then further explored the ability of the 

prognostic model to distinguish HCC patients in two 

data sets, and found that HCC patients could be divided 

into two categories in both data sets (Figure 6G, 6H). 

 

Analysis of immune infiltration and immune 

checkpoint 

 

The distribution of immune cell infiltration was 

significantly different between the high- and low-risk 

groups (Figure 7A). In general, T cells and B cells 

tended to be highly expressed mainly in the high-risk 

group. In addition, most of the immune checkpoint 

genes were up-regulated in the high-risk group (Figure 

7B), suggesting that there may be differences in the 

immune microenvironment between the high- and low-

risk groups. 

 

Analysis of gene mutations in high- and low-risk 

groups 

 

The probability of gene mutation was 94.25% in  

the high-risk group and 90.5% in the low-risk group 

(Figure 8A, 8B). This suggested that patients in the 

high-risk group have more frequent mutations, possibly 

 

 
 

Figure 4. Construction of the prognostic model. (A) Through univariate COX analysis, we finally obtained 11 genes related to immune 

subtypes with prognostic values. There were 7 genes with HR>1, which were marked in red, and 4 genes with HR<1, which were marked in 
green. (B, C) Then, we performed LASSO regression analysis on these 11 genes, and the minimum lambda value was 0.023. We finally 
obtained 7 modeling genes, which were ADH4, ANP32B, FTCD, PON1, SPP1, SQSTM1, and YBX1. Risk score = ADH4*(-0.050) + ANP32B*0.136 
+ FTCD*(-0.038) + PON1(-0.040) + SPP1*0.015 + SQSTM1*0.182 +YBX1*0.376. We then divided the sample into high-risk groups and low-risk 
values based on the median risk score. 
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contributing to a poorer prognosis. TP53 was the most 

mutated gene in the high-risk group, and TTN was the 

most mutated gene in the low-risk group. The missense 

mutation was the main mutation type in both the  

high- and the low-risk groups. Interestingly, we found 

that the mutation types of AXIN1 and MUC4 in the 

low-risk group were mainly nonsense mutation and 

frame mutation. 

Pseudo-time series analysis 

 

Pseudo-time series analysis on all HCC immune cells 

revealed that there are six different differentiation 

states, and differentiation state 1 is the earliest (Figure 

9B). T cells first differentiated to B cells (Figure 9A), 

and then to macrophages (Figure 9C). The darker the 

blue, the earlier the differentiation, and the lighter the 

 

 
 

Figure 5. Evaluation of the value of the prognostic model. (A, B) We found that patients in the high-risk group had a poorer prognosis 
in both the TCGA (Figure 5A) and ICGC (Figure 5B) datasets (P <0.05). (C, D) To verify the accuracy of the risk score in prognostic diagnosis, we 
plotted the ROC curves for 1, 2, and 3 years in two data sets. We found that the area under the ROC curve of 1 year and 2 years in both data 
sets was greater than 0.7, and the area under the ROC curve of 3 years was close to 0.7, suggesting that the prognostic model has good 
stability and accuracy in predicting the prognosis of patients. 
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Figure 6. Evaluation of the value of the prognostic model. (A–F) We then analyzed the distribution of gene expression and patient 

survival in the models between the high - and low-risk groups in two data sets. We found that genes ADH4, FTCD, and PON1 were highly 
expressed in the low-risk group, while ANP32B, SPP1, SQSTM1, and YBX1 were highly expressed in the high-risk group. Moreover, we found 
that with the increase of risk value, the proportion of HCC patients who died increased. (G, H) We then further explored the ability of the 
prognostic model to distinguish HCC patients in two data sets and found that HCC patients could be well divided into two categories in both 
data sets. 
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Figure 7. Analysis of immune infiltration and immune checkpoint. (A) The distribution of immune cells was significantly different 

between the high- and low-risk groups. In general, T cells and B cells tended to be highly expressed mainly in the high-risk group. (B) Most of 
the immune checkpoint genes were up-regulated in the high-risk group, suggesting that there may be differences in the immune 
microenvironment between the high- and low-risk groups. 
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Figure 8. Analysis of gene mutations in high- and low-risk groups. (A, B) We found that the probability of mutation was 94.25% in the 

high-risk group (Figure 8A) and 90.5% in the low-risk group (Figure 8B). This suggested that patients in the high-risk group have more 
frequent mutations, possibly contributing to a poorer prognosis. TP53 was the most mutated gene in the high-risk group, and TTN was the 
most mutated gene in the low-risk group. Then we found that missense mutation was the main mutation type in both the high-risk group and 
the low-risk group. Interestingly, we found that the mutation types of AXIN1 and MUC4 in the low-risk group were mainly nonsense mutation 
and frame mutation. 
 

 
 

Figure 9. The expression changes of modeling genes in immune cell differentiation. (A) The darker the blue, the earlier the 

differentiation, and the lighter the blue, the later the differentiation. (B) There are six different differentiation states, and differentiation  
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state 1 is the earliest. (C) With the differentiation of immune cells, there was a trend that T cells first differentiated to B cells, and then to 
macrophages. (D) It was found that the expression of ANP32B and YBX1 genes was mainly increased, the expression of SPP1 was mainly 
decreased and then increased, and the expression of ADH4, PON1, FTCD, and SQSTM1 was mainly down-regulated. 

 

blue, the later the differentiation. The expression of 

ANP32B and YBX1 genes was mainly increased, the 

expression of SPP1 was first decreased and then 

increased, and the expression of ADH4, PON1, FTCD, 

and SQSTM1 was mainly down-regulated (Figure 9D). 

 

Drug sensitivity analysis 

 

To improve the prognosis of HCC patients, we screened 

candidate drugs related to the prognosis model through 

the cellMiner website. As shown in Figure 10, the 

candidates were nelarabine, fluphenazine, dexamethasone, 

and decadr. 

 

Construction of the nomogram 

 

To further predict the prognosis of HCC patients, 

parameters including age, tumour stage, gender, and 

other factors were comprehensively analysed to 

construct the Nomo diagram (Figure 11A). Combined 

with the clinical data and risk score of the patient 

“TCGA-RC-A6M5”, we predicted 1-year, 2-year, and 

3-year mortality rates at 0.442, 0.674, and 0.749, 

respectively. In addition, we constructed calibration 

curves (Figure 11B) and found that this nomogram 

could predict the prognosis of HCC patients at 1, 2, 

and 3 years with good accuracy. 

 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) 

 

As the expression analysis of the 7 model genes 

mentioned above was only performed in the high-risk 

and low-risk groups of HCC patients. Next, PCR assay 

was used to detect the expression of 7 model genes in 

HCC cells and normal adjacent tissues. As shown in 

Figure 12, among the 7 model genes, 4 genes were 

differentially expressed in HCC cells and normal para-

cancer tissues, namely, ANP32B, FTCD, ADH4 and 

PON1 (Figure 12A–12D). The expression levels of these

 

 
 

Figure 10. Drug sensitivity analysis. To improve the prognosis of HCC patients, we screened candidate drugs related to the prognosis 
model through the cellMiner website. The candidates are Nelarabine, Fluphenazine, Dexamethasone Decadr, etc. 
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Figure 11. Construction of the nomogram. (A) The model risk score, age, tumor stage, gender, and other factors were comprehensively 

analyzed to construct the Nomo diagram. Combined with the clinical data and risk score of the patient “TCGA-RC-A6M5”, we predicted 1-
year, 2-year, and 3-year mortality rates of 0.442, 0.674, and 0.749, respectively. (B) In addition, we constructed the calibration curves and 
found that this nomogram could predict the prognosis of HCC patients at 1, 2, and 3 years with good accuracy. 
 

 
 

Figure 12. Quantitative real-time polymerase chain reaction (qRT-PCR). (A–D) ANP32B, FTCD, ADH4 and PON1 were differentially 

expressed in HCC cells and normal para-cancer tissues. The expression levels of these four genes were all downregulated in HCC, and the 
expression levels of ADH4 and PON1 were very low. (**P<0.01). 
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four genes were all downregulated in HCC, and the 

expression levels of ADH4 and PON1 were very low. 

 

DISCUSSION 
 

The development of HCC is closely related to the 

immune system [13]. On the one hand, liver diseases 

involving immune disorders, such as viral hepatitis and 

non-alcoholic fatty liver, play an important role in the 

pathogenesis of HCC [14]. The liver is an immune organ 

that is exposed to many of its own and foreign antigens 

[15]. Thus, the immune microenvironment of HCC is 

large and complex [16]. Currently, immunotherapy is 

gaining momentum in HCC, but there is still a significant 

proportion of patients with low reactivity [17]. This 

suggests that our understanding of the immune 

microenvironment of hepatocellular carcinoma is far 

from sufficient. It is of profound significance to explore 

the complex immune microenvironment of hepatocellular 

carcinoma, identify novel biomarkers, and construct a 

meaningful prognostic model. 

 

In this present study, we first performed reduction and 

cluster analysis on single-cell sequencing data. HCC 

was divided into immune and non-immune subtypes. 

We then identified differentially expressed genes in 

the two subpopulations. Cox and Lasso regressions 

were performed on the differentially expressed genes 

to construct a prognostic model based on immune 

subtypes. The model divided HCC patients into high-

risk and low-risk groups through the calculation of risk 

scores. Patients in the high-risk group had a 

significantly poorer prognosis. The prognostic guiding 

significance was verified in the validation set, and  

the higher AUC value indicated higher accuracy. 

Subsequently, we identified that the differences in the 

tumour microenvironment between the high-risk and 

the low-risk groups related to immune infiltration, 

signal activation, drug sensitivity, etc. Finally, PCR 

was used to explore the expression of model genes in 

HCC and normal tissues. 

 

Despite the initial success of immunotherapy in HCC, 

unfortunately only a fraction of patients benefit from 

immunotherapy, due to the apparent heterogeneity of 

HCC [18]. Genomic instability, disruption of molecular 

and signal transduction networks, microenvironmental 

differences, and the presence of tumour stem cells are 

all sources of HCC heterogeneity [19]. In this context, 

individualized precision treatment is particularly 

important. Advanced sequencing techniques, especially 

current single-cell sequencing techniques, provide a 

way to better understand the heterogeneity of HCC [20]. 

In our study, HCC cells were divided into immune and 

non-immune groups by single-cell sequencing analysis, 

and the differences in gene expression between the two 

groups were explored. This is undoubtedly beneficial to 

the understanding of the heterogeneity of HCC. 

 

As mentioned earlier, HCC is a tumour type with a poor 

prognosis. Therefore, some emerging prognostic 

markers can be identified to improve the prognosis of 

HCC patients. We present a new prognostic model 

based on immune typing. For patients in the high-risk 

group, more aggressive treatment should be adopted to 

improve patient outcomes. We also studied the 

differences in immune cell infiltration between the two 

groups, from which we can provide references to guide 

immunotherapy of HCC. 

 

Accurate identification of HCC patients likely to respond 

to immunotherapy is critical [21]. Tumour mutation load 

(TMB), an indicator of immunogenicity in patients with 

HCC, is an emerging prognostic and therapeutic response 

marker [22, 23]. By measuring TMB, we were able to 

identify the ability of patients with HCC to benefit from 

immunotherapy. In our study, we explored the difference 

in TMB between the high-risk and low-risk groups in this 

prognostic model, which has implications for our further 

targeted treatment of HCC. 

 

In summary, our study establishes a novel and effective 

immune subtype-related prognostic model for HCC. 

These results have implications for the precise treatment 

of HCC and the exploration of the tumour immune 

microenvironment. However, our research has 

limitations. We lack relevant functional tests to further 

verify the function of model genes, which we will 

improve in the future. 

 

CONCLUSIONS 
 

We constructed a prognostic model based on immune 

subtypes in HCC. This model can accurately assess the 

prognosis of HCC patients to guide their treatment. 

Moreover, our study can provide new ideas for 

immunotherapy directed at HCC. 

 

MATERIALS AND METHODS 
 

The data source 

 

Transcriptome data from 424 HCC samples and clinical 

data from 377 HCC patients from The Cancer  

Genome Atlas Program (TCGA) were downloaded. 

Transcriptomic data types were respectively LIHC-count 

and LIHC-FPKM, where the Count format could be used 

for subsequent difference analysis, and FPKM format 

could be used for subsequent analysis after conversion to 

TPM. We also downloaded the mutation data for the 

HCC patients, with the data type of MuTect2 Variant 

Aggregation and Masking. In addition, we have 
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downloaded transcriptome and clinical data from  

The Cancer Genome Collaboratory (ICGC) website.  

The Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/) were used to 

download the single-cell sequencing dataset GSE146115 

of HCC. 

 

Transcriptome data processing 

 

Firstly, we matched the HCC samples of TCGA with  

the clinical data, excluded the subjects with 0 survival 

time, and finally obtained 365 patients with both 

transcriptome and clinical data. Then, 240 HCC patients 

with both transcriptome and clinical data were obtained, 

by matching the transcriptome data obtained from the 

ICGC database with clinical data, and excluding normal 

samples and HCC subjects with 0 survival time. Finally, 

we used the “Combat” function of the R package “SVA” 

to conduct the debatch-effect of the two sequencing data 

sets, and took the intersection of the genes in the two 

data sets. Finally, the expression matrix of 12,757 genes 

in 365 HCC patients from the TCGA dataset was 

obtained, and the expression matrix of 12,757 genes in 

240 HCC patients from the ICGC dataset was obtained. 

 

Quality control of single-cell sequencing data 

 

The following conditions were set: the number of genes 

in each cell is in the range of 300 to 7000, the percentage 

of mitochondria is <10%, the percentage of red blood 

cells is <3%, and the total gene expression copy numbers 

are less than 300,000. We selected the most highly 

variable 3,000 genes and labelled them in red, and we 

tagged the names of the first ten genes that were highly 

variable at the same time. 

 

Dimension reduction and cluster analysis 

 

Firstly, principal component analysis (PCA) dimension 

reduction was carried out based on the highly variable 

genes, and the number of PCs was set to six, and then a 

total of eight clusters were obtained. These clusters were 

presented in uMAP format, and the first ten genes with 

significant differences in each cluster were selected and 

mapped. We split these clusters into immune subgroups 

and non-immune subgroups based on the immune cell 

marker genes “COL2A1”, “PTRPC”, and “EPCAM”. 

After obtaining function genes related to immune 

subgroup by FindMarkers, we set the filter to | 

avg_log2FC | > 2 and p_val_adj < 0.05. 

 

Gene function enrichment and pathway enrichment 

analysis 

 

The characteristic genes obtained that related to immune 

subsets were subjected to enrichment analysis by GOplot 

package. An enrichment result of P <0.05 was retained, 

and the first five important gene sets were displayed in 

the form of a circle diagram. 

 

Pseudo-time series analysis 

 

Pseudo-time series analysis were performed to observe 

the sequence of cell differentiation through the 

“Monocle” package. We used the sample function to 

randomly select 1,500 cells for subsequent analysis. The 

DDRTree method was used to perform dimension 

reduction analysis. Finally, the plot_cell_trajectory 

function was used to display the results. 

 

Construction of a prognostic model 

 

In the transcriptomic data of TCGA, we matched the 

obtained characteristic genes related to immune subtypes 

to obtain the corresponding gene expression. We then 

performed univariate Cox analysis (the screening 

condition was set at P <0.0002) to identify prognostic 

genes associated with immune subsets, and displayed 

them in the form of forest maps. Then, we performed 

Lasso regression analysis on these genes, set the 

parameter of the family as “Cox” and the number of 

MaxIT as 1000, and used the obtained characteristic 

genes for model construction. At the same time, we 

calculated the risk score of the TCGA dataset according 

to the formula of the model, and stratified it into high-

risk group and low-risk groups via the median score for 

subsequent analysis. 

 

Evaluation of the model 

 

First the prognostic effect of this model was evaluated 

by plotting the survival curves of high- and low-risk 

groups in the TCGA and the ICGC datasets. Since the 

prognosis of liver cancer is generally poor, it may be 

more meaningful to plot the receiver operating 

characteristic (ROC) curve within three years. Therefore, 

the timeROC package were used to draw time-dependent 

ROC curves for 1, 2, and 3 years, to observe the 

accuracy and stability of our model. We then used heat 

maps to compare the expression of the model genes 

between the high- and low-risk groups, and plotted the 

risk curve. We plotted the distribution of patients 

between high and low-risk groups using the Rtsen 

package, to determine the effectiveness of differentiating 

patients by risk value. 

 

Analysis of immune infiltration level and immune 

checkpoint 

 
First the analysis results of seven types of immune cell 

infiltrates in HCC patients were downloaded from the 

TCGA database in the Timer 2.0 database. By matching 

https://www.ncbi.nlm.nih.gov/geo/
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HCC samples, we presented the results in the form of 

heat maps of immune cells that were expressed 

differently (P <0.05) between the high- and low-risk 

groups. At the same time, we also obtained a group of 

immune checkpoint-related genes from the literature, 

and then showed the immune checkpoint genes with 

different expressions between the high- and low-risk 

groups (P <0.05) in the form of a bar chart. 

 

Analysis of gene mutation between high- and low-

risk groups 

 

First patients in the high- and low-risk groups were 

selected and the MafTools package were used to show 

the mutations in the first 30 genes in a waterfall plot 

pattern, to see the mutations between the high- and low-

risk groups. 

 

Pseudo-time series analysis 

 

We used the Monocle package again to perform pseudo-

time series analysis on all immune cells using the 

DDRTree method, and the plot was displayed using the 

plot_cell_trajectory function. At the same time, the 

plot_preudotime_heatmap function was used to display 

the expression changes of modelled genes, along with 

the differentiation of immune cells. 

 

Drug sensitivity analysis 

 

The drug sensitivity data of HCC was downloaded from 

the cellMiner database, and the drugs related to the 

model genes were obtained by Pearson correlation 

analysis. The drugs were ranked in order of the absolute 

value of correlation, and the first 16 with strong 

correlation were displayed. 

 

The construction of the nomogram 

 

We used the Regplot package to include clinical 

characteristics and risk groups, and build regression 

models. Clinical data and risk score markers for 

patients with “TCGA-RC-A6M5” were used to predict 

mortality at 1, 2, and 3 years. Then, to assess the 

accuracy of the predictions, we used the “RMS” 

package for analysis, and plotted the calibration curves 

for 1, 2, and 3 years. 

 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) 

 

As the expression analysis of the model genes mentioned 

above was only performed in the high-risk and low-risk 
groups of HCC patients. Next, PCR assay was used to 

detect the expression of model genes in HCC cells and 

normal adjacent tissues. Total cellular RNAs were 

isolated from cells using Trizol Reagent (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer’s 

instructions. The reverse transcription was conducted 

using the reverse transcription kit provided by Takara 

(Otsu, Shiga, Japan). Real-time polymerase chain 

reaction (RT-PCR) was performed using a QuantiTect 

SYBR Green PCR Kit (Takara), and on a Applied 

Biosystems QuantStudio 1 (Thermo, Waltham, MA, 

USA). Relative quantification was determined using the 

-2ΔΔCt method. The relative expression of messenger 

RNA (mRNA) for each gene was normalized to the level 

of glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) mRNA. Primer sequences were summarized 

in Supplementary Table 1. 

 

Compliance with ethical standards 
 

All procedures performed were in accordance with the 

declaration of the ethical standards of the institutional 

research committee and with the 1964 Helsinki 387 

Declaration and its later amendments. The ethics 

committee has approved this study of the First 

Affiliated Hospital of Nanjing Medical University. 

 

Data availability statement 

 

The data that support the findings of this study are 

available in GEO database at [https://www.ncbi.nlm.nih. 

gov/geo/], reference number [GSE146115]. 

 

AUTHOR CONTRIBUTIONS 
 

Jiaheng Xie and Jingping Shi designed the study. Liang 

Chen, Haobo Li, Dan Wu, Yiming Hu were involved in 

database search and statistical analyses. Jiaheng Xie, 

Qingmei Sun, Ming Wang, and Jingping Shi were 

involved in the writing of manuscript and its critical 

revision. Jingping Shi was responsible for the submission 

of the final version of the paper. All authors approved the 

final version. All authors agree to be accountable for all 

aspects of the work. 

 

ACKNOWLEDGMENTS 
 

We are very grateful for data provided by databases 

such as TCGA, GEO. 

 

CONFLICTS OF INTEREST 
 

All authors declare that no conflicts of interest exists. 
 

Editorial note 

 
&This corresponding author has a verified history of 

publications using a personal email address for 

correspondence. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


www.aging-us.com 3290 AGING 

REFERENCES 
 
1. Kim DW, Talati C, Kim R. Hepatocellular carcinoma 

(HCC): beyond sorafenib-chemotherapy. J Gastrointest 
Oncol. 2017; 8:256–65. 

 https://doi.org/10.21037/jgo.2016.09.07 
PMID:28480065 

2. Zhang G, Zhang G. Upregulation of FoxP4 in HCC 
promotes migration and invasion through regulation of 
EMT. Oncol Lett. 2019; 17:3944–51. 

 https://doi.org/10.3892/ol.2019.10049 
PMID:30930991 

3. Asafo-Agyei KO, Samant H. Hepatocellular Carcinoma. 
2021. In: StatPearls. Treasure Island (FL): StatPearls 
Publishing; 2022.  

 https://www.ncbi.nlm.nih.gov/books/NBK559177/ 
 PMID:32644603 

4. Xu J, Shen J, Gu S, Zhang Y, Wu L, Wu J, Shao G, Zhang 
Y, Xu L, Yin T, Liu J, Ren Z, Xiong J, et al. Camrelizumab 
in Combination with Apatinib in Patients with 
Advanced Hepatocellular Carcinoma (RESCUE): A 
Nonrandomized, Open-label, Phase II Trial. Clin Cancer 
Res. 2021; 27:1003–11. 

 https://doi.org/10.1158/1078-0432.CCR-20-2571 
PMID:33087333 

5. Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, Zhao Y. 
Recent progress in treatment of hepatocellular 
carcinoma. Am J Cancer Res. 2020; 10:2993–3036. 

 PMID:33042631 

6. Niendorf E, Spilseth B, Wang X, Taylor A. Contrast 
Enhanced MRI in the Diagnosis of HCC. Diagnostics 
(Basel). 2015; 5:383–98. 

 https://doi.org/10.3390/diagnostics5030383 
PMID:26854161 

7. Couri T, Pillai A. Goals and targets for personalized 
therapy for HCC. Hepatol Int. 2019; 13:125–37. 

 https://doi.org/10.1007/s12072-018-9919-1 
PMID:30600478 

8. Llovet JM, Montal R, Sia D, Finn RS. Molecular 
therapies and precision medicine for hepatocellular 
carcinoma. Nat Rev Clin Oncol. 2018; 15:599–616. 

 https://doi.org/10.1038/s41571-018-0073-4 
PMID:30061739 

9. Li S, Yang F, Ren X. Immunotherapy for hepatocellular 
carcinoma. Drug Discov Ther. 2015; 9:363–71. 

 https://doi.org/10.5582/ddt.2015.01054 
PMID:26632545 

10. Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the 
tumor immune microenvironment and current 
immunotherapeutic strategies for hepatocellular 
carcinoma. J Exp Clin Cancer Res. 2019; 38:396. 

 https://doi.org/10.1186/s13046-019-1396-4 
PMID:31500650 

11. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-
Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, 
Enard W. Comparative Analysis of Single-Cell RNA 
Sequencing Methods. Mol Cell. 2017; 65:631–43.e4. 

 https://doi.org/10.1016/j.molcel.2017.01.023 
PMID:28212749 

12. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing 
technologies and bioinformatics pipelines. Exp Mol 
Med. 2018; 50:1–14. 

 https://doi.org/10.1038/s12276-018-0071-8 
PMID:30089861 

13. Chen Y, Tian Z. HBV-Induced Immune Imbalance in the 
Development of HCC. Front Immunol. 2019; 10:2048. 

 https://doi.org/10.3389/fimmu.2019.02048 
PMID:31507621 

14. Behary J, Amorim N, Jiang XT, Raposo A, Gong L, 
McGovern E, Ibrahim R, Chu F, Stephens C, Jebeili H, 
Fragomeli V, Koay YC, Jackson M, et al. Gut microbiota 
impact on the peripheral immune response in non-
alcoholic fatty liver disease related hepatocellular 
carcinoma. Nat Commun. 2021; 12:187. 

 https://doi.org/10.1038/s41467-020-20422-7 
PMID:33420074 

15. Jiang Y, Han QJ, Zhang J. Hepatocellular carcinoma: 
Mechanisms of progression and immunotherapy. 
World J Gastroenterol. 2019; 25:3151–67. 

 https://doi.org/10.3748/wjg.v25.i25.3151 
PMID:31333308 

16. Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid 
metabolism in hepatocellular carcinoma cells as well as 
immune microenvironment: A review. Cell Prolif. 2020; 
53:e12772. 

 https://doi.org/10.1111/cpr.12772 PMID:32003505 

17. Yu S, Wang Y, Jing L, Claret FX, Li Q, Tian T, Liang X, 
Ruan Z, Jiang L, Yao Y, Nan K, Lv Y, Guo H. Autophagy 
in the “inflammation-carcinogenesis” pathway of  
liver and HCC immunotherapy. Cancer Lett. 2017; 
411:82–9. 

 https://doi.org/10.1016/j.canlet.2017.09.049 
PMID:28987386 

18. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, 
Villanueva A. Tumour evolution in hepatocellular 
carcinoma. Nat Rev Gastroenterol Hepatol. 2020; 
17:139–52. 

 https://doi.org/10.1038/s41575-019-0229-4 
PMID:31792430 

19. Zhang Q, Lou Y, Yang J, Wang J, Feng J, Zhao Y, Wang L, 
Huang X, Fu Q, Ye M, Zhang X, Chen Y, Ma C, et al. 
Integrated multiomic analysis reveals comprehensive 
tumour heterogeneity and novel immunophenotypic 

https://doi.org/10.21037/jgo.2016.09.07
https://pubmed.ncbi.nlm.nih.gov/28480065
https://doi.org/10.3892/ol.2019.10049
https://pubmed.ncbi.nlm.nih.gov/30930991
https://www.ncbi.nlm.nih.gov/books/NBK559177/
https://pubmed.ncbi.nlm.nih.gov/32644603
https://doi.org/10.1158/1078-0432.CCR-20-2571
https://pubmed.ncbi.nlm.nih.gov/33087333
https://pubmed.ncbi.nlm.nih.gov/33042631
https://doi.org/10.3390/diagnostics5030383
https://pubmed.ncbi.nlm.nih.gov/26854161
https://doi.org/10.1007/s12072-018-9919-1
https://pubmed.ncbi.nlm.nih.gov/30600478
https://doi.org/10.1038/s41571-018-0073-4
https://pubmed.ncbi.nlm.nih.gov/30061739
https://doi.org/10.5582/ddt.2015.01054
https://pubmed.ncbi.nlm.nih.gov/26632545
https://doi.org/10.1186/s13046-019-1396-4
https://pubmed.ncbi.nlm.nih.gov/31500650
https://doi.org/10.1016/j.molcel.2017.01.023
https://pubmed.ncbi.nlm.nih.gov/28212749
https://doi.org/10.1038/s12276-018-0071-8
https://pubmed.ncbi.nlm.nih.gov/30089861
https://doi.org/10.3389/fimmu.2019.02048
https://pubmed.ncbi.nlm.nih.gov/31507621
https://doi.org/10.1038/s41467-020-20422-7
https://pubmed.ncbi.nlm.nih.gov/33420074
https://doi.org/10.3748/wjg.v25.i25.3151
https://pubmed.ncbi.nlm.nih.gov/31333308
https://doi.org/10.1111/cpr.12772
https://pubmed.ncbi.nlm.nih.gov/32003505
https://doi.org/10.1016/j.canlet.2017.09.049
https://pubmed.ncbi.nlm.nih.gov/28987386
https://doi.org/10.1038/s41575-019-0229-4
https://pubmed.ncbi.nlm.nih.gov/31792430


www.aging-us.com 3291 AGING 

classification in hepatocellular carcinomas. Gut. 2019; 
68:2019–31. 

 https://doi.org/10.1136/gutjnl-2019-318912 
PMID:31227589 

20. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang 
B, Hu R, Huang JY, Zhang Q, Liu Z, Dong M, Hu X, et al. 
Landscape of Infiltrating T Cells in Liver Cancer 
Revealed by Single-Cell Sequencing. Cell. 2017; 
169:1342–56.e16. 

 https://doi.org/10.1016/j.cell.2017.05.035 
PMID:28622514 

21. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. 
Application of PD-1 Blockade in Cancer 
Immunotherapy. Comput Struct Biotechnol J. 2019; 
17:661–74. 

 https://doi.org/10.1016/j.csbj.2019.03.006 
PMID:31205619 

22. Merino DM, McShane LM, Fabrizio D, Funari V, Chen 
SJ, White JR, Wenz P, Baden J, Barrett JC, Chaudhary R, 
Chen L, Chen WS, Cheng JH, et al, and TMB 
Harmonization Consortium. Establishing guidelines to 

harmonize tumor mutational burden (TMB): in silico 
assessment of variation in TMB quantification across 
diagnostic platforms: phase I of the Friends of Cancer 
Research TMB Harmonization Project. J Immunother 
Cancer. 2020; 8:e000147. 

 https://doi.org/10.1136/jitc-2019-000147 
PMID:32217756 

23. Liu L, Bai X, Wang J, Tang XR, Wu DH, Du SS, Du XJ, 
Zhang YW, Zhu HB, Fang Y, Guo ZQ, Zeng Q, Guo XJ, et 
al. Combination of TMB and CNA Stratifies Prognostic 
and Predictive Responses to Immunotherapy Across 
Metastatic Cancer. Clin Cancer Res. 2019; 25:7413–23. 

 https://doi.org/10.1158/1078-0432.CCR-19-0558 
PMID:31515453 

  

https://doi.org/10.1136/gutjnl-2019-318912
https://pubmed.ncbi.nlm.nih.gov/31227589
https://doi.org/10.1016/j.cell.2017.05.035
https://pubmed.ncbi.nlm.nih.gov/28622514
https://doi.org/10.1016/j.csbj.2019.03.006
https://pubmed.ncbi.nlm.nih.gov/31205619
https://doi.org/10.1136/jitc-2019-000147
https://pubmed.ncbi.nlm.nih.gov/32217756
https://doi.org/10.1158/1078-0432.CCR-19-0558
https://pubmed.ncbi.nlm.nih.gov/31515453


www.aging-us.com 3292 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Table 

 

 

 

Supplementary Table 1. Primer sequences. 

Mus Mucus GAPDH_F AGGTCGGTGTGAACGGATTTG 

Mus Mucus GAPDH_R TGTAGACCATGTAGTTGAGGTCA 

ADH4-F AGTTCGCATTCAGATCATTGCT 

ADH4-R CTGGCCCAATACTTTCCACAA 

ANP32B-F CTGTTCGAGAACTTGTCTTGGAC 

ANP32B-R AGCTTGGGGAGATTTGAAACTG 

FTCD-F GGAATGCGTCCCCAACTTTTC 

FTCD-R TGTCGATAAGTCGGGAAGCTAC 

PON1-F TCCGAGAGGTACAACCCGTAG 

PON1-R CCAGTCCATTAGGCAGTATCTCC   

SPP1-F CTCCATTGACTCGAACGACTC 

SPP1-R CAGGTCTGCGAAACTTCTTAGAT 

SQSTM1-F GACTACGACTTGTGTAGCGTC 

SQSTM1-R AGTGTCCGTGTTTCACCTTCC 

YBX1-F GGGGACAAGAAGGTCATCGC 

YBX1-R CGAAGGTACTTCCTGGGGTTA 

 


