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INTRODUCTION 
 
Pancreatic cancer—a disease associated with aging 
that is diagnosed late in development and difficult to 
successfully treat 
 
When a patient is diagnosed with pancreatic  
cancer, the outcome is poor [1–7]. There are four 

stages of pancreatic cancer. This cancer is often 
detected at stage IV, the most advanced stage 
[1, 2, 5]. The age of the patient will influence the  
survival rate as younger pancreatic cancer patients 
(15–49 years old) have a better survival rate  
than the older patients (50 and above) [7]. Thus, 
pancreatic cancer is a disease associated with aging 
[8, 9]. 
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ABSTRACT 
 
TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, 
gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, 
metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas 
(PDAC). The tumor suppressor gene TP53 is mutated frequently (50–75%) in PDAC. Different types of TP53 
mutations have been observed including gain of function (GOF) point mutations and various deletions of the 
TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which 
result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to 
develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further 
elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a 
control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells 
to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key 
metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and 
metabolism of PDAC. 

mailto:mccubreyj@ecu.edu
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 3366 AGING 

Therapeutic approaches for pancreatic cancer 
 
Most pancreatic cancers consist of pancreatic ductal 
adenocarcinoma (PDAC). They are often refractive to 
classical chemotherapeutic drugs. PDAC patients 
undergo surgery to remove the diseased part of the 
pancreas. However, as PDAC is frequently diagnosed 
late in the course of the disease, the PDAC has often 
metastasized to other organs making therapy difficult 
and ineffective [10–12]. PDACs are often refractive to 
chemotherapeutic drugs and have modest effects in 
terms of treatments of the disease [13–17]. 
 
Genes implicated in PDAC  
 
Many genes have been implicated in PDAC including 
KRAS, TP53, CDKN2A, SMAD4 and PDGFβR [3, 8, 9, 
18–22]. Changes in the expression of these genes has 
many different effects and contribute to PDAC 
progression and metastasis [23–26]. The TP53 gene can 
become mutated by various genetic mechanisms. Two 

of the most common mechanisms of mutation of TP53 
are point mutations and deletions of part or the entire 
TP53 gene. Certain point mutations at the TP53 gene 
alter the activity of the TP53 protein and give the TP53 
protein different properties. This class of TP53 mutation 
is referred to as a gain-of-function (GOF) mutation  
[27–31]. Another class of TP53 mutation results in the 
lack of expression of the TP53. This class of TP53 
mutation is referred to TP53-null [27–31]. 
 
Interestingly, a novel class of compounds have been 
developed which alter the structure of mutant TP53 and 
restore some of its properties which are important is 
suppression of cell growth [32, 33]. APR-246 is one 
such compound which has been examined in clinical 
trials. A summary of the effects of TP53 on various 
processes important in cell growth and metastasis is 
present in Figure 1. 
 
KRAS is another important gene which in mutated in 
>90% of PDAC. Although many potential Ras 

 

 
 

Figure 1. Illustration of TP53’s interactions with other signaling pathways important in regulation of cell growth and sites 
of interaction for chemotherapeutic drugs, certain signal transduction inhibitors, natural products and nutraceuticals. 
Green arrows = induction of a pathway, red arrows = suppression of a pathway. 
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inhibitors were developed over the past 25 years, they 
were not specific to mutant KRas, recently, some have 
shown promise [34, 35]. As with most drugs, cancer cells 
have developed mechanisms to become resistant to these 
inhibitors [36]. In the following studies, we examined the 
consequences of introduction of WT-TP53 gene in two 
PDAC cell lines, one lacking TP53 expression (TP53-null) 
and one cell line with GOF-TP53 [37–39]. Earlier studies 
performed by us, indicated that inheritance of WT-TP53 
increased the ability of some chemotherapeutic drugs, 
signal transduction inhibitors and natural products to 
inhibit cell proliferation [40, 41]. In the current studies, we 
examined the effects of inheritance of WT-TP53 on a 
larger panel of chemotherapeutic drugs as well the 
consequences of on other properties important in cancer 
progression such as clonogenicity, colony formation in soft 
agar and metabolic properties. 
 
RESULTS 
 
Restoration of WT-TP53 activity results in decreased 
resistance to various drugs, inhibitors, and natural 
products 
 
MIA-PaCa-2 cells have GOF mutant TP53 alleles 
(R248W). A cDNA encoding WT-TP53 cDNA was 
inserted into the pLXSN vector [42]. MIA-PaCa-2 cells 
were transduced with the WT-TP53 vector and named 
MIA-PaCa-2 + WT-TP53 cells. As a negative control, 
the effects of the empty parental pLXSN plasmid [43] 
on MIA-PaCa-2 cells and named MIA-PaCa-2 + 
pLXSN.  
 
Table 1 is a list of the various agents examined in this 
study as well as their targets and intersections with the 
TP53 pathway and a brief description of their 
mechanisms of action. 
 
Docetaxel is a common chemotherapeutic drug used to 
treat various cancer types including PDAC. The IC50 for 
docetaxel in MIA-PaCa-2 + WT-TP53 cells was 3.8-fold 
lower than in MIA-PaCa-2 + pLXSN cells (Figure 2A). 
The effects of WT-TP53 on the sensitivity to three 
topoisomerase inhibitors used in cancer therapy were also 
examined (Figure 2B–2D). The IC50s for all the inhibitors 
were lower (~ 2-fold for etoposide and daunorubicin, and 
5-fold for aclacinomycin) in MIA-PaCa-2 + WT-TP53 
cells than in MIA-PaCa-2 + pLXSN cells. 
 
Restoration of WT-TP53 activity in MIA-PaCa-2 cells 
resulted in increased sensitivity to chemotherapeutic 
drugs used to treat cancer patients. Table 2 summarizes 
the effects of addition of WT-TP53 into Mia-PaCa-2 
cells. Restoration of WT-TP53 activity increased 
sensitivity to the KRAS inhibitor ARS-1620 [44] 125-
fold (Figure 3A). 

Various signaling cascades are located downstream of 
KRas. Two important kinase cascades are the Raf/ 
MEK/ERK and PI3K/PTEN/Akt/mTORC1 pathways. 
They are often involved in regulation of cell growth and 
their aberrant regulation is often implicated in cancer 
[45–47]. Restoration of WT-TP53 activity in MIA-
PaCa-2 cells increased the sensitivity to the MEK1 
inhibitor PD0325901 3.3-fold. (Figure 3B). 
 
Restoration of WT-TP53 activity in MIA-PaCa-2 cells 
led to a 33.3-fold lower IC50 for the PI3K inhibitor 
LY294002 inhibitor than that observed in MIA-PaCa-2 
cells lacking WT-TP53 (Figure 3C). Thus, addition of 
WT-TP53 activity in MIA-PaCa-2 cells increased their 
sensitivity to small molecule inhibitors which target the 
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1 
pathways. 
 
Pifithrin-µ is a small molecule that inhibits the 
interactions of TP53 with either BCL2 or BCLXL at the 
mitochondrial membrane. This results in the induction 
of apoptosis. However, Pifithrin-µ does not inhibit the 
effects that TP53 has on transcription [48]. Restoration 
of WT-TP53 in MIA-PaCa-2 cells resulted in a 
pifithrin-µ IC50 240-fold lower than that detected in 
MIA-PaCa-2 cells which lack WT-TP53 activity 
(Figure 3D). 
 
GSK-3 is a multifunctional kinase that is involved in the 
regulation of many processes both in normal 
physiological and malignant growth [49]. GSK-3 has 
been shown to be important for the interactions between 
KRas and NF-κB [50, 51]. GSK-3 is an important target 
in many cancers. GSK-3 inhibitors have been suggested 
for the treatment of PDAC [52]. The effects of GSK-3 
inhibitors BIO, CHIR99021 and SB415286 on MIA-
PaCa-2 cells containing and lacking WT activity were 
examined. Restoration of WT-TP53 activity in MIA-
PaCa-2 cells resulted in over 13-fold lower IC50 for 
SB415286 and only about 2-fold lower IC50 for BIO 
and CHIR99021 than in cells lacking WT-TP53 activity 
(Figure 4A–4C). 
 
The mTORC1 complex plays critical roles in many 
processes, including: cell growth, metabolism, cancer 
and aging [53, 54]. Restoration of WT-TP53 activity in 
MIA-PaCa-2 cells resulted in a rapamycin IC50 6.7-fold 
lower than that observed in cells lacking WT-TP53 
activity (Figure 4D). 
 
EGFR, HER2, ALK, AXL, FLT3, PDGFR and other 
receptors and signal transducers (e.g., Raf) are involved 
in the metastasis of various cancers [55–61]. The effects 
of: the AG1478 EGFR inhibitor, the multi-kinase ALK, 
AXL, FLT3 inhibitor gilteritinib and multi-kinase Raf, 
PDGFR, FLT3, VEGFR inhibitor sorafenib on the 
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Table 1. Chemotherapeutic drugs, signal transduction inhibitors, natural products used in this study and their 
targets, mode of action, and intersections with the TP53 pathway.1,2 

Chemotherapeutic drugs1 
Drug↓ Target1 Mode of action Intersection with TP53 pathway 
Docetaxel  Microtubule Binder Blocks mitosis by inhibiting 

mitotic spindle assembly. 
Docetaxel intersects with TP53 pathway. WT-TP53 
increases sensitivity, increases phosphorylation of S15-
TP53. 

5-Fluorouracil 
(5FU) 

Nucleoside 
Analogue 

Blocks the activity of thymidylate 
synthase, thus, inhibits DNA 
synthesis/replication. 

5FU intersects with TP53 pathway. WT-TP53 increases 
sensitivity to FU. 5FU induces TP53 stabilization by 
blocking MDM2. 

Gemcitabine 
(Gem) 

Nucleoside 
Analogue 

Gemcitabine exerts it antitumor 
effects by promoting apoptosis of 
cells undergoing DNA synthesis. 

Gem intersects with TP53 pathway. WT-TP53 increases 
sensitivity. Gem can induce TP53 targets such as 
PUMA and Bax which leads to apoptosis. 

Aclacinomycin 
(Aclarubicin) 

DNA intercalator, 
Topoisomerase II  

Topoisomerase inhibitor (inh.) 
thus, inhibits DNA replication. 

As an anthracycline it probably insects with TP53 
pathway. However, like most chemotherapeutic drugs, it 
can function in TP53 mutant cells. 

Daunorubicin DNA intercalators, 
Topoisomerase II 

Topoisomerase inh. thus, inhibits 
DNA replication. 

Daunorubicin intersects with TP53 pathway. It induces 
TP53 and downstream p21Cip1. 

Doxorubicin 
(Dox) 

DNA intercalator, 
Topoisomerase II  

Topoisomerase inh. thus, inhibits 
DNA replication and induces many 
TP53-regulated genes, many 
induce apoptosis.  

Dox intersects with TP53 pathway. It increases TP53 
expression and phosphorylation at S15 and can induce 
p21Cip-1. 

Etoposide  Binds to 
Topoisomerase II  

Topoisomerase inh. thus, inhibits 
DNA replication and induces 
apoptosis. Complex form between 
etoposide and DNA and can 
prevent DNA repair. 

Etoposide intersects with TP53 pathway. It increases 
TP53 and pro-apoptotic PUMA expression as well as 
Bax processing. 

Cisplatin (Cis) DNA Crosslinks DNA to form DNA 
adducts. Preventing repair of DNA 
leading to DNA damage and 
subsequently apoptosis. 

Cis intersects with TP53 pathway. Cis can enhance 
TP53, p21Cip-1, MDM2 and Fas expression. 

Signal transduction inhibitors1 
Drug↓ Target Mode of action Intersection with TP53 pathway 
ARS-1620  Mutant KRas  KRas-mediated catalysis of the 

chemical reaction with Cys12 in 
KRASG12C. 

KRas interacts with the TP53 pathway. TP53 and KRas 
interact to modulate CREB1 expression to promote 
metastasis and tumor growth. 

PD0325901 MEK1  A highly selective allosteric inh. 
that does not compete with either 
ATP or ERK1/2. 

MEK1 interacts with the TP53 pathway. Downstream 
ERK can phosphorylate and activate TP53, resulting in 
many cellular responses.  

LY294002  PI3K and others Competition with ATP for binding 
the PI3K active site. 

PI3K and downstream molecules can interact with the 
TP53 pathway. Downstream of PI3K are PTEN and Akt 
and they can regulate the TP53 pathway at various steps 
and processes. 

Pifithrin-µ TP53 Inhibits some of TP53 activities by 
binding to BCLXL and BCL2 at 
the mitochondria without affecting 
TP53 transcriptional activities. 

Pifithrin-µ inhibits some proteins regulated by the TP53 
pathway (BCL-XL and BCL2). 

6-bromoindirubin-
30-oxime (BIO)  

GSK-3 BIO is a selective, reversible 
potent GSK-3 inh. It is an ATP-
competitive inhibitor of GSK-3α/β. 
It interacts with ATP binding site 
of GSK-3.  

GSK-3 interacts with TP53 pathway. GSK-3 
phosphorylates sites on the proteasomal inhibitor 
MDM2. This phosphorylation is required for TP53 
degradation. Inhibition of GSK-3 leads to an increase in 
TP53 levels. 

SB415286  GSK-3 Targets ATP-binding site. It 
inhibits both GSK-3α and GSK-β. 

GSK-3 interacts with TP53 pathway. GSK-3 
phosphorylates sites on the proteasomal inhibitor MDM2. 
This phosphorylation is required for TP53 degradation. 
Inhibition of GSK-3 leads to an increase in TP53 levels. 

CHIR99021 GSK-3 Targets ATP-binding site. It 
inhibits both GSK-3α and GSK-β. 

GSK-3 interacts with TP53 pathway. GSK-3 
phosphorylates sites on the proteasomal inhibitor MDM2. 
This phosphorylation is required for TP53 degradation. 
Inhibition of GSK-3 leads to an increase in TP53 levels. 
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Rapamycin mTORC1  Binds and blocks mTORC1 
complex. 

mTORC1 interacts with the TP53 pathway. Activation 
of TP53 downregulates mTOR signaling. This occurs 
through AMPK. 

AG1498 EGFR AG1478 competitively binds to the 
ATP binding pocket in EGFR. 

EGFR interacts with the TP53 pathway.TP53 mutations 
are associated with primary or acquired resistance to 
EGFR-tyrosine kinase inhibitors. 

Gilteritinib  AXL/ALK/FLT3  Gilteritinib binds to the ATP 
binding site in the active pocket of 
the AXL/ALK/FLT3 kinases. 

AXL/ALK/FLT3 interacts with the TP53 pathway. AXL 
suppresses TP53 expression by binding to DNA 
sequences upstream from the TP53 gene. AXL is also 
regulated by miR-34a which is regulated by TP53. ALK 
inhibitors are not as effective in lung cancer patients that 
have rearranged ALK genes and are also mutated at 
TP53 as in patients with germline genes. Also, FLT-3 
and TP53 also interact. 

Sorafenib  Multiple kinases 
(e.g., Raf, PDGFR, 
VEGFR, FLT-3 and 
others) 

Sorafenib binds to the ATP 
binding site. 

Many of these kinases and their downstream substrates 
interact with TP53 pathway by phosphorylating TP53 
and other molecules regulated by TP53. Mutant TP53 
can also regulate the expression of some of these 
kinases such as PDGFR. 

OTX008  Galectin-1 OTX008 binds galectin-1 which 
leads to galectin-1 oxidation and 
proteasomal degradation. 

Galectin-1 can interact with the TP53 pathway. TP53 
can induce the expression of miRs which regulate 
galectin-1 expression. 

Tiplaxtinin  Serpine-1 Tiplaxtinin binds to the active 
conformation of serpine-1 and 
induced reversible inactivation 
serpine-1. 

TP53 regulates the expression of miR-34a which can 
down regulate serpine-1. Serpine1- is involvement of 
metastasis in various cancers. 

Verapamil (Ver) Calcium channel Also, some transporters associated 
with chemotherapeutic drug 
resistance. Binds to sites on MDR1 
glycoprotein preventing drug 
efflux. Also, downregulates MDR1 
expression. 

TP53 pathway and Ver interact. Ver interacts with the 
TP53 activator (MDM2 inhibitor) nutlin-3a which 
results in suppression of cell growth.  

Vismodegib (Vis) Hh pathway  Smoothened homologue (SMO) 
binds to Smoothened (SMO) and 
inhibits its activity. 

Multiple interactions with TP53 pathway. 

Natural products2 
Cyclopamine  Sonic hedgehog 

(SHH) pathway  
Cyclopamine binds to SMO and 
inhibits its activity.  

Multiple interactions with TP53 pathway. 

Parthenolide2  NF-κB (other 
targets) 

Inhibition of activation of IκB, and 
direct binding to NF-κB, 
preventing its interaction with 
DNA. 

NF-κB interacts with the TP53 pathway TP53 and NF-
κB inhibit each other’s ability to stimulate gene 
expression. 

Isoliquiritin2 Induces apoptotic 
cell death through 
upregulating TP53 
and p21Cip-1. 
Suppresses NF-κB, 
ERK and activation 
of other targets 

Suppresses invasiveness and 
angiogenesis of cancer. 

Isoliquiritin interacts with TP53 pathway. It induces 
TP53 and inhibits NF-κB and ERK. Both interact with 
TP53 pathway. 

Genistein 
(isoflavone)2 

Multiple targets Genistein triggers the ER stress to 
induce apoptosis and other 
mechanisms of cell death. 

Genistein interacts with TP53 pathway. Genistein 
increases the phosphorylation and activation of 
ATM/ATR-TP53-p21Cip-1 pathway. 

Daidzein 
(isoflavone)2 

Multiple targets Daidzein and genistein induce 
cell cycle arrest in the G2/M 
phase. This is accompanied by 
activation of ATM/TP53, and 
p21Cip-1 and other cell cycle 
regulatory genes. 

Daidzein interacts with TP53 pathway. Daidzein 
increases the phosphorylation and activation of 
ATM/ATR-TP53-p21Cip-1 pathway. 

1Many chemotherapeutic drugs and signal transduction inhibitors have other effects and targets. We describe the targets that are most 
closely related to TP53. 
2Most natural products have multiple targets. We describe some of the targets that are more closely related to TP53. 
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Table 2. Effects of WT-TP53 and pLXSN on sensitivity of MIA-PaCa-2 pancreatic cancer cells on chemotherapeutic 
drugs, signal transduction inhibitors and natural products as determined by IC50 analysis.1 

Drug/Agent↓  + pLXSN + WT-TP53 Fold change WT vs. LXSN 
Docetaxel (microtubule binder) 0.3 nM 0.08 nM 3.8 X↓ 
Etoposide (topoisomerase inh.) 750 nM 400 nM 1.9 X↓ 
Aclacinomycin (topoisomerase inh.) 1 nM 0.2 nM 5 X↓ 
Daunorubicin (topoisomerase inh.) 120 nM 60 nM 2 X ↓ 
ARS-1620 (mutant KRas inh.) 10 nM 0.8 nM 12.5 X↓ 
PD0325901 (MEK1 inh.) 150 nM 45 nM 3.3 X↓ 
LY294002 (PI3K inh.) 5,000 nM 150 nM 33.3 X↓ 
Pifithrin-µ (TP53 inh.) 600 nM 2.5 nM 240 X↓ 
BIO (GSK-3 inh.) 210 nM 100 nM 2.1 X↓ 
SB415286 (GSK-3 inh.) 40 nM 3 nM 13.3 X↓ 
CHIR99021 (GSK-3 inh.) 500 nM 300 nM 1.7 X↓ 
Rapamycin (mTORC1 blocker) 2 nM 0.3 nM 6.7 X↓ 
AG1498 (EGFR inh.) 1,000 nM 200 nM 5 X↓ 
Gilteritinib (AXL/ALK/FLT3 inh.) 600 nM 220 nM 2.7 X↓ 
Sorafenib (multi-kinase inh.) 1,000 nM 700 nM 1.4 X↓ 
OTX008 (Galectin-1 inh.) 1,000 nM 10 nM 100 X↓ 
Tiplaxtinin (Serpine-1 inh.) 40 nM 10 nM 4 X↓ 
Cyclopamine (SHH inh.) 1,000 nM 500 nM 2 X↓ 
Parthenolide (NF-κB inh, other targets) 40 nM 3.5 nM 11.4 X↓ 
Isoliquiritin (multiple targets) 1,900 nM 600 nM 3.2 X↓ 
Genistein (isoflavone, many targets) 300 nM 70 nM 4.3 X↓ 
Daidzein (isoflavone, many targets) 1,000 nM 600 nM 1.7 X↓ 

1Determined by MTT analysis as previously described [40, 41]. 
 

 
 

Figure 2. Effects of signal transduction inhibitors on the growth of MIA-PaCa-2 + WT-TP53 and MIA-PaCa-2 + pLXSN cells. 
The effects of docetaxel (A), etoposide (B) aclacinomycin (C) and daunorubicin (D) on MIA-PaCa-2 + pLXSN cells (solid red squares) and MIA-
PaCa-2 + WT-TP53 cells (solid blue circles) were examined by MTT analysis. These experiments were repeated and similar results were 
obtained. Statistical analyses were performed by the Student T test on the means and standard deviations of various treatment groups. 
***P < 0.0001. 
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Figure 3. Effects of the Ras/MEK, PI3K/mTOR and TP53 inhibitors on the growth of MIA-PaCa-2 + WT-TP53 and MIA-PaCa-2 + 
pLXSN cells. The effects of the ARS-1620 mutant KRas inhibitor (A), the PD0325901 MEK1 inhibitor (B), the LY294002 PI3K inhibitor (C) and 
the TP53 inhibitor pifithrin-µ (D) on MIA-PaCa-2 + pLXSN cells (solid red squared) and MIA-PaCa-2 + WT-TP53 cells (solid blue circles) were 
examined by MTT analysis. The MIA-PaCa-2 + WT-TP53, and MIA-PaCa-2 + pLXSN cells in each panel were all examined at the same time 
period. These experiments were repeated and similar results were obtained. Statistical analyses were performed by the Student T test on 
the means and standard deviations of various treatment groups. ***P < 0.0001. 

 

 
 

Figure 4. Effects of GSK-3 inhibitors and the mTORC1 blocker rapamycin on the growth of MIA-PaCa-2 + WT-TP53 and MIA-
PaCa-2 + pLXSN cells. The effects of the BIO GSK-3 inhibitor (A), the SB415286 GSK-3 inhibitor (B), the CHIR99021 GSK-3 inhibitor (C) and 
the mTORC1 blocker rapamycin (D) on MIA-PaCa-2 + pLXSN cells (solid red squared) and MIA-PaCa-2 + WT-TP53 cells (solid blue circles) 
were examined by MTT analysis. The MIA-PaCa-2 + WT-TP53, and MIA-PaCa-2 + pLXSN cells in each panel were all examined at the same 
time period. These experiments were repeated and similar results were obtained. Statistical analyses were performed by the T test on the 
means and standard deviations of various treatment groups. ***P < 0.0001. 
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growth of MIA-PaCa-2 cells expressing WT-TP53 or 
not were ascertained. Introduction of WT-TP53 into 
MIA-PaCa-2 cells resulted in reduction of the IC50s for 
all the inhibitors in comparison to the IC50s in 
MIA-PaCa-2 cells lacking WT-TP53 expression (Figure 
5A–5C) but the reduction was most pronounced for the 
AG1478 EGFR inhibitor. 
 
Galectin-1 is involved in hedgehog (Hh) signaling, 
stromal remodeling and metastasis of PDAC [62]. 
Galectin-1 is negatively regulated by WT TP53 [63]. 
OTX008 inhibits the activity of galectin-1. 
Restoration of WT-TP53 activity in MIA-PaCa-2 
cells sensitized the cells 100-fold in comparison to 
MIA-PaCa-2 cells which lacked WT-TP53 activity 
(Figure 5D).  
 
The plasminogen activator inhibitor (PAI-1), serpine1 is 
negatively regulated by miR-34a in MIA-PaCa-2 upon 
restoration of WT-TP53 activity [64]. The small 
molecule tiplaxtinin inhibits serpine1 activity [65]. 
Upon restoration of WT-TP53 activity in MIA-PaCa-2 
cells resulted in 4-fold enhanced sensitivity to 
tiplaxtinin in comparison to MIA-PaCa-2 cells lacking 
WT-TP53 activity (Figure 6A).  

Effects of WT-TP53 on sensitivity to natural products 
and nutraceuticals 
 
The ability of various natural products and 
nutraceuticals to inhibit the proliferation in MIA-PaCa-
2 cells in the presence and absence of WT-TP53 activity 
was determined. These compounds were selected on the 
basis of literature data suggesting their targets and their 
influence on the development of PDAC.  
 
A natural product that inhibits the Hh signaling pathway 
is cyclopamine. The Hh pathway is very important in 
PDAC and metastasis [66, 67]. Restoration of WT-
TP53 activity in MIA-PaCa-2 cells increased the 
sensitivity 2-fold to cyclopamine (Figure 6B). 
 
Extracts from the plant fever few contain parthenolide. 
One of its targets is NF-κB [68]. Parthenolide has been 
observed to suppress PDAC progression [69]. Restoration 
of WT-TP53 activity in MIA-PaCa-2 cells increased the 
sensitivity to parthenolide 11.4-fold in comparison to cells 
lacking WT-TP53 activity (Figure 6C). 
 
Licorice contains the flavonoid isoliquiritin which has 
various biological activities including anti-cancer 

 

 
 

Figure 5. Effects of inhibitors which may suppress metastasis on the growth of MIA-PaCa-2 + WT-TP53 and MIA-PaCa-2 + 
pLXSN cells. The effects of the AG1478 EGFR inhibitor (A), the gilteritinib ALK/AXL/FLT3 inhibitor (B), the sorafenib multi-kinase inhibitor 
(C) and the galectin-1 inhibitor OTX008 (D) on MIA-PaCa-2 + pLXSN cells (solid red squares) and MIA-PaCa-2 + WT-TP53 cells (solid blue 
circles) were examined by MTT analysis. The MIA-PaCa-2 + WT-TP53, and MIA-PaCa-2 + pLXSN cells in each panel were all examined at the 
same time period. These experiments were repeated and similar results were obtained. Statistical analyses were performed by the T test 
on the means and standard deviations of various treatment groups. ***P < 0.0001, and **P < 0.005. 
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activities [70, 71]. In lung cancer cells, it was shown 
that isoliquiritin can induce TP53 activity [71]. In 
pancreatic cancer cells it suppressed the invasiveness in 
vitro [72]. Restoration of WT-TP53 activity in MIA-
PaCa-2 cells increased their sensitivity to isoliquiritin 
3.2-fold (Figure 6D). 
 
Genistein is an isoflavone. It possesses certain anti-cancer 
properties including inhibition of angiogenesis in PDAC 
[73]. It induces apoptosis in PDAC lines [74]. Restoration 
of WT-TP53 activity in MIA-PaCa-2 cells increased their 
sensitivity to genistein 4.3-fold in comparison to MIA-
PaCa-2 cells lacking WT-TP53 (Figure 7A). 
 
Daidzein is an additional isoflavone. It inhibited breast 
cancer growth in rodent models [75, 76]. Restoration of 
WT-TP53 activity in MIA-PaCa-2 cells increased the 
sensitivity to daidzein 1.7-fold (Figure 7B). 
 
Summarizing, restoration of WT-TP53 activity in MIA-
PaCa-2 cells increased the sensitivity to various 
chemotherapeutic drugs, signal transduction inhibitors 
and natural products. 
 
Restoration of WT-TP53 decreases clonogenicity in 
the presence of chemotherapeutic drugs 
 
The ability of WT-TP53 to suppress clonogenicity in 5-
fluorouracil, gemcitabine and cisplatin was determined 

in MIA-PaCa-2 and PANC-28 cell containing and 
lacking WT-TP53. Upon restoration of WT-TP53 
activity in MIA-PaCa-2 and PANC-28 cells, 
clonogenicity decreased in a dose-dependent fashion 
more dramatically in cells containing WT-TP53 activity 
(Figure 8). Although gemcitabine inhibited 
clonogenicity in cells containing and lacking WT-TP53 
activity. Thus, restoration of WT-TP53 suppressed 
clonogenicity in larger culture volumes containing 
chemotherapeutic drugs carried out for 14–21 days and 
it reduced the IC50s for chemotherapeutic drugs in 
smaller cultures carried out over 5 days [40, 41]. 
 
Effects of WT-TP53 on the ability of cells to form 
colonies in medium containing soft agar 
 
The ability of cells to form colonies in medium 
containing soft agar in the absence of adhesion to the 
bottom of the tissue culture plate (anchorage-
independent growth) is often considered as a measure of 
the extent of transformation of malignant transformation 
as most “normal” cells do not [77]. 
 
The effects of restoration of WT-TP53 activity on the 
ability to form colonies in increasing concentrations of 
5FU were compared. As documented in Figure 9, 
restoration of WT-TP53 activity in MIA-PaCa-2 cells 
inhibited their ability to form colonies in soft agar in the 
presence of 5FU. 

 

 
 

Figure 6. Effects of inhibitors/natural products which may suppress metastasis on the growth of MIA-PaCa-2 + WT-TP53 
and MIA-PaCa-2 + pLXSN cells. The effects of the tiplaxtinin Serpine-1 inhibitor (A), the natural product cyclopamine, a SHH inhibitor 
(B), the natural product parthenolide, a NF-κB inhibitor (C), and the natural product/nutraceutical isoliquiritin (D) were examined by MTT 
analysis. The MIA-PaCa-2 + WT-TP53, and MIA-PaCa-2 + pLXSN cells in each panel were all examined at the same time period. These 
experiments were repeated and similar results were obtained. Statistical analyses were performed by the T test on the means and standard 
deviations of various treatment groups. ***P < 0.0001.  
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Figure 10 presents photographs of colonies stained 
with crystal violet, not only were there less colonies 
in soft agar when WT-TP53 activity was restored to 
MIA-PaCa-2 cells but the colony sizes were also 
smaller. When there was no 5FU in the culture 
medium, MIA-PaCa-2 cells containing or lacking 
WT-TP53 formed similar numbers of colonies of 
roughly equal sizes. However, even at the lowest 
dose of 5FU (1.25 µM), there was a massive drop in 
the number of colonies observed in MIA-PaCa-2 cells 

containing WT-TP3 activity while the decline in 
MIA-PaCa-2 cells lacking WT-TP53 activity, was not 
as extreme.  
 
Restoration of WT-TP53 activity in both MIA-PaCa-2 
and PANC-28 cells decreased their ability to form 
colonies in soft agar containing docetaxel (Figure 11). 
Introduction of WT-TP53 activity decreased the ability 
of MIA-PaCa-2 cells to form colonies in soft agar 
containing doxorubicin (Figure 12A). 

 

 
 

Figure 7. Effects of nutraceuticals on the growth of MIA-PaCa-2 + WT-TP53 and MIA-PaCa-2 + pLXSN cells. The effects of 
genistein (A), and daidzein (B), on MIA-PaCa-2 + pLXSN cells (solid red squared) and MIA-PaCa-2 + WT-TP53 cells (solid blue circles) were 
examined by MTT analysis. The MIA-PaCa-2 + WT-TP53, and MIA-PaCa-2 + pLXSN cells in each panel were all examined at the same time 
period. These experiments were repeated and similar results were obtained. Statistical analyses were performed by the T test on the 
means and standard deviations of various treatment groups. ***P < 0.0001. 
 

 
 

Figure 8. Effects of pLXSN and WT-TP53 on clonogenicity in the presence of 5-Fluorouracil, gemcitabine or cisplatin in two 
PDAC cell lines. The clonogenicity in the presence of increasing concentrations of 5-fluorouracil (5FU), gemcitabine (Gem) and cisplatin 
(Cis) were examined in: MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 (A–C), PANC-28 + pLXSN, and PANC-28 + WT-TP53 (D–F). Red 
horizontal bars = MIA-PaCa-2 or PANC-28 containing pLXSN. Blue horizontal bars = MIA-PaCa-2 or PANC-28 containing WT-TP53. These 
experiments were repeated and similar results were observed. The colonies for each cell line were normalized to untreated so that the 
results from pLXSN and WT-TP53 could be compared. ***P < 0.0001, **P < 0.005 and *P < 0.05. 
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Drug transporters such as MDR1 are often 
upregulated in drug resistant cells [78–80]. Verapamil 
will inhibit the activity of certain drug transporters 
such as MDR1. Addition of WT-TP53 activity to 
MIA-PaCa-2 cells increased their sensitivity to 
verapamil as determined by colony formation in soft 
agar (Figure 12B). 
 
Hh signaling is critical in differentiation and in some 
cases, cancer metastasis [81]. Hh pathway inhibitors 
have been evaluated in PDAC patients [82]. Restoration 
of WT-TP53 activity in MIA-PaCa-2 cells made them 
more sensitive to the Hh pathway vismodegib in soft 
agar colony formation assays (Figure 12C). Thus, 

restoration of WT-TP53 activity in both MIA-PaCa-2 
and PANC-28 cells resulted in the cells becoming more 
sensitive to chemotherapeutic drugs. 
 
Restoration of WT-TP53 activity in MIA-PaCa-2 
cells alters their metabolic properties 
 
For their rapid growth, cancer cells require a large 
amount of ATP that occurs by glycolysis and 
mitochondrial oxidative phosphorylation. To determine 
the consequence of restoration of WT-TP53 activity in 
energy metabolism in MIA-PaCa-2 cells, stress tests 
were done with the Seahorse analyzer. This machine 
determines the extent of glycolysis by determining the 

 

 
 

Figure 9. Effects of pLXSN and WT-TP53 on the colony formation in soft agar in the presence of 5-Fluorouracil. The effects of 
pLXSN and WT-TP53 on the colony formation in soft agar were examined. Red squares = MIA-PaCa-2 + pLXSN cells, blue circles = MIA-PaCa-2 + 
WT-TP53 cells. IC50 is indicated with a purple dotted line and IC25 is indicated with a green dotted line. IC25 is a term to indicate inhibition of 
colony formation at 25%. These experiments were repeated performed and similar results were observed. The colonies for each cell line 
were normalized to untreated cells so that the results from the MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 could be compared. 
**P < 0.005. 

 

 
 

Figure 10. Crystal violet-stained colonies in soft agar in the presence of 5-Fluorouracil. The effects of pLXSN and WT-TP53 on the 
colony formation in soft agar were photographed after staining. Photographs were taken at the same day and at the same magnification on 
the microscope. (A) MIA-PaCa-2 + pLXSN cells treated with increasing concentration of 5FU, (B) MIA-PaCa-2 + WT-TP53 cells treated with 
increasing concentrations of 5FU. 
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extracellular acidification (ECAR) and can also analyze 
mitochondrial oxidative phosphorylation by measuring 
the real-time oxygen consumption rate (OCR). 
 
TP53 has been shown to be a cellular energy 
metabolism regulator [83–88]. It can influence both 
glycolysis and mitochondrial metabolism through 
multiple mechanisms [88]. Some studies have shown 
that mutant TP53 can have more effects on 
mitochondrial metabolism than glycolysis [89]. The 
effects of restoration of WT-TP53 activity on 
mitochondrial activity in PDAC cells have not been 
documented well. 
 
The effects of WT-TP53 activity on metabolic 
parameters were determined in MIA-PaCa-2 cells 

containing and lacking WT-TP53 activity were 
determined as we previously described [90] using the 
Seahorse analyzer. The results presented here indicated 
that restoration of WT-TP53 activity led to a decrease in 
glycolytic capacity in comparison to cells lacking WT-
TP53 activity (Figures 13–15). Moreover, the effects on 
mitochondrial respiration also were more pronounced in 
MIA-PaCa-2 cells containing WT-TP53 activity.  
 
Upon restoration of WT-TP53 activity in MIA-PaCa-2 
cells, the level of basal mitochondrial respiration was 
significantly lower than in MIA-PaCa-2 lacking 
WT-TP53 activity. Also, their maximal respiratory and 
spare respiratory capacity levels were significantly 
reduced in contrast to cells lacking WT-TP53 
(Figures 13 and 14). 

 

 
 

Figure 11. Effects of pLXSN and WT-TP53 on the colony formation in soft agar in the presence of docetaxel. The effects of 
pLXSN and WT-TP53 on the colony formation in soft agar in MIA-PaCa-2 and PANC-28 cells were examined. (A) MIA-PaCa-2 + pLXSN (red 
bars) and MIA-PaCa-2 + WT-TP53 (blue bars) were compared in response to docetaxel. (B) PANC-28 + pLXSN (red bars) and PANC-28 + 
WT-TP53 (blue bars) were compared in response to docetaxel. The colonies for each cell line were normalized to untreated so that the 
results from pLXSN and WT-TP53 could be compared. These studies were repeated and similar results were observed. ***P < 0.0001, 
**P < 0.005 and *P < 0.05, NS = not statistically significant. 
 

 
 

Figure 12. Effects of pLXSN and WT-TP53 on the colony formation in soft agar in the presence of doxorubicin, verapamil 
and vismodegib. The effects of pLXSN and WT-TP53 on the colony formation in soft agar in MIA-PaCa-2 in response to drugs was 
examined. (A) Colony formation abilities of MIA-PaCa-2 + pLXSN (red bars) and MIA-PaCa-2 + WT-TP53 (blue bars) were compared in 
response to treatment with doxorubicin. (B) Colony formation abilities of MIA-PaCa-2 + pLXSN (red bars) and MIA-PaCa-2 + WT-TP53 (blue 
bars) were compared in response to verapamil. (C) Colony formation abilities of MIA-PaCa-2 + pLXSN (red bars) and MIA-PaCa-2 + WT-TP53 
(blue bars) were compared in response to treatment with vismodegib. The number of colonies for each cell line were normalized to 
untreated so that the results from pLXSN and WT-TP53 could be compared. These studies were repeated and similar results were observed. 
***P < 0.0001, and **P < 0.005. 
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DISCUSSION 
 
TP53 is one of the most frequently mutated genes in 
human cancer, including pancreatic cancer. The TP53 
genes are altered in the two PDAC cell lines examined. 

MIA-PaCa-2 cells have GOF TP53 mutations and 
PANC-28 cells lack TP53 expression. Both PDAC cell 
lines have activating mutations in the KRAS gene which 
results in constitutive KRas expression. Interactions 
between mutant TP53 and KRas have been observed 

 

 
 

Figure 13. Effects of presence of WT-TP53 on glycolysis and mitochondrial respiration. The data for MIA-PaCa-2 + pLXSN is the 
same control as presented in [91]. Both MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 cells were examined the same time on the 
Seahorse machine as were MIA-PaCa-2 + WT-GSK-3β and MIA-PaCa-2 + KD-GSK-3β cells (all four cell lines done at same time). The data 
presented in Figure 14 are the means and standard error of the means (SEM). 
 

 
 

Figure 14. Effects of presence of WT-TP53 on respiratory capacity. The data for MIA-PaCa-2 + pLXSN is the same control as 
presented in [91]. Both MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 were examined the same time on the Seahorse machine. The 
measurements were made 5 times (5 replicates). The data presented in Figure 14 are the means and standard error of the means (SEM). 
 

 
 

Figure 15. Effects of presence of WT-TP53 on glycolysis. Glycolysis for STAT, glycolytic capacity, and glycolytic reserve for STAT were 
measured by the Seahorse instrument. The data for MIA-PaCa-2 + pLXSN is the same control as presented in [91]. Both MIA-PaCa-2 + MIA-
PaCa-2 + WT-TP53 were examined the same time on the Seahorse machine. STAT is an abbreviation for statistics used in study which was 
the Mann–Whitney test. 
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which led to increased KRas functions [51]. GSK-3β 
may regulate KRas activity in these cells [51]. Thus, 
TP53 can interact with many signaling pathways 
important in cancer development. 
 
In this manuscript, the consequences of restoration of 
WT-TP53 activity on the response to therapeutic agents 
have been documented. Restoration of WT-TP53 activity 
augmented the ability of PDAC cells to various agents 
used in the therapy of many different cancer types. 
 
Interestingly, restoration of WT-TP53 activity 
augmented the responsive of MIA-PaCa-2 cells to 
multiple small molecule inhibitors which target critical 
signal molecules which are often aberrantly regulated in 
various cancers. These kinases and GTPases are often 
associated with cell growth and metastasis. 
 
When WT-TP53 activity was restored to MIA-PaCa-2 
cells they became more sensitive to small molecule 
inhibitors that target mutant KRas and downstream 
MEK1 than cells containing pLXSN. Thus, WT-TP53 
could increase the sensitivity of cells which contain 
mutant KRas to MEK1 inhibitors. ERK1,2 lies 
downstream of MEK1. ERK1,2 phosphorylates many 
important substrates which are involved in various 
aspects of cell proliferation. Combination of ERK1,2 
and autophagy inhibition with a MEK1 inhibitor and 

chloroquine may be an additional treatment option for 
some PDAC patients [91]. 
 
The presence of functional WT-TP53 is important for the 
sensitivity of FL5.12 hematopoietic cells to the mTORC1 
blocker rapamycin [92]. FL5.12 cells normally have 
WT-TP53 activity [93]. Upon insertion of dominant 
negative (DN) TP53 into FL5.12 cells, their sensitivity to 
rapamycin was eliminated [92]. Likewise, in this current 
study, restoration of WT-TP53 activity in MIA-PaCa-2 
cells increased the sensitivity to rapamycin. Thus, TP53 
intersects with the mTORC1 pathway. 
 
Clearly, the presence of WT-TP53 is critical for the 
sensitivity of various cancers, including PDAC to many 
drugs used in cancer therapy [94]. Additional studies on 
methods and approaches to reactivate mutant TP53 and 
other mutated genes implicated cancer should be 
undertaken. 
 
TP53 can influence glycolytic and mitochondrial 
metabolism both through transcriptional and non-
transcriptional regulation. This influence is important 
for the tumor suppressor role of the protein. An 
overview of the effects of WT and mutant TP53 on 
metabolic properties, together with the effects of 
metformin and rapamycin, and drugs used to inhibit 
pancreatic cancer growth, is presented in Figure 16. 

 

 
 

Figure 16. Influences of mutant and WT-TP53 on mitochondrial activity and glucose metabolism and effects of rapamycin 
and metformin. The effects of WT and mutant TP53 on key enzymes important in glycolysis and how they can influence metabolism and 
PDAC tumor growth. In our studies, we have examined the effect of GOF mutant TP53 and in some cases WT TP53. In addition, sites of 
interaction of the type 2 diabetes drug metformin and the immunosuppressive drug rapamycin and their effects on AMPK and mTORC1 are 
indicated. TP53 can induce mitochondrial apoptosis pathway by regulating the expression of PUMA and other proteins. 
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Enhanced glucose metabolism via glycolysis is the 
predominant source of ATP in numerous cancers. TP53 
represses expression of, for example, glucose transporters, 
hexokinase and inhibits nuclear factor-kappa B cell 
(NF-κB), a protein that regulates many genes, including 
genes encoding glycolytic enzymes. Thus, restoration of 
WT TP53 activity can lead to reduction of glycolysis 
and impairment of cancer cell growth. On the other 
hand, TP53 is known to induce oxidative phosphorylation 
and mitochondrial production of intermediates for 
biosynthesis [for review see 89]. In our work, however, 
we observed a decrease of both glycolysis and 
mitochondrial respiration after the restoration of WT 
TP53 activity in PDAC. Other studies with breast 
cancer cell lines, which differ in TP53 status as well as 
other genes, were observed to increase both glycolytic 
and mitochondrial activity when mutant TP53 was 
present [95]. Knock-in of certain TP53 GOF mutations 
in mice was observed to augment mitochondrial 
activity, promote survival, and increased maximal 
treadmill exercise times [96]. 
 
TP53 has been shown to induce pro-oxidant enzymes 
and mitochondrial apoptosis pathway (by regulating the 
expression of PUMA, BAK, BAX, BCL2, BCLXL), 
and block anti-oxidant pathways [88]. Thus, the 
observed reduction of mitochondrial respiration might 
result from the oxidative-stress-induced impairment of 
function of the organelles in the WT-TP53-expressing 
cells. The observed value of the maximum respiration 
of these cells, only slightly higher than the basal 
respiration, seems to confirm the impairment of 
mitochondrial function, but it should be kept in mind 
that the reduction of the glycolytic rate leads to a 
reduction in the number of mitochondrial substrates. 
 
Regardless of which of the above processes contributes 
more to the reduction of mitochondrial metabolism in 
comparison with the same cells that only express GOF 
TP53, together the observed changes suggest restoration of 
WT-TP3 activity confers increased sensitization to various 
drugs and therapeutic molecules, natural products as well 
as nutraceuticals. Mutant TP53 can affect the activity of 
mTORC1 which is important in cellular growth and 
metabolism. Mutant TP53 may make the PDAC cells more 
resistant to rapamycin than cells containing WT-TP53. 
Rapamycin and metformin can interfere with some of the 
important pathways in the mitochondria, some of which 
are regulated by TP53 [96–98]. 
 
MATERIALS AND METHODS 
 
Cell culture and sources of therapeutic agents 
 
The MIA-PaCa-2 and PANC-28 cells have been 
described in previous publications [37, 39, 99]. Cell 

culture conditions and sources of chemotherapeutic 
drugs, small molecule inhibitors, natural products and 
nutraceuticals have been described in our previous 
publications [40, 41, 47, 80, 90, 100]. Aclacinomycin 
was obtained from the US National Cancer Institute, 
(Bethesda, Maryland, USA). 
 
Restoration of WT-TP53 activity 
 
Restoration of WT-TP53 activity and sources of 
plasmid DNAs have been previously described [40, 
41, 90]. 
 
Cell proliferation assays-MTT assays 
 
MTT assays were performed as described previously 
[40]. 
 
Clonogenicity assays 
 
Clonogenicity Assays were performed as described in 
our previous publication [100]. 
 
Semi-solid colony formation 
 
Semi-solid colony formation in agar has been described 
in our previous publications [100, 101]. 
 
Analysis of cell metabolism 
 
Cellular metabolism and statistical analysis were 
performed as described in our previous publication  
[90]. 
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