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INTRODUCTION 
 
Hepatocellular carcinoma (HCC) is a common 
malignancy, particularly in East Asia, and is associated 
with high mortality [1, 2]. The cancer has a high rate of 
recurrence, estimated to be between 77% and 100%, 
largely from the remnant liver, resulting in poor 
outcomes [3]. The incidence of HCC appears to be 
increasing, with risk factors including obesity, alcohol 
abuse, diabetes, chronic viral infection (hepatitis B and 

C viruses), and metabolic disease [4]. Thus, the 
determination of biomarkers and targets that will 
facilitate treatment is necessary. 
 
Maternal embryonic leucine zipper kinase (MELK) is 
an AMPK serine/threonine kinase [5] and has been 
proposed as a potential therapeutic target in several 
cancers [6]. Tang et al. showed that MELK was 
necessary for proliferation, metastasis, and apoptosis in 
lung cancer [7], and its use as a diagnostic marker in 
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ABSTRACT 
 
Object: Maternal embryonic leucine zipper kinase (MELK) is involved in the development and progression of 
various cancers. This work investigated the usefulness of MELK in the prediction of hepatocellular carcinoma 
(HCC) prognosis. 
Methods: Information on MELK expression was obtained by pan-cancer analysis using The Cancer Genome 
Atlas (TCGA) database. The TCGA-liver hepatic cancer (TCGA-LIHC), Oncomine datasets, International Cancer 
Genome Consortium (ICGC) datasets were used to investigate MELK expression in HCC. The prognostic roles of 
MELK in HCC were assessed by univariate and multivariate survival analyses. The underlying mechanism for 
noncoding RNAs (ncRNAs) involved in MELK expression was investigated by in silico studies, correlation, 
methylation, and survival analyses. The relationships between MELK expression and immune cells, immune 
markers, and checkpoint markers were also analyzed. 
Results: (1) MELK was identified as an independent predictor of overall survival (OS) in HCC patients (MELK high 
vs. low expression, HR 2.469; 95% CI 1.217–5.008; p = 0.012) in a multivariate Cox analysis, with a concordance 
index (C-index) value of 0.727 (95% CI 0.750–0.704). (2) The noncoding RNA miR3142HG and the 
LINC00265/has-miR-101-3p axis were found to regulate MELK expression in HCC tissue. (3) MELK levels were 
linked to various immune functions, including tumor infiltration and the expression of immune checkpoints and 
biomarkers in HCC. 
Conclusion: MELK may have an oncogenic function in HCC and was found to be up-regulated by ncRNAs and 
associated with immune cell infiltration and unfavorable prognosis. 
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colorectal [8], ovarian [9], and head and neck cancer has 
also been reported [10]. MELK promotes mTOR 
signaling in endometrial cancer [11], and its abnormal 
expression has been linked to unfavorable breast cancer 
prognosis [12]. MELK has been found to be targeted by 
the microRNA (miRNA) miRNA-214-3p in HCC to 
block proliferation [13]. However, there is as yet no 
detailed investigation of the role of MELK in HCC, nor 
is its relationship with immune infiltration of tumors 
known. 
 
Here, we evaluated the relationship between MELK 
levels and patient outcomes in a variety of cancers. We 
also examined MELK regulation in HCC by noncoding 
RNAs (ncRNAs), as well as an investigation of its 
function in terms of methylation, tumor infiltration, 
biomarker expression, and immune checkpoint analysis. 
The results indicated that up-regulation of MELK by 
ncRNAs is linked to both tumor infiltration and poor 
outcome in HCC. 
 
MATERIALS AND METHODS 
 
Expression and survival analysis of MELK in the 
pan-cancer dataset 
 
Data on MELK mRNA expression in 18 cancers were 
obtained from TCGA (https://genome-cancer. 
ucsc.edu/). The data were normalized and the package 
“limma” in R was used to analyze differential 
expression [13]. A p-value < 0.05 was taken as 
statistically significant. The GEPIA database 
(http://gepia.cancer-pku.cn/) [14] was used to assess 
MELK and lncRNA levels in various cancers, again 
using p < 0.05 to represent significance. 
 
Prediction of MELK-binding miRNAs 
 
We used PITA, RNA22, miRmap, microT, miRanda, 
PicTar, and TargetScan to predict the potential binding 
of miRNAs. Candidate miRNAs predicted by two or 
more programs were used for further analysis. StarBase 
(http://starbase.sysu.edu.cn/), a database for analyzing 
miRNAs and their interactions, [15] was used to 
investigate relationships between miRNA-MELK, 
lncRNA- MIR3142HG, or lncRNA- LINC00265 in 
HCC. The levels of hsa-miR-101-3p in tumor and 
control tissue were determined, as were potential 
lncRNA candidates for binding to has-miR-101-3p. 
 
MELK expression in HCC 
 
Gene expression patterns and clinical data pertaining to 
HCC patients were downloaded from the TCGA 
database (https://portal.gdc.cancer.gov). RNA-seq data 
from 375 HCC patients were obtained. MELK 

expression patterns in HCC were also investigated in 
the Oncomine dataset and International Cancer Genome 
Consortium LIRI-JP cohort (n = 229) 
(https://dcc.icgc.org/projects/LIRI-JP). The Human 
Protein Atlas (HPA, http://www.proteinatlas.org/)  
was searched for information on MELK protein 
expression, and information on mutations was obtained 
from the cBioPortal for Cancer Genomics 
(http://www.cbioportal.org/). The institutional ethics 
committee of the First Affiliated Hospital of Jinzhou 
Medical University approved this study. 
 
Survival analyses and prognostic model development 
 
Kaplan-Meier curves and log-rank tests were used to 
measure survival and to assess the prognostic 
relevance of MELK. Univariate Cox regression was 
conducted to explore the associations between MELK 
expression and OS to identify prognostic biomarkers. 
Multivariate Cox regression was subsequently used to 
identify factors that were independently associated 
with outcomes. 
 
DNA methylation analyses 
 
DNA methylation is controlled by DNA 
methyltransferases and influences cancer cell behavior. 
We investigated the expression of DNA 
methyltransferases in relation to MELK expression in 
data from the TCGA database. The UALCAN 
(http://ualcan.path.uab.edu/) and DiseaseMeth v 2.0 
(http://bio-bigdata.hrbmu.edu.cn/diseasemeth/) data-
bases were then used to examine MELK expression in 
HCC tumors and paracancerous tissues and 
MEXPRESS (https://mexpress.be) [16] was used to 
determine relationships between MELK and DNA 
methylation. 
 
Immune cell infiltration in relation to MELK levels 
 
TIMER (https://cistrome.shinyapps.io/timer/) [17] was 
used to investigate tumor immune infiltration, 
specifically, to determine whether there was an 
association between MELK expression and the 
infiltration by different types of immune cells. 
Correlations between MELK levels and the expression 
of immune checkpoint genes, specifically, CD274, 
CTLA4, HAVCR2, PDCD1, PDCD1LG2, TIGIT, 
LAG3, and SIGLEC15, were explored. In addition, the 
relationships between these variables and MELK copy 
numbers were assessed in HCC patients, as was their 
prognostic relevance. Moreover, the correlations 
between MELK expression and markers associated with 
16 different tumor-infiltrating lymphocytes (TILs) were 
assessed; these included B cells, monocytes, T cells, 
CD8+ T cells, neutrophils, M1/M2 macrophages, 
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natural killer (NK) cells, DCs, exhausted T cells, Tregs, 
tumor-associated macrophages (TAMs), and Th1, Th2, 
Th17, and Tfh cells. Outcome modules were used to 
investigate relationships between TILs, genomic 
alterations, and clinical outcomes in the TCGA-LIHC 
dataset. 
 
Statistical analysis 
 
Clinicopathological variables associated with MELK 
expression were analyzed using Pearson chi-squared 
tests and Fisher’s exact test, as appropriate. Disease-free 
survival (DFS) was defined as the length of time 
between surgery and disease recurrence, whereas OS 
was defined as the length of time from diagnosis to 
death or the most recent follow-up. Patients for whom 
these data were not available were excluded from the 
analysis. Survival outcomes were compared via Kaplan-
Meier curves with the log-rank test. Hazard ratios (HRs) 
with 95% confidence intervals (CIs) were calculated for 
DFS and OS using univariate Cox proportional hazards 
regression analysis, with variables found to be 
significant in the univariate analysis (p < 0.05) being 
incorporated into a multivariate analysis. A two-sided p 
< 0.05 was used as the significance threshold. Analyses 
were conducted in R (v 3.6) and GraphPad Prism 8.3. 
 
RESULTS 
 
MELK expression in pan-cancer 
 
We initially examined MELK expression in 18 different 
cancer types, finding that MELK levels were significantly 
elevated in all 18 cancers in comparison with normal 
tissue. The cancers investigated included bladder 
carcinoma (BLCA), breast invasive carcinoma (BRCA), 
cholangiocarcinoma (CHOL), colon adenocarcinoma 
(COAD), esophageal carcinoma (ESCA), glioblastoma 
multiforme (GBM), head-neck squamous cell carcinoma 
(HNSC), kidney chromophobe (KICH) and kidney renal 
clear cell carcinoma (KIRC), kidney renal papillary cell 
carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), 
lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), prostate adenocarcinoma (PRAD), 
rectum adenocarcinoma (READ), stomach adeno-
carcinoma (STAD), thyroid cancer (THCA), and uterine 
carcinosarcoma (UCEC). The findings were verified in the 
GEPIA database, which confirmed the significantly 
elevated MELK levels (Figure 1). Taken together, MELK 
was upregulated in all the above cancers, suggesting that it 
may act as a carcinogenic modulator. 
 
MELK and pan-cancer prognosis 
 
The relationship between MELK and survival in the 18 
cancer types was evaluated using the GEPIA database, 

using both overall survival (OS) and disease-free 
survival (DFS). Elevated levels of MELK in KIRC, 
KIRP, LIHC, LUAD, and PAAD were linked to poor 
OS (Figure 2A–2E) while for DFS, the raised 
expression of MELK in KIRP, LIHC, PAAD, PRAD, 
STAD, and THCA was found to be associated with poor 
prognosis (Figure 2F–2K). There were no significant 
associations between MELK levels and prognosis in the 
other cancer types. The results suggest the potential of 
MELK as a biomarker for unfavorable outcomes in 
HCC. 
 
Overexpression of MELK in HCC 
 
Having established the abnormal overexpression of 
MELK in HCC, we then investigated its clinical 
significance. Kaplan-Meier survival curves (Figure 2D 
and 2G) showed a significant correlation between 
MELK overexpression and reduced OS. Data from the 
Human Protein Atlas (HPA) database indicated 
overexpression of MELK in HCC tissues compared 
with normal liver tissue (Figure 3A). In addition, we 
examined MELK genomic expression and copy number 
to examine the possible reason for its overexpression. 
Using cBioPortal, we observed MELK amplification in 
approximately 1.4% of all HCC samples (Figure 3B), 
while there was no relationship between the copy 
number and mRNA levels (Figure 3C and 3D). These 
results indicate that copy number amplification is not 
the major mechanism responsible for MELK over-
expression in HCC. 
 
Overexpression of MELK indicated poor prognosis 
in HCC 
 
We next examined the relationships between MELK 
and various clinical parameters in the TCGA-LIHC 
cohort. The basic characteristics of the patients are 
shown in Table 1. This showed that MELK levels were 
significantly linked to both tumor diameter (p = 0.029) 
and tumor-node-metastasis (TNM) stage (p = 0.032). 
However, no relationship was observed between MELK 
and age, sex, BMI, and metastases (both lymph node 
and distant) (p > 0.05; Table 1). 
 
The median OS for patients with high MELK 
expression (48.95 ± 8.56 months, 95% CI 32.17–65.73) 
was significantly shorter than those with low expression 
(80.68 ± 11.86, 95% CI (57.43–103.93), log-rank p < 
0.001). Of the 291 cases, 158 patients (54.3%) 
experienced tumor recurrence during the follow-up 
period (median time 21 months.55 ± 2.68, 95% CI 
16.29–26.81). Recurrence was greater in the group with 
high MELK expression (106/187) than in the low-
expression group (77/187). The median DFS in the 
high-expression group (13 months 07 ± 2.22, 95% 
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CI 8.71–17.43) was significantly shorter than in the 
low-expression group (33 months 90 ± 5.13, 95% CI 
(23.83–43.97), log-rank p < 0.001). 
 
Analysis of overall survival and MELK expression 
Univariate Cox regression showed that OS was 
associated with MELK expression (MELK high vs. low, 
HR = 2.308; 95% CI 1.029,5.167; p < 0.001), age (> 60 
vs. ≤ 60, HR = 2.629; 95% CI 1.398,4.943, p = 0.003), 
vascular invasion (vascular invasion-positive vs. 
negative, HR = 1.939; 95% CI 0.992,3.789, p = 0.053), 

and tumor status (tumor-free vs. with tumor, HR 2.992; 
95% CI 1.557–5.749, p = 0.001). All patients showed an 
association between OS and MELK, age, vascular 
invasion, and tumor status. 
 
In the multivariate Cox analysis, OS was found to be 
associated with MELK (MELK high vs. Low, HR 
2.469; 95% CI 1.217–5.008, p = 0.012), age (age ≤ 60 
vs. age > 60, HR 2.568; 95% CI 1.404–4.695; p = 
0.002), vascular invasion (vascular invasion-positive vs. 
negative, HR = 2.031; 95% CI 1.067, 3.866, p = 0.031),

 

 
 
Figure 1. Expression analysis for MELK in multiple cancers. (A) The expression of MELK in 18 types of human cancer based on TCGA 
cancer and normal data. (B) The expression of MELK in 18 types of human cancer based on TCGA cancer and with corresponding TCGA and 
GTEx normal tissues. *p value < 0.05; **p value < 0.01; ***p value < 0.001.  
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tumor status (tumor-free vs. with tumor, HR 3.267; 95% 
CI 1.725–6.187, p < 0.001). All patients displayed an 
association of OS with MELK, age, vascular invasion, 
and tumor status (with tumor or tumor-free), indicating 
that these were independent prognostic factors for OS. 
The results are shown in Table 2. The C-index was 
0.727 (95% CI 0.75–0.704). 
 
Survival analysis for DFS and MELK 
Univariate analysis showed associations between DFS 
and MELK (MELK high vs. low, HR = 3.013; 95% CI 
1.592–5.772; p < 0.001), tumor stage (T1 and T2 vs. T3 
and T4, HR 2.319; 95% CI 1.277–4.212; p = 0.006), 
and tumor status (tumor-free vs. with tumor, HR 6.747; 
95% CI 4.091–2.393; p < 0.001). These results are 
listed in Table 2. 
 
In the multivariate analysis, DFS was associated with 
MELK (HR 2.251; 95% CI 1.274–3.977; p = 0.005), 
tumor stage (T1 and T2 vs. T3 and T4, HR 2.416; 95% 
CI 1.398–4.175; p = 0.002), tumor status (tumor-free vs. 

with tumor, HR 6.558; 95% CI 4.006–10.738; p < 
0.001), and AFP (AFP ≤ 200 VS. AFP > 2 00, HR 
1.942; 95% CI 1.065–3.541; p = 0.030), indicating that 
these are independent prognostic factors for DFS (all 
p < 0.05; Table 3). The C-index was 0.719 (95% CI 
0.693–0.751). 
 
Further evaluation of MELK expression in HCC 
using the Oncomine and ICGC datasets 
To further verify the expression pattern and 
prognostic value of MELK in HCC, we performed 
meta-analysis using the Oncomine database and 
survival analysis ICGC database. Oncomine analysis 
of cancer vs. normal tissue showed that MELK was 
significantly overexpressed in HCC tissue in different 
datasets (Figure 4A). In the Wurmbach Liver dataset, 
higher MELK mRNA levels were associated with 
both tumor grade and vascular invasion (Figure 4B 
and 4C). In the ICGC liver cancer dataset, higher 
expression of MELK was associated with poor OS 
(Figure 4D). 

 

 
 

Figure 2. The overall survival (OS) analysis for MELK in various human cancers determined by the “GEPIA” database (A–K) The OS plot of MELK 
in KIRC (A), KIRP (B), LIHC (C), LUAD (D), and PAAD (E); The DFS plot of MELK in KIRP (F), LIHC (G), PAAD (H), PRAD (I), STAD (J), and THCA (K). 
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Table 1. The expression of MELK and clinicopathologic features in the TCGA-LIHC cohort. 

Characteristic Low expression of MELK High expression of MELK p 
n 187 187  

T stage, n (%)   < 0.001 
T1 110 (29.6%) 73 (19.7%)  
T2 38 (10.2%) 57 (15.4%)  
T3 30 (8.1%) 50 (13.5%)  
T4 6 (1.6%) 7 (1.9%)  

N stage, n (%)   0.624 
N0 121 (46.9%) 133 (51.6%)  
N1 1 (0.4%) 3 (1.2%)  

M stage, n (%)   0.358 
M0 129 (47.4%) 139 (51.1%)  
M1 3 (1.1%) 1 (0.4%)  

Pathologic stage, n (%)   < 0.001 
Stage I 103 (29.4%) 70 (20%)  
Stage II 36 (10.3%) 51 (14.6%)  
Stage III 30 (8.6%) 55 (15.7%)  
Stage IV 4 (1.1%) 1 (0.3%)  

Tumor status, n (%)   0.029 
Tumor free 112 (31.5%) 90 (25.4%)  
With tumor 66 (18.6%) 87 (24.5%)  

Gender, n (%)   0.077 
Female 52 (13.9%) 69 (18.4%)  
Male 135 (36.1%) 118 (31.6%)  

Age, n (%)   0.088 
≤60 80 (21.4%) 97 (26%)  
>60 107 (28.7%) 89 (23.9%)  

BMI, n (%)   0.774 
≤25 88 (26.1%) 89 (26.4%)  
>25 83 (24.6%) 77 (22.8%)  

Residual tumor, n (%)   0.901 
R0 168 (48.7%) 159 (46.1%)  
R1 8 (2.3%) 9 (2.6%)  
R2 1 (0.3%) 0 (0%)  

Histologic grade, n (%)   < 0.001 
G1 39 (10.6%) 16 (4.3%)  
G2 102 (27.6%) 76 (20.6%)  
G3 40 (10.8%) 84 (22.8%)  
G4 4 (1.1%) 8 (2.2%)  

Adjacent hepatic tissue inflammation, n (%)   0.496 
None 69 (29.1%) 49 (20.7%)  
Mild 51 (21.5%) 50 (21.1%)  
Severe 10 (4.2%) 8 (3.4%)  

AFP (ng/ml), n (%)   < 0.001 
≤400 127 (45.4%) 88 (31.4%)  
>400 19 (6.8%) 46 (16.4%)  

Albumin (g/dl), n (%)   0.834 
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<3.5 36 (12%) 33 (11%)  
≥3.5 126 (42%) 105 (35%)  

Prothrombin time, n (%)   0.069 
≤4 103 (34.7%) 105 (35.4%)  
>4 55 (18.5%) 34 (11.4%)  

Child-Pugh grade, n (%)   1 
A 120 (49.8%) 99 (41.1%)  
B 12 (5%) 9 (3.7%)  
C 1 (0.4%) 0 (0%)  

Fibrosis ishak score, n (%)   0.329 
0 45 (20.9%) 30 (14%)  
2-Jan 14 (6.5%) 17 (7.9%)  
4-Mar 12 (5.6%) 16 (7.4%)  
6-May 44 (20.5%) 37 (17.2%)  

Vascular invasion, n (%)   0.491 
No 112 (35.2%) 96 (30.2%)  
Yes 54 (17%) 56 (17.6%)  

OS event, n (%)   0.023 
Alive 133 (35.6%) 111 (29.7%)  
Dead 54 (14.4%) 76 (20.3%)  

DSS event, n (%)   0.042 
Alive 152 (41.5%) 135 (36.9%)  
Dead 31 (8.5%) 48 (13.1%)  

PFI event, n (%)   0.098 
Alive 104 (27.8%) 87 (23.3%)  
Dead 83 (22.2%) 100 (26.7%)  

Age, median (IQR) 62 (52.5, 69) 59.5 (51, 68) 0.136 
 
Table 2. Univariate and multivariate Cox proportional hazard analyses of MELK expression and overall survival 
for patients in TCGA-LIHC cohort. 

Characters 
Univariate analysis Multivariate analysis 

HR (95% CI) p HR (95% CI) p 

Sex (female/male) 0.914 (0.445,1.879) 0.808   
Age (≤65/>65) 2.629 (1.398,4.943) 0.003 2.568 (1.404,4.695) 0.002 
T stage (T1–2 VS. T3–4) 1.467 (0.709,3.034) 0.302   
Vascular invasion 1.939 (0.992,3.789) 0.053 2.031 (1.067,3.866) 0.031 
Tumor Status (tumor free VS. with tumor) 2.992 (1.557,5.749) 0.001 3.267 (1.725,6.187) <0.001 
AFP 1.058 (0.468,2.393) 0.892   
MELK 2.308 (1.029,5.167) 0.042 2.469 (1.217,5.008) 0.012 

Abbreviations: CI: confidence interval; HR: hazard ratio; AFP: alpha-fetoprotein. 
 
miRNAs and MELK expression 
 
It is well documented that ncRNAs modulate gene 
expression. To evaluate the possibility that ncRNAs 
regulate MELK expression, we predicted ncRNAs that 
could bind to MELK. This yielded 35 miRNAs; Figure 

5A shows a visualization of their interactions with 
MELK determined by Cytoscape (Figure 5A). 
According to the established mechanism of miRNA-
gene interactions, a negative relationship should exist 
between the miRNA and the MELK level. Investigation 
of this issue showed a significant negative association 



www.aging-us.com 3980 AGING 

Table 3. Univariate and multivariate Cox proportional hazard analysis of MELK expression and disease-free 
survival (DFS) for patients in TCGA-LIHC cohort. 

Characters 
Univariate analysis Multivariate analysis 

HR (95% CI) p HR (95% CI) p 

Sex (female/male) 1.402 (0.769,2.467) 0.242   
Age (≤60/>60) 1.447 (0.866,2.416) 0.158   
T stage (T1–2 VS. T3–4) 2.319 (1.277,4.212) 0.006 2.416 (1.398,4.175) 0.002 
Vascular invasion 1.489 (0.884,2.509) 0.135   
Tumor Status (tumor free VS. with tumor) 6.747 (4.091,11.126) <0.001 6.558 (4.006,10.738) <0.001 
AFP 1.058 (0.468,2.393) 0.892 1.942 (1.065,3.541) 0.030 
MELK 3.031 (1.592,5.772) <0.001 2.251 (1.274,3.977) 0.005 

Abbreviations: CI: confidence interval; HR: hazard ratio; AFP: alpha-fetoprotein. 
 
between MELK and has-miR-101-3p (Figure 5B and 
5C) with a correlation coefficient R = −0.28 (p = 6.3e-
08), but not between MELK and the remaining 34 
miRNAs. We then examined the levels and prognostic 
ability of hsa-miR-101-3p, observing that miR-101-3p 
expression was reduced in HCC and that higher levels 
were associated with better prognosis (Figure 5D). This 
indicates that miR-101-3p negatively regulates MELK 
in HCC. 

lncRNAs upstream of has-miR-101-3p 
 
We next used StarBase to identify lncRNAs upstream of 
has-miR-101-3p, and a regulatory network of the 25 
predicted lncRNAs and has-miR-101-3p was created 
using Cytoscape (Figure 6A). Measurement of the 
levels of these lncRNAs in HCC tissue showed 
significant negative regulation of only LINC00265 and 
MIR3142HG (Figure 6B and 6C) while LINC00265

 

 
 

Figure 3. MELK in HCC (A) Verification of MELK protein levels using immunohistochemical data from the Human Protein Atlas database. (B) 
MELK genomic alterations in TCGA HCC shown on a cBioPortal OncoPrint plot. Association between MELK copy number and mRNA level 
shown by dot plot (C) and correlation plot (D) using cBioPortal. 
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and MIR3142HG positively regulated MELK (Figure 
6D and 6E). Raised expression of MIR3142HG and 
LINC00265 was also found to be linked with reduced 
OS (Figure 6F and 6G). The competing endogenous 
RNA (ceRNA) hypothesis proposes that lncRNAs 
modulate mRNA levels by competitive binding to 
shared miRNAs. This suggests either a negative 
relationship between lncRNAs and miRNAs or a 
positive relationship between lncRNAs and mRNAs.  
These findings indicate that MIR3142HG and 
LINC00265 are likely candidates for lncRNAs 
operating upstream of the hsa-miR-101-3p/MELK axis, 
as shown in Figure 6H. 
 
Association between DNA methylation and MELK 
expression 
 
To further investigate the mechanisms controlling MELK 
expression in HCC, we assessed the relationships between 
MELK levels and methylation. Firstly, we began by 
comparing the expression of the DNMT1, DNMT3A, and 
DNMT3B methyltransferases in relation to MELK tumor 
expression, revealing that all three were up-regulated in the 
context of higher MELK expression (Figure 7A). 
Secondly, a UALCAN analysis further revealed a possible 

link between DNMT1 and increased methylation in 
normal liver tissue relative to HCC tissue (p = 0.101, 
Figure 7B), while DiseaseMeth v 2.0 analysis showed that 
MELK methylation was significantly reduced in HCC 
tumors compared with paired normal tissues (p < 0.001; 
Figure 7C). Hypermethylated regions were present within 
the 3′- and 5′-UTR regions, whereas the TSS1500 and 
TSS200 regions tended to be hypomethylated. Thirdly, key 
methylation sites (eg.cg14339556) in the MELK DNA 
sequences were negatively associated with MELK 
expression and poor OS (HR = 2.198, p = 0.023, Figure 
7D). The differential patterns of MELK expression are 
represented using heatmaps (Figure 7E). 
 
Immune cell infiltration and MELK 
 
Tumor-infiltrating lymphocytes (TILs) are generally 
considered to be key independent predictors for lymph 
node metastasis as well as survival outcomes in many 
cancer types [17]. Accordingly, we utilized the TIMER 
database to determine potential links between MELK 
levels and TILs in HCC. An initial ‘SCNA’ module 
analysis revealed several infiltrating immune cell 
populations that were not associated with changes in 
MELK gene copy number in HCC, including CD4+

 

 
 

Figure 4. Oncomine and ICGC database analysis of MELK in HCC. Oncomine analysis of MELK expression in cancer and normal 
tissues. (A) Heatmaps showing MELK expression in clinical HCC samples vs. normal tissues. Association between MELK expression and 
tumor grade (B) and vascular invasion (C) in the Wurmbach Liver dataset. (D) Overall survival analysis of MELK expression in the ICGC 
database.  
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T cells, dendritic cells (DCs), B cells, and macrophages 
(Figure 8A). A subsequent ‘Gene’ module analysis 
revealed no correlations between MELK and tumor 
purity, although it was positively linked to B cell, 
CD8+T, CD4+ T cell, neutrophil, macrophage, and 
dendritic cell infiltration in HCC (Figure 8B). When we 
examined the association between MELK levels and 
patient OS at 60 months, we found that MELK and 
increased neutrophil (HR = 4.636, 95% CI 1.170, 
18.369, p = 0.029) and macrophage (HR = 6.202, 95% 
CI 1.578, 24.378, p = 0.009) levels were linked with 
poorer HCC patient survival outcomes, as shown in 
Figure 8C and 8D. These findings suggest that MELK 
may impact HCC patient prognosis and clinical 
outcomes in part by modulating intra-tumoral immune 
cell infiltration. 
 
To confirm the relationship between MELK expression 
and TILs, we examined the levels of immunological 
marker genes associated with six cell types. This 

revealed that five of these marker genes, namely, CD19, 
IRF5, ITGAM, NRP1, and ITGAX which are associated 
with B cells, M1 macrophages, neutrophils, and 
dendritic cells, respectively, correlated with MELK 
levels (Table 4). As such, the interplay between MELK 
and these immune cell populations may shape HCC 
patient prognosis. 
 
MELK and HCC immune checkpoints 
 
The potential links between MELK and the immune 
checkpoints PD1/PD-L1 (CD274), CTLA-4, HAVCR2, 
PDCD1, PDCD1LG2, TIGIT (CADM4), LAG3, and 
SIGLEC15 were assessed using TIMER. After adjustment 
for tumor purity, a significant positive correlation was 
observed between MELK and the expression of these 
immune checkpoint genes (Figure 9A–9I). This indicated a 
positive relationship between MELK levels and all the 
immune checkpoints, implicating MELK in HCC immune 
escape. 

 

 
 

Figure 5. Analysis of has-miR-101-3p as an upstream regulator of MELK in HCC. (A) miRNA-MELK regulatory network constructed 
by Cytoscape. (B) Association of MELK and miRNA expression analyzed by starBase. (C) Expression of hsa-miR-101-3p in tumor and normal 
tissue analyzed by starBase. (D) Prognostic value of hsa-miR-101-3p assessed by Kaplan-Meier survival analysis. 
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DISCUSSION 
 
HCC is notable for its high mortality. It is hoped that 
clarification of its etiology may assist in the 
development of treatment targets as well as identifying 
biomarkers to assist diagnosis and prognosis. The 
involvement of MELK in many human cancers, 
including HCC, has been documented [18]. However, 
our understanding of its role in HCC remains largely 
undetermined. Here, we first analyzed MELK levels in 
a variety of cancers using data from the TCGA, 
followed by verification using GEPIA. Further 
evaluation demonstrated a link between raised MELK 
levels and poor outcomes in HCC. We also found that 
the noncoding RNAs LINC00265/has-miR-101-3p 
mediated upregulation of MELK. 
 
Xia et al. proposed that MELK promotes endometrial 
carcinoma progression through the E2F1/MELK/ 
mTORC1/2 axis [19]. Overexpression of MELK was 
found to correlate with early tumor recurrence and poor 
patient survival in HCC. The overexpression of MELK 
in HCC samples strongly correlated with the expression 
of cell cycle- and mitosis-related genes, while silencing 
MELK inhibited the cell growth, invasion, stemness, 
and tumorigenicity of HCC cells by inducing apoptosis 
and mitosis [19]. These findings, together with our own, 
suggest that MELK functions as an oncogene in HCC. 

Furthermore, the crosstalk between ncRNAs in 
modulating gene expression through the ceRNA process 
has been well documented [20, 21]. 
 
We used seven algorithms, namely, PITA, RNA22, 
miRmap, microT, miRanda, PicTar, and TargetScan, to 
identify potential MELK-binding miRNAs. The miRNA 
has-miR-101-3p was found to be the most likely 
candidate and may thus be a likely HCC biomarker. 
miR-101-3p target molecules have been implicated in 
HCC carcinogenesis [22]. Further investigation 
indicated that miR-101-3p has tumor-suppressing 
functions upstream of MELK. This miRNA has been 
previously found to block HCC proliferation and 
migration. The ceRNA hypothesis [23] suggests that 
lncRNAs interacting with the miR-101-3p/MELK axis 
may have oncogenic functions in HCC. We next 
identified 25 lncRNAs likely to function upstream of 
the miR-101-3p/MELK axis, with further examination 
revealing MIR3142HG and LINC00265 to be the most 
probable. LINC00265 has been linked to the 
progression of various cancers, including HCC [24, 25]. 
Taken together, MIR3142HG and the LINC00265/has-
miR-101-3p/MELK axis were determined to be 
potential modulatory factors in HCC. The involvement 
of this axis explains both MELK’s elevated expression 
and links to poor survival outcomes in HCC, together 
with the reduction in miR-101-3p. 

 

 
 

Figure 6. Expression and survival analysis of upstream lncRNAs of hsa-miR-101-3p in HCC. 12 types of lncRNAs were significantly 
associated with hsa-miR-101-3p (A). Significant negative correlations were obtained between the levels of LINC00265 (B), MIR3142HG (C), and 
has-miR-101-3p. Significant positive correlations were obtained between the levels of LINC00265 (D) and MIR3142HG (E) and MELK. Overall 
survival analysis for MIR3142HG (F), LINC00265 (G) in HCC. (H) The MIR3142HG and LINC00265/hsa-miR-101-3p/MELK axis. *p value < 0.05. 
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Table 4. Correlation analysis between NCAPH and biomarkers of immune cells in hepatic cell cancer. 

Immune Cell Gene Correlation Coef. p  

B cell 
CD19 0.228475 8.09E-06 

CD79A 0.086287 0.095665 

CD8+ T cell 
CD8A 0.156068 0.002497 
CD8B 0.136268 0.00832 

CD4+ T cell  CD4 0.158395 0.002146 

M1 macrophage 
NOS2 −0.04473 0.388393 
IRF5 0.325369 1.46E-10 

PTGS2 0.019707 0.704033 

M2 macrophage 
CD163 0.063616 0.219562 
VSIG4 0.075547 0.144727 

MS4A4A 0.069518 0.179662 

Neutrophil 
CEACAM8 0.160825 0.001808 

ITGAM 0.293687 8.36E-09 
CCR7 0.004526 0.930457 

Dendritic cell 

HLA-DPB1 0.120851 0.019442 
HLA-DQB1 0.123065 0.017312 
HLA-DRA 0.154326 0.002793 
HLA-DPA1 0.118242 0.02224 

CD1C 0.027322 0.598393 
NRP1 0.217181 2.37E-05 

ITGAX 0.272233 9.99E-08 
 

 
 
Figure 7. MELK methylation (A) Differential expression of three DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) in the MELK 
high- and low-expression groups. (B) Evaluation of methylation by UALCAN and (C) DiseaseMeth version 2.0. (D) Survival analysis of 
methylation sites (cg14339556) in the MELK DNA sequence. (E) Analysis of methylation sites visualized by MEXPRESS. The central blue line 
indicates MELK expression. 
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We did not observe any relationship between MELK 
levels and copy number variations in HCC. The role of 
DNA methylation in gene expression is well 
documented [26, 27] and it is possible that this accounts 
for the dysfunctional expression of MELK in HCC. 
Hypomethylation of MELK was seen in HCC tissue, 
which supports the observation of elevated MELK 
levels together with elevated levels of the DNA 

methyltransferases (DNMT1, DNMT3A, and 
DMNT3B). Certain methylation sites were also 
observed to correlate with HCC patient outcomes. 
 
Immune cell infiltration is known to influence the 
effectiveness of cancer treatments, including 
immunotherapy and adjuvant therapy, as well as patient 
outcomes [28, 29]. Here, we found a positive 

 

 
 
Figure 8. MELK levels and immune cell infiltration in HCC. (A) Immune cell infiltration in relation to MELK copy number variations. 
(B) Correlation of MELK levels with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. (C) Association between 
MELK levels (HR = 4.636, 95% CI 1.170, 18.369, p = 0.029) patient OS at 60 months with increased neutrophil. (D) Association between 
MELK levels and patient OS at 60 months (HR = 6.202, 95% CI 1.578, 24.378, p = 0.009) with increased macrophage. 
 

 
 
Figure 9. MELK levels and immune checkpoint expression. (A) Correlation of MELK with PD-1, adjusted for purity by TIMER, (B) 
Correlation with PDL1, (C) Correlation with CTLA-4, (D) Correlation with HAVCR2, (E) Correlation with PDCD1, (F) Correlation with 
PDCD1LG2, (G) Correlation with TIGIT, (H), Correlation with LAG3, (I) Correlation with SIGLEC15. 
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relationship between MELK and TILs, including B 
cells, CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils, and dendritic cells, in HCC. In addition, 
there was an association between MELK and 
biomarkers of these cells. MELK was associated with 
poorer HCC patient survival and neutrophil and 
macrophage levels. These observations suggest that 
immune infiltration may be at least partially responsible 
for MELK’s role in HCC carcinogenesis. 
 
Successful immunotherapy relies not only on adequate 
numbers of TILs but also on the level of immune 
checkpoint expression [30, 31]. For this reason, we 
examined the link between MELK and immune 
checkpoints, observing that raised levels of MELK were 
linked to all the examined checkpoints, implying that 
targeting MELK could enhance the effectiveness of 
immunotherapy. 
 
Here, we identified a ceRNA-based MIR3142HG and 
LINC00265/has-miR-101-3p/MELK axis that may be a 
potential prognostic biomarker in clinical applications. 
Nevertheless, several limitations must also be noted. 
First, the binding affinities of the lncRNAs, miRNAs, 
and mRNAs obtained from the database require further 
experimental investigation. Second, further experi-
mental verification of the function and mechanism  
of the MIR3142HG and LINC00265/has-miR-101-
3p/MELK axis in HCC is required. 
 
In conclusion, we demonstrated elevated expression of 
MELK in various human cancers, including HCC, 
which was linked to poor survival outcomes. We further 
showed that MIR3142HG and the LINC00265/ has-
miR-101-3p axis acted as upstream regulators of 
MELK. MELK may thus be a significant prognostic 
indicator of HCC outcome. Nevertheless, these findings 
require verification by further research and future 
clinical trials. 
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