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INTRODUCTION 
 

Glioblastoma is a highly malignant tumor of the central 

nervous system [1], and patients’ prognoses remain dismal 

despite the availability of numerous treatments such as 

surgery, radiotherapy, and chemotherapy [2, 3]. Recently, 

immunotherapy has become increasingly popular, with 

immune checkpoint inhibitors serving as a new anti-tumor 

treatment [4, 5]. Immune system function can be 

suppressed to prevent autoimmune illnesses via immune 

checkpoints, but if they are suppressed too much, the 

body's ability to identify and eliminate aberrant cells is 

compromised [6]. Inhibitors of immunological checkpoints 

have anti-tumor effects through inhibiting the immune 
checkpoints' function, but their success in patients with 

glioblastoma has been uneven. A major cause of 

immunotherapy's poor efficacy is a lack of understanding 

of the immunological characteristics of glioblastoma. 

Individualized immunotherapy for glioblastoma can be 

achieved by analyzing each patient's immunological 

profile. However, glioblastoma’s immune milieu is poorly 

understood. It’s critical to clarify the immune trait of 

glioblastoma and develop marks that can accurately assess 

the immunological profile and prognosis of patients. 

 

The goal of this study was to determine the 

immunological pattern of glioblastoma and create a 

marker that may be used to assess the prognosis and 

immune profile of GBM patients. WGCNA analysis of 

all immune-associated genes in TCGA-GBM 

transcriptional data was used to filter prognosis-

associated immune genes for unsupervised clustering 

analysis, and we investigated the immunological traits 

of distinct immune-associated clusters. A Glioblastoma 
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Immunological Prognostic Score (GIPS) was developed 

to measure individual individuals’ immune 

characteristics. We then investigated the GIPS’s 

molecular and immunological properties, examined its 

ability to predict prognosis, and associated it with 

immunotherapy response and immunotherapy. 

 

RESULTS 
 

Identification of immune-related prognostic genes 

 

The design of this study is shown in Supplementary 

Figure 1A. Differential analysis of immune-related 

genes from ImmPort and InnateDB yielded 802 

differentially expressed immune-related genes. 

Supplementary Figure 1B and 1C show the results of 

the immune differential gene GO and KEGG pathway 

enrichment analyses. The candidate genes were 

subjected to WGCNA analysis in order to identify the 

immune-related center genes. Based on the scale-free 

network and the correlation coefficient of greater than 

0.9, the soft-thresholding power was optimally set at 

(Supplementary Figure 1D and 1E). Four modules 

were identified based on the best soft threshold ability 

(Figure 1A and 1B). Among them, the blue module 

had the largest Pearson correlation coefficient and the 

smallest P value, so the genes in the blue module were 

selected for further analysis. The Univariate Cox 

analysis of the genes in the blue module revealed 35 

prognostic-related immune genes with p ≤ 0.01 

(Supplementary Figure 2). We then looked into the 

characteristics of the 35 genes in greater depth. These 

genes had a low mutation frequency but mostly copy 

number changes, with copy number loss dominating 

(Figure 1C and 1D). It's worth mentioning that the 

expression levels of most genes positively correlate 

with their copy number (Supplementary Figure 3). 

However, while CNV can explain many observed 

changes in prognostic-related immune genes 

expression, CNV is not the only factor involved in the 

regulation of mRNA expression. Furthermore, we 

identified BCL3 as the most common transcription 

factor for these prognostic immune genes and built a 

protein interaction network for them (Figure 

1E and 1F). 

 

Two immune patterns of glioblastoma 

 

Unsupervised consensus clustering of the expression of 

the above prognosis-related immune genes was used to 

investigate the immune pattern of glioblastoma. The 

empirical cumulative distribution function (CDF) plots 

show the consensus distributions for k (1–9) 

(Supplementary Figure 4A and 4B). Given the 

consensus matrix for the analysis, k = 2 appeared to be 

the best option. The consensus matrix demonstrates that 

an unsupervised algorithm based on these genes is 

capable of clearly distinguishing samples and that each 

sample in the cluster has a high degree of correlation 

(Supplementary Figure 4C–4E). As a result, we 

classified GBM patients into two groups, called immune 

clusters A and B, based on the expression of 

prognostically relevant immune genes. The two immune 

clusters had significantly different transcript expression 

profiles, according to principal component analysis 

(Supplementary Figure 4F). 

 

GSVA enrichment analysis revealed 83 differential 

pathways between the two immune clusters, and the top 

20 KEGG pathways are shown in Figure 2A. Immune-

related pathways such as the nod-like receptor signaling 

pathway, the chemokine signaling pathway, and 

leukocyte transendothelial migration were significantly 

enriched in immune cluster B, whereas DNA replication 

and nucleotide excision repair were significantly 

enriched in immune cluster A. 

 

To reveal the immune landscape of the two immune 

clusters, we analyzed the immune microenvironmental 

features of the two immune clusters. Immune cluster B 

contained a higher number of both immune cells and 

stromal cells (Figure 2B). Further investigation 

revealed that almost all adaptive and innate immune 

cells were more infiltrated in immune cluster B, and 

immune cluster B's cellular function was more active 

(Figure 2C and 2D). Furthermore, the expression of 

immune checkpoints other than LAG3, CD160, and 

CD200 was more abundant in immune cluster B 

(Figure 2E). Because immune cluster B's stroma 

restricted immune cell entry into the tumor 

parenchyma and overexpressed immune checkpoints 

inhibited immune cell function, we classified immune 

cluster B as an immune tolerance phenotype. Immune 

cluster A had fewer immune cells and lower immune 

activity, indicating an immunodeficient phenotype. 

Furthermore, patients in immune cluster A had a better 

prognosis (Figure 2F).  

 

Construction of GIPS 

 

Thirteen immune genes with independent prognosis and 

their coefficients were identified based on multivariate 

analysis of 35 prognosis-associated immune genes 

(Supplementary Table 1). We then constructed GIPS 

based on the coefficients for assessing the immune 

status, immunotherapy response, and prognosis of 

individual patients. Univariate Cox regression analysis 

showed that age, IDH1 status and GIPS were 

significantly associated with the prognosis of GBM 
(Figure 3A). Multifactorial Cox regression analysis 

confirmed that GIPS was an independent prognostic 

factor after adjusting for other factors (Figure 3B). 



www.aging-us.com 4359 AGING 

Taking the median GIPS as the cut-off value, low-

GIPS patients had a better OS than high-GIPS 

patients (Figure 3C). Then, the role of GIPS was 

validated by using the GSE13041 dataset. As shown 

in Figure 3D, the patients in the low-GIPS subgroup 

had a significantly better prognosis than those in the 

high-GIPS subgroup, consistent with the results of 

the TCGA dataset. 

 

 
 

Figure 1. Molecular characterizations of immune-related prognostic genes. (A) Weighted gene coexpression network analysis 

(WGCNA) of immune-related differentially expressed genes with a soft threshold β = 7. (B) Gene modules related to HNSCC obtained by 
WGCNA. (C) Mutation frequency of 35 immune-related prognostic genes. (D) CNV variation frequencies of 35 immune-related prognostic 
genes in the TCGA-GBM cohort. (E) Transcription factors for 35 immune-related prognostic genes. (F) The network of the 35 immune-
related prognostic genes. 



www.aging-us.com 4360 AGING 

Molecular analysis of various GIPS subgroups 

 

GSEA was used to identify the set of genes that were 

enriched in various GIPS subgroups. The genomes of 

High-GIPS patients were enriched in cytokine-cytokine 

receptor interaction and the chemokine signaling 

pathway, whereas the genomes of Low-GIPS patients 

were enriched in the cell cycle and DNA replication 

(Figure 4A and 4B). 

We then examined the gene mutations to gain a better 

understanding of the immunological nature of the GIPS 

subgroup from a biological standpoint. Figure 4C and 

4D depict the top 15 genes in the GIPS subgroups with 

the highest mutation rates. The most common type of 

mutation was missense mutation, followed by 

frameshift deletion and nonsense mutation. PTEN, 

TP53, TTN, and EGF2 mutation rates were greater than 

15% in both groups. PTEN, TP53, and TTN expression

 

 
 

Figure 2. TME Characterization of the two immune clusters. (A) GSVA enrichment analysis of the two immune clusters. (B) TME 

scores of the two immune clusters. (C) Differential analysis of immune cell abundance between two immune clusters. (D) Differential of 
immune function between the two immune clusters. (E) Differential analysis of expression of immune checkpoints in the two m6A clusters. 
(F) Kaplan-Meier OS analysis in the two immune clusters. P = 0.022. (*, **, and *** indicate p ≤ 0.05, <0.01, and <0.001, respectively).  
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levels were not associated with mutations, whereas 

IDH1 mutations were associated with decreased 

expression and EGFR mutations with increased 

expression (Figure 4E). Notably, the mutation rate of 

IDH1 was 0% in the high GIPS subgroup and 10% in 

the low GIPS subgroup. 

 

Immunological characteristics of various GIPS 

subgroups 

 

The High-GIPS subgroup had higher immune and 

stroma scores (Figure 5A), and correlation analysis 

between GIPS and TME revealed that GIPS was 

significantly positively correlated with immune (R = 

0.27, p = 2.2e-16) and stroma (R = 0.22, p = 0.0045, 

Figure 5B and 5C) scores. There were more innate and 

adaptive immune cells, EMT and Pan-F-TBRS in the 

High-GIPS subgroup, while there was more DNA 

damage repair, DNA replication and mismatch repair in 

Low-GIPS subgroup (Supplementary Figure 5A and 

5B). Moreover, almost all common immune 

checkpoints had higher expression in the High-GIPS 

subgroup (Figure 5D). According to the alluvial 

diagram, the majority of low GIPS patients belong to 

immune cluster A (immune tolerance pattern), while the 

majority of high GIPS patients belong to immune 

cluster B (immune deficiency pattern) (Figure 5E). 

 

Immunotherapy response in various GIPS 

subgroups 

 

TIDE was used to assess immunotherapy response in 

various GIPS subgroups. Patients with high TIDE 

scores have a lower immunotherapy response, 

indicating that immunotherapy is less likely to benefit 

them. TIDE scores were higher in the High-GIPS

 

 
 

Figure 3. Prognostic analysis of the GIPS subgroups. (A) Univariate Cox analysis of clinical factors and the GIPS. (B) Multivariate Cox 

analysis of the factors significant in the univariate Cox analysis. (C) K-M analysis of the GIPS subgroups in TCGA-GBM cohort (P < 0.001). (D) 
K-M analysis of the GIPS subgroups in GEO cohort (P = 0.038). 
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subgroup than in the Low-GIPS subgroup, indicating 

that ICI therapy may benefit Low-GIPS patients more 

(Figure 6A). The effects of anti-CTLA4 therapy on 

different GIPS subgroups were then compared. The 

Low-GIPS subgroup did fare better in terms of 

treatment outcomes (Figure 6B). 

To determine the reasons for the differences in 

immunotherapy response, we compared microsatellite 

instability (MSI), T-cell exclusion, and T-cell 

dysfunction scores in the two subgroups. Low-GIPS 

subgroup had a higher microsatellite instability (MSI) 

score, while the High-GIPS subgroup had a higher T-cell 

 

 
 

Figure 4. Molecular traits of distinct GIPS subgroups. (A) GSEA analysis in High-GIPS subgroup (P < 0.05). (B) GSEA analysis in Low-

GIPS subgroup (P < 0.05). (C) Mutated genes (top 15) in High-GIPS subgroups. (D) Mutated genes (top 15) in Low-GIPS subgroups. (E) The 
correlation between expression level and mutations of genes (PTEN, TP53, TTN, IDH1 and EGFR).  
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dysfunction score, but there was no difference in T-cell 

exclusion between the 2 subgroups (Figure 6C–6E). 

Furthermore, ROC curve analysis showed that the AUC 

values of GIPS reached 0.771 at 1 year, 0.833 at 2 

years, and 0.916 at 3 years (Figure 6F) and were higher 

than the AUC values of T-cell inflammatory signature 

(TIS) and TIDE (Supplementary Figure 5C–5E). 

DISCUSSION 
 

Glioblastoma is a type of central nervous system tumor 

that develops from glial stem cells [7]. Despite a variety 

of treatments, the prognosis for patients is frequently 

extremely poor [8]. Immunotherapy appears to offer a 

ray of hope for patients with glioblastoma. However, 

 

 
 

Figure 5. TME Characterization of distinct GIPS subgroups. (A) TME scores of the distinct GIPS subgroups. (B) Spearman correlation 

analysis of GIPS scores with immune scores. R = 0.27, P ≤ 0.001. (C) Spearman correlation analysis of GIPS scores with stromal scores. R = 
0.22, P ≤ 0.01. (D) Differential analysis of expression of immune checkpoints in the different GIPS subgroups. (E) Alluvial diagram of GBM 
patient immune cluster and GIPS. 
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many patients do not respond well to immunotherapy 

and not only benefit less but also suffer from a slew of 

side effects [9]. According to some studies, the tumor 

microenvironment influences immunotherapy responses 

[10, 11]. Furthermore, there are no validated biomarkers 

to predict immunotherapy response and overall survival. 

As a result, in this study, we attempted to analyze the 

tumor microenvironment of glioblastoma using big data 

in order to elucidate the causes affecting 

immunotherapy response in glioblastoma patients and to 

propose corresponding treatment plans based on 

glioblastoma immune microenvironment characteristics. 

 

 

 
Figure 6. Immunotherapy response in different GIPS subgroups. (A) Differential analysis of TIDE score between GIPS subgroups. (B) 

Effectiveness of immunotherapy in GIPS subgroups. (C) Differential analysis of dysfunction score between GIPS subgroups. (D) Differential 
analysis of MSI score between GIPS subgroups. (E) Differential analysis of T-cell exclusion score between GIPS subgroups. (F) ROC curves of 
GIPS for predicting 1-, 2-, and 3-year survival in TCGA GBM cohorts. (G) Graphical summary of this study.  
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Based on the GBM immune gene dataset, we identified 

35 immune-related prognostic genes using WGCNA 

and K-M analysis in this study. Although the mutation 

rate was low, most of these genes had copy number 

loss. It has been demonstrated that gene copy number 

loss is linked to tumorigenesis [12, 13]; for example, the 

loss of ErbB4 receptor tyrosine kinase is linked to the 

development of glioblastoma [14]. Thus, immune gene 

copy number loss may play a role in the development of 

glioblastoma. Based on an unsupervised clustering 

analysis of these 35 genes, we discovered that 

glioblastoma has two immune patterns. Immune cluster 

A is primarily enriched in DNA replication and nucleic 

acid repair pathways, with less immune cell infiltration 

and low immune function, defining the immuno-

deficiency pattern. Immune cluster B had a high 

infiltration of immune cells and active immune function 

and was primarily enriched with immune-related 

pathways. As a result, in immunodeficiency pattern 

patients, improving immune function may be beneficial 

in terms of prognosis. Numerous studies have found 

that a dense infiltration of T cells, particularly cytotoxic 

[15, 16], predicts a favorable outcome. However, 

immune cluster B did not show the expected survival 

advantage. Further research revealed that increased 

stromal cells in immune cluster B limited the function 

of immune cells infiltrating the tumor parenchyma, 

while highly expressed immune checkpoints and 

increased Treg cells inhibited T cells' tumor killing 

function. As a result, immune cluster B displayed an 

immune tolerance pattern. Furthermore, soluble factors 

secreted by stromal cells can induce microenvironment-

mediated drug resistance [17]. As a result, rational drug 

combinations capable of targeting both tumor cells and 

the microenvironment may be the key to overcoming 

therapeutic resistance [18, 19]. 

 

GIPS was created using multivariate cox analysis to 

assess the immune pattern, immunotherapy response, 

and prognosis of individual patients. When compared to 

the High-GIPS subgroup, the Low-GIPS subgroup had a 

higher survival rate and a longer survival time. The 

validity of the model was subsequently demonstrated by 

a validation cohort. We then investigated mutations in 

distinct GIPS subgroups to better understand the 

immunological landscape of these subgroups. As 

reported earlier, missense mutation, followed by 

frameshift deletion and nonsense mutation. Notably, the 

mutation rate of IDH1 reached 10% in the Low-GIPS 

subgroup while there were no mutations in the High-

GIPS subgroup. According to some studies, the IDH1 

mutation is an independent predictor of longer overall 

survival (OS) and progression-free survival (PFS) in 
GBM patients [20, 21]. The FAT1-ROS-HIF-1 

signaling pathway is activated by the IDH1 mutation, 

which suppresses malignant glioma [22]. Thus, Low-

GIPS patients with high IDH1 mutations have a better 

prognosis than High-GIPS patients who do not have 

IDH1 mutations, which is consistent with our survival 

findings. 

 

Understanding the TME can aid in the discovery of new 

ways to treat GBM, as well as altering the TME to 

improve the efficacy of immunotherapy. Tumor 

microenvironments differ between the two GIPS 

subgroups. Multiple immune cells, such as natural killer 

cells, macrophages, and Treg cells, are more abundant 

in the High-GIPS subgroup. Tumor-associated 

macrophages contribute to patients' poor prognosis by 

promoting glioblastoma growth and angiogenesis [23]. 

Moreover, a large infiltration of Treg cells leads to 

immunosuppression [24]. As a result, a number of 

studies have proposed therapeutic approaches that target 

tumor-associated macrophages [23]. For example, 

promoting macrophage polarization in combination 

with immune check inhibitors aids in the treatment of 

glioblastoma [25]; and blocking macrophage-associated 

immunosuppression to regulate glioblastoma angio-

genesis [26]. These approaches, however, need to be 

investigated further. The Low-GIPS subgroup has less 

immune cell infiltration but a greater ability to repair 

damage. 

 

TIDE was then used to assess the immunotherapy 

responsiveness of different GIPS subgroups. Patients in 

the High-GIPS subgroup had higher immune cell 

infiltration and TIDE and T cell dysfunction scores than 

those in the Low-GIPS subgroup, suggesting that their 

lower immunotherapy response could be due to immune 

evasion caused by T cell dysfunction. The Low-GIPS 

subgroup, on the other hand, had higher MSI scores and 

lower TIDE scores than the High-GIPS subgroup, 

indicating that these patients had less immune evasion 

and more MSI. The high mutational load caused by MSI 

has been shown to make the tumor immunogenic and 

sensitive to immune checkpoint inhibitors. We directly 

compared the responses of different GIPS subgroups to 

anti-CTLA4 therapy to further validate GIPS's ability to 

predict patients’ responses to immunotherapy. Patients 

in the Low-GIPS subgroup were found to be indeed 

more sensitive to immunotherapy. 

 

The TIDE score is an algorithm that simulates tumor 

immune evasion mechanisms [27] and can be used to 

assess immunotherapy response in patients with a wide 

range of tumors, including bladder cancer, lung 

adenocarcinoma, and melanoma [28, 29]. Furthermore, the 

Tumor Inflammation Signature (TIS) provides quantitative 

and qualitative information about TME, which has been 
shown in a pan-cancer cohort to correlate with benefit 

from anti-PD -1 therapy [30]. Nevertheless, TIDE and TIS 

are both concerned with assessing the function and 
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condition of T cells and do not truly reflect the impact of 

the tumor microenvironment on immunotherapeutic 

responses [2, 31], such as the important role that tumor-

associated macrophages play in glioblastoma. 

Furthermore, both signatures are concerned with the 

patient's response to immunotherapy rather than the 

patient's overall survival, and life expectancy is an 

important consideration when making a clinical decision. 

GIPS has a higher predictive value than TIDE and TIS, 

and it may be a more valuable predictor for assessing a 

patient's immune condition, immunotherapy response, and 

prognosis. 

 

In conclusion, glioblastoma has two immune modalities, 

immune tolerance and immunodeficiency, with distinct 

immune microenvironments, tumor-associated 

macrophages being one of the most promising new 

therapeutic targets. GIPS is a promising biomarker for 

assessing immune evasion mechanisms, immunotherapy 

responses, and prognosis in patients, but more research 

is needed to confirm its utility (Figure 6G). 

 

METHODS 
 

Data collection and processing 

 

The TCGA-GBM dataset and GSE13041 were used to 

obtain GBM transcriptome data. GTEx was used to 

obtain RNAseq transcriptome data for healthy human 

tissues. The GTEx and TCGA datasets were combined 

and reconciled using quantile normalization and batch 

effect removal using svaseq. Immune-related gene lists 

were obtained from the databases ImmPort and 

InnateDB. 

 

Identification of immune-related prognostic genes 

 

Differential analysis of immune-related genes from 

ImmPort and InnateDB yielded 802 differentially 

expressed immune-related genes. Then, WGCNA was 

performed to identify these genes. Based on the scale-

free network and the correlation coefficient of greater 

than 0.9, the soft-thresholding power was optimally set 

at 7. Univariate Cox analysis of the genes in the blue 

module revealed 35 prognostic-related immune genes 

(p ≤ 0.01). 

 

Unsupervised consensus clustering based on 

immune-related prognostic genes 

 

According to expression levels of the 35 prognostic-

related immune genes, unsupervised clustering analysis 

was used for identification of various immune patterns 

and patient classification for further analyses. Cluster 

numbers and their stabilities were evaluated using a 

consistent clustering algorithm. 

Gene set variation analysis 

 

Gene set “c2.cp.kegg.v6.2.symbols” was obtained from the 

MSigDB and GSVA enrichment analysis used to identify 

different immune patterns using “GSVA” package on R, 

with adjusted p ≤ 0.05 indicating statistical significance. In 

non-parametric and unsupervised approaches, GSVA is 

used for estimation of pathway and biological process 

changes in gene expression datasets. 

 

Estimation of TME immune trait 

 

The ssGSEA enrichment fraction was used to calculate 

the relative abundances of each TME-infiltrating cell 

per sample. Charoentong's study, which annotated 

human immune cell subtypes, immune checkpoints, and 

EMT, provided the genomes used to mark each TME-

infiltrating immune cell type. 

 

Establishment and subsequent validation of the 

GIPS 

 

Among 35 immune-related prognostic genes, 

multifactorial Cox regression analysis was used to 

identify genes with significant effects on OS. The GIPS 

for each sample was calculated by multiplying the 

expression values of specific genes by their Cox model 

weights and then summing them. Log-rank tests were 

used to assess GIPS's prognostic ability in the TCGA and 

GEO cohorts using Kaplan-Meier (K-M) survival curves. 

GIPS’s independent prognostic value was validated using 

univariate and multivariate Cox regression analyses. 

 

Statistical analysis 

 

The limma R package was used to analyze differential 

gene expression. The statistical difference between the 

two groups was calculated using the Wilcoxon rank sum 

test. For comparisons of more than two groups, the 

Kruskal-Wallis test was used. For all statistical 

analyses, R software was used. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

Supplementary Figure 1. Differentially expressed immune-related genes in GBM. (A) This study's design overview. (B) GO 

enrichment analysis of the immune-related DEGs. (C) KEGG enrichment analysis of the immune-related DEGs. (D) The horizontal line 
denotes a threshold value of 0.9. (E) WGCNA's optimal soft threshold is 7. 
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Supplementary Figure 2. Univariate Cox analysis of the genes in the blue module. Forest plot of 35 immune-related prognostic 
genes. 
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Supplementary Figure 3. The correlation between expression level and copy number of the 35 prognostic-related immune 
genes. 
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Supplementary Figure 4. Unsupervised clustering analysis in GBM meta cohort. (A and B) The empirical cumulative distribution 
function (CDF) plots show the consensus distributions for k (1–9). (C–E) Consensus matrix of TCGA-GBM dataset (k = 2–4). (F) Principal 
component analysis of expression profiles in the two immune clusters. 
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Supplementary Figure 5. The immune cells infiltration and immune-related function of distinct GIPS subgroup. (A) 
Differential analysis of immune cell abundance between two GIPS subgroups. (B) Differential of immune function between the two GIPS 
subgroups. (C–E) ROC analysis of GIPS, TIS, and TIDE on OS at 1-, 2-, and 3-year. 
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Supplementary Table 

 

Supplementary Table 1. Coefficients of 13 immune genes. 

Gene coef 

ICAM1 −0.313685717 

PSMC2 0.255439674 

WFDC2 0.34938006 

CD81 0.614962106 

ACTA1 0.813674408 

PLAUR 0.283402033 

FAM3C 0.120266822 

MSTN −0.31394654 

OSMR 0.273880225 

TNFRSF14 −0.178961902 

ITGA3 0.200600623 

ACAP1 0.803335701 

ANXA2 −0.287133365 

 


