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INTRODUCTION 
 
Glioma is deemed to be the most aggressive tumor in the 
central nervous system. The annual incidence of glioma 
has been reported to be approximately 30–80/1 million 
worldwide and increasing by 1–2% annually; the 5-year 
survival rate is only 10–20% [1]. According to the WHO 
standard, glioma is divided into four grades by its 
pathological characteristics [2]: grade I, pilocytic 
astrocytoma, which manifests as a benign tumor, and 
patients may have full clinical recovery after total tumor 
resection. Grade II has a poor prognosis compared with 

grade I but is still considered to be a low-grade glioma. 
Grade III, such as anaplastic astrocytoma, as well as grade 
IV and GBM, are types of advanced grade glioma with a 
high degree of malignancy, strong invasive ability, a poor 
prognosis and multiple differentiation potentials, and the 
median survival time is only approximately one year [3]. 
 
Although various cancer therapies have been applied 
over the past decades, the prognosis of glioma patients 
remains dismal. After including the isocitrate 
dehydrogenase (IDH1/2) mutation and whether the 
1p19q code is missing, the WHO classification of 
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ABSTRACT 
 
The occurrence and development of tumors are closely related to histone deacetylases (HDACs). However, their 
relationship with the overall biology and prognosis of glioma is still unknown. In the present study, we 
developed and validated a prognostic model for glioma based on HDAC genes. Glioma patients can be divided 
into two subclasses based on eleven HDAC genes, and patients from the two subclasses had markedly different 
survival outcomes. Then, using six HDAC genes (HDAC1, HDAC3, HDAC4, HDAC5, HDAC7, and HDAC9), we 
established a prognostic model for glioma patients, and this prognostic model was validated in an independent 
cohort. Furthermore, the calculated risk score from six HDACA genes expression was found to be an 
independent prognostic factor that could predict the five-year overall survival of glioma patients well. High-risk 
patients have changes in multiple complex functions and molecular signaling pathways, and the gene 
alterations of high- and low-risk patients were significantly different. We also found that the different survival 
outcomes of high- and low-risk patients could be related to the differences in immune filtration levels and the 
tumor microenvironment. Subsequently, we identified several small molecular compounds that could be 
favorable for glioma patient treatment. Finally, the expression levels of HDAC genes from the prognostic model 
were validated in glioma and nontumor tissue samples. Our results revealed the clinical utility and potential 
molecular mechanisms of HDAC genes in glioma. A model based on six HDAC genes can predict the overall 
survival of glioma patients well, and these genes are potential therapeutic targets. 
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central nervous system tumors has become more refined 
[4]. However, the clinical outcomes and side effects of 
patients with the same grade and classification of 
tumors are not the same after being comprehensively 
treated [5]. This suggests that we still need to explore 
more instructive molecular targets of glioma to reveal 
its unclear and complex molecular mechanisms. 
 
The underlying cause of malignant tumors is disordered 
gene expression systems, including oncogenes, tumor 
suppressor genes and genes related to DNA repair [6]. 
With the continuous development of epigenetics, it has 
been gradually recognized that almost all malignant 
tumors also have epigenetic abnormalities, which, together 
with gene changes, cause tumorigenesis [7]. The 
epigenetic phenomena involved in the occurrence of 
malignant tumors mainly include abnormal DNA 
methylation, histone modification and their interaction 
caused by abnormal expression of noncoding RNA and 
chromosomal remodeling [8]. These epigenetic changes 
lead to abnormal activation of certain genes and silencing, 
thereby allowing cell growth to enter an uncontrolled state. 
 
The occurrence and development of tumors are closely 
related to histone deacetylases (HDACs) [9]. Studies have 
shown that genome-wide histone acetylation levels are 
generally reduced in tumor cells, among which HDAC1, 
HDAC5 and HDAC7 are regarded as tumor markers [10]. 
Second, studies have shown that gene knockout of 
HDAC1/2 in breast cancer cells or HDAC1/2/3 in colon 
cancer cells can induce tumor cell apoptosis, suggesting 
that the activity of HDACs is related to tumor cell survival 
[11, 12]. Similarly, abnormal binding of HDACs to 
oncogene fusion proteins at certain gene loci is also 
regarded as an important mechanism of tumorigenesis. 
 
HDACs come in four classes: class I (HDAC1, 
HDAC2, and HDAC3, HDAC8), class II (HDAC4, 
HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10), 
class III (SIRT1-SIRT7), and class IV (HDAC11) [13]. 
A previous study explored the roles of HDACs in the 
prognosis of clear cell renal cell carcinoma [14]. 
However, their roles in the overall biology and 
prognosis of glioma are still unknown. In the present 
study, we comprehensively explored the biological 
function and prognosis of eleven HDAC genes in 
glioma, which may contribute to a better understanding 
of the underlying molecular mechanisms and identify 
potential therapeutic targets for glioma patients. 
 
MATERIALS AND METHODS 
 
Data source 
 
The mRNA expression data of glioma patients from The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer. 

gov/) and Chinese Glioma Genome Atlas (CGGA, 
http://www.cgga.org.cn/) were utilized. Gene mutation 
data were also obtained from the TCGA database. Drug 
response data were acquired from the Genomics of Drug 
Sensitivity in Cancer (GDSC) database (https://www.can 
cerrxgene.org/downloads). The immune filtration data 
were from TCIA (https://tcia.at/home). The information on 
the histone deacetylase genes (HDAC1, HDAC2, HDAC3, 
HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, 
HDAC10, and HDAC11) was from the Molecular 
Signatures Database (MSigDB). 
 
Clustering analysis 
 
Using the R “Consensus Cluster Plus” package, we 
performed clustering analysis. Consensus Cluster Plus 
allows data clustering with a negative value. Using the 
K-means method, we achieved the most approximate 
number of clusters by extracting 1000 times from 80% 
of the sample size. The results are presented using a 
consensus matrix heatmap. We also used principal 
component analysis (PCA) and t-distributed stochastic 
neighbor embedding (tSNE) to further validate the 
clustering analysis. 
 
Development and validation of the HDAC gene 
prognostic model 
 
Using 11 HDAC genes, we developed an overall 
survival (OS) prediction model in the TCGA dataset. 
Least absolute shrinkage and selection operator 
(LASSO) regression was used to select the number 
entering the model, and then a multivariate Cox 
regression was performed to obtain the regression 
coefficient of each HDAC gene. We calculated the risk 
score of each sample using the following formula: risk 
score = coef1 × gene1 expression + coef2 × gene2 
expression + coefn × genen expression. Using the 
established prognostic model, we performed validation 
in the CGGA dataset. Glioma patients were separated 
into high- and low-risk groups according to the median 
risk score. Kaplan–Meier survival curves were used to 
compare the difference in OS between the high- and 
low-risk groups. Receiver operating characteristic 
curves (ROCs) were used to evaluate the predictive 
ability at 1 year, 2 years, and 3 years of patient OS in 
TCGA and CGGA. PCA was used to identify the risk 
type. 
 
Clinical correlation and independent analysis 
 
To investigate the association between the risk score and 
prognosis in glioma patients, we first performed a stratified 
analysis of different clinical parameters. Then, we 
compared the difference in HDAC genes between the two 
clustering groups, and the risk score distributions were also 
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observed for different clinical parameters. To validate the 
independence of the risk score, we performed univariate 
and multivariate Cox regression analyses by adjusting the 
clinical parameters (TCGA: age, sex, grade; CGGA: age, 
sex, grade, history, TNM stage, radiotherapy, 
chemotherapy, occurrence type, IDH and 1p19q status). 
We evaluated the diagnostic ability of the risk score and 
other parameters using ROC curves. We built a nomogram 
to evaluate the clinical application of the HDAC gene 
prognostic model, and the nomogram-predicted 
probabilities of 1-year OS, 3-year OS and 5-year OS were 
used to assess the model fitting ability. 
 
Functional, pathway enrichment and mutation 
analyses 
 
To explore the function and pathway enrichment of 
different high- and low-risk groups, we performed GO 
functional enrichment and KEGG pathway analysis using 
the “clusterProfiler” package. Using the masked copy 
number segmentation data, we investigated the gene 
mutation frequency of different risk groups using the 
“maftool” package (gene alteration, variant classification, 
variant type, co-occurrence and mutually exclusive). 
 
Immune filtration, tumor microenvironment, and 
drug sensitivity analysis 
 
We assessed the difference in 16 immune cell-related 
infiltrating scores and 13 immune-related pathways 
between the high- and low-risk groups. Using the 
TCGA dataset, we calculated the immune and stromal 
estimate scores of the high- and low-risk groups using 
the R “estimate” package. To explore the correlation 
between small molecular drugs and the identified 
prognostic signature genes, Pearson correlation 
coefficients were calculated. |R|>0.25 and P < 0.05 were 
considered significantly correlated. 
 
Validation of HDAC genes in glioma and nontumor 
tissue 
 
To validate the expression of six HDAC genes, 
including the prognostic model (HDAC1, HDAC3, 
HDAC4, HDAC5, HDAC7, and HDAC9), we detected 
the expression of these HDAC genes in glioma and 
nontumor tissues. mRNA expression data were 
collected from 23 samples from epilepsy patients and 
157 tumor samples (GEO dataset). The tissue collection 
was approved by the NCI IRB committee, and informed 
consent was obtained from all subjects [15]. 
 
Statistical analysis 
 
Differentially expressed gene analysis was performed 
using the “limma” package. Differences for category 

variables were performed using the chi-square test. 
Comparisons of OS curves were achieved using the log-
rank test. One-way ANOVA was used to compare the 
differences in HDAC gene expression among nontumor 
and different grades of glioma. SNK methods were used 
for multiple comparisons. All statistical analyses were 
performed using R software 4.0.1, and P < 0.05 was 
considered significant. 
 
Data availability 
 
The TCGA data can be obtained from the 
https://portal.gdc.cancer.gov/, and CGGA data can be 
available from the Chinese Glioma Genome Atlas 
(http://www.cgga.org.cn/). Some data have been 
provided in the Supplementary Table 1. The 
expression levels of HDAC genes from non-tumor 
and glioma patients can be available from the GEO 
(GSE4290). 
 
Ethics approval 
 
The ethnic approval is granted because these data were 
from public database. 
 
RESULTS 
 
Identification of two subclasses in glioma 
 
A flow chart was constructed to comprehensively 
describe our study (Figure 1A). For 11 HDAC genes, the 
correlations among the HDAC members were different. 
HDAC6 and HDAC8 showed a positive association with 
other HDAC genes, while HDAC3 and HDAC4 showed 
a negative correlation with other HDAC genes 
(Figure 1B). We performed clustering analysis using 11 
HDAC genes (HDAC1-HDAC11). The consistency 
coefficient was calculated to achieve the optimal 
clustering number (K value), and k = 2 was finally 
selected as the optimal clustering number. The sharp and 
clear boundaries showed stable and robust clustering for 
glioma patients (Figure 1C). To validate the two 
subclasses, we further performed individual PCA and t-
SNE with decreased dimensions of features. We found 
that the glioma patients were well distributed into two 
components (Figure 1D and Supplementary Table 2, 
Cluster 1 and Cluster 2), and t-SNE also suggested that 
the samples presented a two-dimensional distribution 
model (Figure 1E). The Kaplan–Meier survival curve 
indicated that Cluster 2 had worse OS than Cluster 1 
(Figure 1F). The clustering group was also associated 
with some clinical parameters (age, sex, grade and 
survival outcomes). HDAC1, HDAC4, HDAC5, HDAC6 
and HDAC10 were highly expressed in Cluster 2, and 
HDAC1, HDAC2, HDAC3, HDAC7, and HDAC9 were 
significantly highly expressed in Cluster 1 (Figure 1G). 

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
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Development and validation of an HDAC gene 
prognostic model for glioma 
 
We first developed a prognostic model of OS in the 
TCGA training dataset. Univariate Cox regression 

indicated that high expression levels of HDAC1, 
HDAC3, HDAC7 and HDAC9 were associated with 
poor OS of glioma, and elevated expression levels of 
HDAC4, HDAC5, HDAC6 and HDAC11 were 
associated with a favorable prognosis of glioma (Figure 2A). 

 

 
 
Figure 1. Glioma patients can be separated into two subclasses using HDAC genes. (A) The flow chart of data analysis. (B) The 
correlation circle plot among eleven HDAC genes. (C) The consensus matrix plot identified the best grouping (k = 2). (D) Principal 
component analysis of glioma subclasses in the TCGA dataset. (E) The corrected t-SNE2 analysis for two subclasses. (F) The Kaplan-Meier 
survival curve for two subclasses in TCGA dataset. (G) The correlation of different clinical parameters and HDAC gens expressions with 
subclasses. 
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HDAC2, HDAC8 and HDAC10 seemed not to be related 
to prognosis. Furthermore, LASSO regression identified 
six HDAC genes (HDAC1, HDAC3, HDAC4, HDAC5, 
HDAC7 and HDAC9) that entered the final model 
(Figure 2B and 2C). The risk score of each sample was 
calculated according to the following formula: risk score 
= 0.179 × HDAC1 expression + 0.502 × HDAC3 
expression − 0.671 × HDAC4 expression − 0.567 × 
HDAC5 expression + 0.488 × HDAC7 expression + 
0.216 × HDAC9 expression (Supplementary Table 3). 
The glioma patients were categorized into a high-risk 
group and a low-risk group using the median risk score 
(−0.360). The Kaplan–Meier curve showed that the high-
risk group had a worse OS than the low-risk group (P < 
0.001, Figure 2D). The risk score and survival time were 
separately distributed (Figure 2E). PCA showed two 
obvious risk distribution patterns (Figure 2F). 
 
Patients from the CGGA dataset were used to validate 
the calculated risk score, and they were also separated 
into high- and low-risk groups according to the median 
calculated using the formula established in the TCGA 
training set. Similarly, survival analysis suggested that 
the high-risk group had a worse OS than the low-risk 
group (P < 0.001, Figure 2G), and the risk score and 
survival time were also visually scattered (Figure 2H). 
Likewise, PCA showed two-dimensional distribution 
patterns (Figure 2I). The AUCs of 1 year, 2 years and 3 
years were 0.873, 0.884 and 0.904 in the TCGA training 
set, respectively (Figure 2J). The AUCs of 1 year, 2 
years and 3 years were 0.705, 0.765, and 0.761, 
respectively, in the CGGA validation set (Figure 2K). 
 
Stratified analysis 
 
To further validate the prognostic model in different 
subgroups of glioma patients, we performed stratified 
analysis in different subpopulations. We found that low-
risk patients based on the risk score had prolonged OS 
compared with the high-risk group, which was not 
affected by age, sex, histology, occurrence type, IDH 
codeletion status, 1p19q mutation, previous history of 
radiotherapy or chemotherapy (Figure 3A–3F, Figure 
3H–3T). However, the OS showed insignificant 
differences for glioma patients with WHO grade II 
(Figure 3G), which means that the developed risk score 
may be inappropriate in such a subpopulation. 
 
Clinical correlation and independent analysis 
 
The analysis of expression differences indicated that all 
eleven HDAC genes showed significant differences 
between the two subclasses (Figure 4A). The chi-square 
test indicated that the high-risk patients tended to be 
GBM, WHO III/IV, older, re-occurrence or secondary, 
and have IDH mutation and 1p19q codeletion 

(P < 0.05). No significant differences between the high- 
and low-risk groups were observed for the radiotherapy 
ratio and sex ratio (P > 0.05, Figure 4B). 
 
We compared the expression levels of the six HDAC 
genes included in the prognostic model and found that 
HDAC1 (P < 0.001), HDAC3 (P < 0.001), HDAC7 (P 
< 0.001) and HDAC9 were highly expressed in the 
high-risk group, while HDAC4 (P < 0.001) and HDAC5 
(P < 0.001) were expressed at low levels in the high-
risk group (P < 0.001). Then, we compared the risk 
score differences among the different clinical 
parameters. Our results indicated that patients >41 years 
old, advanced WHO stage and higher grade had higher 
risk scores (P < 0.005, Figure 4C–4F). Patients with 
IDH mutation and 1p19q codeletion had lower risk 
scores (P < 0.05, Figure 4H and 4I). However, the risk 
score showed no significant differences among different 
sexes (Figure 4D), recurrent or secondary (Figure 4G), 
or radiotherapy status (Figure 4J). Patients who received 
chemotherapy also had higher risk scores than those 
without chemotherapy (Figure 4K). 
 
To investigate whether the risk score was an 
independent prognostic factor for glioma patients, we 
performed univariate and multivariate Cox regression in 
the TCGA training set and CGGA validation set. In the 
TCGA dataset, univariate and multivariate Cox 
regression analyses indicated that the risk score was 
associated with OS in glioma patients (univariate: HR = 
2.084, 95% CI: 1.890–2.297, P < 0.001, Figure 5A; 
multiple: HR = 1.425, 95% CI: 1.247–1.629, P < 0.001, 
Figure 5B). The ROC results showed that the risk score 
had optimal predictive ability (AUC = 0 .828) for 5-year 
OS (Figure 5C). Similarly, an elevated risk score was 
also associated with a poor OS (univariate: HR = 7.801 
95% CI: 5.887–10.338, P < 0.001, Figure 5D; multiple: 
HR = 2.184, 95% CI: 1.484–3.213, P < 0.001, Figure 
5E). The AUC was 0.808, which was higher than that of 
any of the other clinical parameters (Figure 5F). In 
addition, recurrence, advanced grade and age were also 
risk factors for poor OS, while patients who received 
chemotherapy and had IDH mutations and 1p19q 
codeletion had a favorable OS (Figure 5E). The 
calibration plots were presented in Figure 5G–5I. The 
Nomograph was shown in Figure 5J. 
 
Functional and pathway enrichment and mutation 
analyses 
 
To explore the functional and pathway enrichment of 
the high- and low-risk groups, we performed GO and 
KEGG analyses. We first identified genes differentially 
expressed between the high- and low-risk groups (log 
fold change >1, P < 0.05). We finally identified 2598 
differentially expressed genes, including 1723 
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Figure 2. Development and validation of prognostic model based on HDAC genes. (A) Forest plot of univariate cox regression for 
HDAC genes in glioma patients. (B) LASSO regression of the 11 OS-related HDAC genes. (C) Cross-validation for turning parameters selection 
in the LASSO regression. (D) Kaplan-Meier survival curve of high- and low-risk groups from developed prognostic model based on 6 HDAC 
genes in TCGA. (E) Distributions of risk scores and survival time of glioma patients in TCGA. (F) PCA plot for high- and low-risk group in 
TCGA. (G) Kaplan-Meier survival curve of high- and low-risk groups from validated prognostic model based on 6 HDAC genes in CGGA. (H) 
Distributions of risk scores and survival time of glioma patients in CGGA. (I) PCA plot for high- and low-risk group in CGGA. (J and K) The 
receiver operating characteristic curve for predicting 1-year, 2-year, and 3-year survival rate of glioma patients in TCGA and CGGA. 
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upregulated genes and 875 downregulated genes, in the 
high-risk groups (Supplementary Table 4). GO 
enrichment analysis indicated that the high-risk group 
was mainly enriched in immune-related functions in 
biological processes, collagen and lumen in cellular 
components, antigen binding, extracellular matrix 
structural constituents, regulators, receptors and 

inhibitor binding in molecular functions (Figure 6A). 
The KEGG pathway analysis showed that the high-risk 
group was involved in the PI3K-Akt signaling 
pathways, AGE-RAGE signaling, HIF-1 signaling, 
relaxin signaling, and p53 signaling. Focal adhesion, 
ECM-receptor and cytokine–cytokine receptor 
interactions, the cell cycle and pyrimidine metabolism

 

 
 
Figure 3. Stratified analyses of established HDAC-related genes prognostic model in TCGA. (A and B) Age (>41 vs. ≤41). (C and 
D) Gender (male vs. female). (E and F) Histology (LGG vs. GBM). (G–I) WHO stage (II, III and IV). (J–L) Type of tumors (Primary, secondary vs. 
recurrent). (M and N) 1p19q (Non-codel and codel). (O and P) mutant and wildtype. (Q and R) Radiotherapy (Yes vs. No). (S and T) 
Chemotherapy (Yes vs. No). 
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were also significantly enriched (Figure 6B). The 
occurrence of glioma requires the integration of 
multiple molecular functions and signaling pathways. 
 
We also explored the gene mutation differences 
between the high-risk and low-risk groups. Our results 

indicated that there were significant differences in gene 
mutations between the high- and low-risk groups. The 
high-risk group showed high gene alterations in EGFR, 
PTEN, FLG, and PKHD1 (Figure 7A), while the gene 
alteration rates of IDH, ATRX, and CIC were higher in 
the low-risk group than in the high-risk group 

 

 
 
Figure 4. Association between HDAC genes and clinical characteristics in glioma patients. (A) Heatmap indicated the expression 
of HDAC genes between two subclasses. (B) Heatmap of associations among risk stratifications and clinical parameters and six HDAC genes 
expression. Comparisons of risk score among different clinical parameters: (C) age (>41 vs. ≤41), (D) gender (male vs. female), (E) WHO 
stage (II, III, IV). (F) histology (LGG vs. GBM). (G) PRS type (primary, recurrent, and secondary). (H) IDH mutation status (mutant vs. wild 
type). (I) 1p19q codeletion status (codel vs. non-codel). (J) radiotherapy status (No vs. Yes). (K) chemotherapy (No vs. Yes). 
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(Figure 7B). The high- and low-risk groups showed 
similar results in variant classification, variant type, and 
SNV class (Figure 7C and 7D). Furthermore, HYDIN-
PI3CA, AHNAK2-SPTA1, COL6A3-PTEN, and IDH1-
TP53 showed high co-occurrence, and PTEN-TTN and 

IDH1-EGFR were mutually exclusive in the high-risk 
groups. SSPO-HMCN1, LRP2, NIPBL, MYH1-CIC, 
TTN, MUC16, APOB, RYR2, DNMT3A, NIPBL-
IDH2, APOB, NOTCH1, and LRP2 showed high co-
occurrence (Figure 7E). IDH2-TP53, PI3CA-TP53, and 

 

 
 
Figure 5. Independent prognosis analyses of HDAC-related genes model. (A and B) univariate and multivariate cox regression of 
risk score based on HDAC genes in TCGA. (C) The receiver operating characteristic curve of risk score for predicting 5-year survival rate in 
TCGA. (D and E) univariate and multivariate cox regression of risk score based on HDAC genes in CGGA. (F) The receiver operating 
characteristic curve of risk score for predicting 5-year survival rate in CGGA. (G–I) Calibration curves of 1-eyar, 3-year, and 5-year OS in 
TCGA. (J) Nomograph model established in CGGA cohort. 
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CIC-TP53 were mutually exclusive in the low-risk 
group (Figure 7F). 
 
Immune filtration, tumor microenvironment, and 
drug sensitivity analysis 
 
To explore the immune response difference between the 
high- and low-risk groups, we compared the immune 

filtration cells and immune-related pathways between 
the high- and low-risk groups. Our results indicated that 
aDCs, B cells, CD8+ T cells, iDCs, macrophages, NK 
cells, pDCs, T helper cells, Tfh cells, Th1 cells, Th2 
cells, TILs, and Tregs had higher proportions in the 
high-risk group, while no significant differences were 
observed for DCs, mast cells or neutrophils (Figure 8A). 
All immune-related pathways were highly enriched in 

 

 
 

Figure 6. GO enrichment (A) and KEGG pathways analysis (B) based on differently expressed genes between high- and low risk groups. 
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the high-risk group (Figure 8B). We also found that 
the ESTIMATE score, immune score, and stromal 
score were higher in the high-risk group than in the 
low-risk group (Figure 8C–8E). Pearson correlation 
analysis indicated that M0, M1, and M2 
macrophages showed positive associations with the 
risk score (Figure 8F, 8I, and 8J), while monocytes, 
activated NK cells, and activated mast cells showed 
negative associations with the risk score (Figure 8G–

8K). We also identified some small molecule 
compounds that may guide chemotherapy for glioma 
(Figure 9). 
 
Validation of HDAC genes in glioma and nontumor 
tissue 
 
qPCR was adopted to detect the expression of HDAC1, 
HDAC3, HDAC4, HDAC5, HDAC7 and HDCA9 in 

 

 
 
Figure 7. Landscape of mutation profiles between high- and low-risk groups. (A and B) Waterfall plots of mutation information in 
each sample. (C and D) Bar graph of variant classification. (E and F) somatic interactions plot (co-occurrence and exclusive). 
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nontumor and glioma tissues. The results are presented 
in Figure 10. The expression levels of HDAC1 (Figure 
10A), HDAC3 (Figure 10B), HDAC7 (Figure 10E), and 
HDAC9 (Figure 10F) were significantly elevated in the 

glioma patients compared with the nontumor group. 
However, the expression levels of HDAC4 and HDAC5 
were lower in the glioma patients than in the nontumor 
control groups (Figure 10C and 10D). This result is 

 

 
 
Figure 8. Immune status analysis between high- and low-risk group. (A) The ssGSEA scores of immune cells. (B) The ssGSEA scores 
of immune-related functions. (C–E) Comparisons of Estimated, immune and stromal score between high-and low-risk group. (F–K) 
Correlation between risk score and immune markers (Macrophages M0, Monocytes, NK cells activated, Macrophages M1, M2, and Mast 
cells activated) in glioma patients. 
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consistent with the role of these HDAC genes in glioma 
prognosis. 
 
DISCUSSION 
 
HDACs, as key enzymes that catalyze the acetylation of 
histones, are involved in many processes, such as the 
growth and proliferation of malignant tumor cells and 
gene expression regulation [16]. Epigenetic research on 
tumor occurrence and development has gradually 
attracted wide academic attention worldwide. Most of 
the current research focuses on the chemical and 
structural modification of the existing antitumor drugs 

with HDAC inhibitory activity to enhance the 
therapeutic effect of the drugs and alleviate their 
toxicity and side effects [17]. There are currently few 
antitumor drugs designed to act on specific targets and 
specific pathways. At the same time, it is essential to 
explore the molecular signatures for a better 
understanding of the biological relationship between 
tumor genotype and phenotypes. 
 
In the present study, we found that glioma patients can 
be divided into two subclasses based on the expression 
patterns of eleven HDAC genes, and patients from the 
two subclasses had markedly different survival 

 

 
 

Figure 9. Top 16 kinds of drug associated with HDAC member. 
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outcomes. Then, using six HDAC genes (HDAC1, 
HDAC3, HDAC4, HDAC5, HDAC7, and HDAC9), we 
established a prognostic model for glioma patients, and 
this prognostic model was validated in an independent 
cohort population. Furthermore, the calculated risk 
score from the expression of the six HDACA genes was 
found to be an independent prognostic factor, able to 
accurately predict the five-year overall survival of 

glioma patients. High-risk patients can be attributed to 
changes in multiple complex functions and molecular 
signaling pathways, and the gene alterations between 
high- and low-risk patients were significantly different. 
We also found that different survival outcomes of high- 
and low-risk patients could be involved in the 
differences in immune filtration levels and the tumor 
microenvironment. Subsequently, we identified several 

 

 
 
Figure 10. Expression of HDAC genes in glioma and non-tumor tissue. (A) HDAC1, (B) HDAC3, (C) HDAC4, (D) HDAC5, (E) HDAC7, (F) 
HDAC9. 
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small molecular compounds that could be favorable for 
glioma patient treatment. Finally, we validated the 
expression levels of HDAC genes from the prognostic 
model using glioma and nontumor tissue samples. Our 
study provides new and simple molecular subtypes and 
prognostic prediction methods and adds to our 
understanding of the biology and molecular 
mechanisms of glioma. 
 
We included six HDAC genes in the established 
prognostic model. HDAC1 and HDAC3 are Class I 
HDACs. Previous studies have indicated that HDAC1 is 
overexpressed in diverse human malignancies, such as 
prostate cancer, breast cancer, liver cancer, and lung 
cancer [18–21]. HDAC1 is also highly expressed in 
glioma tissue, and high expression of glioma is 
associated with glioma cell proliferation, migration, 
invasion, angiogenesis, and a poor prognosis [22]. In 
addition, has been suggested that increased activation of 
HDAC1/2/6 and Sp1 underlies therapeutic resistance 
and tumor growth in glioblastoma [23]. We also found 
that the expression of HDAC1 was elevated in glioma 
tissues and was associated with a poor prognosis. 
 
HDAC3 has become a focus of recent research, and 
many scholars worldwide have found that it plays a role 
in carcinogenesis in human tumors. After the expression 
of HDAC3 is reduced by inhibitors, the growth and 
invasive abilities of human glioma cells are 
significantly weakened, which provides a new target for 
cancer treatment [24].  
 
HDAC4, HDAC5, HDAC7, and HDAC9 are Class II 
HDACs [25]. HDAC4 is frequently dysregulated in 
human malignancies, and we also confirmed its 
downregulated expression in glioma tissues. However, 
previous studies reported that HDAC4 was significantly 
upregulated in glioma tissues. The proliferation, 
adenosine triphosphate (ATP) levels and invasion 
ability were substantially enhanced in U251 cells with 
HDAC4 overexpression and suppressed in U251 cells 
with HDAC4 knockdown compared with U251 cells 
transfected with a negative control [26, 27]. This may 
be associated with glioma grade, stage and histology, 
and further research is needed. Similar to HDAC4, 
HDAC5 was also found to be expressed at low levels in 
glioma tissue. 
 
HDAC7 plays an oncogene role in glioma. It was 
reported that ZNF326 could activate HDAC7 
transcription by binding to a specific promoter region 
via its transcriptional activation domain and zinc-finger 
structures in glioma cells [28]. Furthermore, ZNF326 
was not only highly expressed in glioma but was also 
positively correlated with the expression of HDAC7, 
which identified the oncogenic role of HDAC7 [29].  

HDAC9, like most class II HDACs, has a conserved 
histone deacetylase domain, catalyzes the removal of 
acetyl moieties from the N-terminal tail of histones, and 
possesses a long regulatory N-terminal domain that 
interacts with tissue-specific transcription factors and 
corepressors. The amino-terminal domain contains highly 
conserved serine residues that are subjected to 
phosphorylation [30]. Signal-dependent phosphorylation 
of HDAC9 is a critical event that determines whether it is 
localized in the cytoplasm or nucleus. High HDAC9 
expression has been reported in many cancers [31–33]. In 
glioma, the high expression of HDAC9 can promote 
proliferation and tumor formation and accelerate the cell 
cycle in part by potentiating EGFR signaling pathways 
[34]. 
 
With the emerging and rapid development of disciplines 
such as structural biomechanics and computer-aided 
drug design, the development of new HDAC inhibitors 
with antitumor activity targeting HDACs is bound to 
have a very broad application space and developmental 
prospects. 
 
We noticed that a recent study also evaluated the role of 
HDCA genes in glioma [35]. There are several marked 
differences between our study and their study. (1) We 
used HDAC genes for clustering glioma and found that 
two clusters were obtained. Then, we developed and 
validated a prognostic model using the CGGA and 
TCGA datasets, evaluated the correlations among the 
risk score, immune infiltration and clinical 
characteristics, and established a tool for evaluating the 
prognosis of individuals. We also evaluated the gene 
alterations and different functional and pathway 
enrichment between the two risk groups. Finally, we 
validated the expression of the HDAC genes in the 
GEO dataset. These analyses were not performed in 
Li’s study in 2022. Li’s study evaluated the expression 
differences of HDAC genes between tumor and normal 
tissues and the correlation of each individual HDAC 
gene with the prognosis, quite different from our study. 
 
The present study has several limitations. One is that the 
established model needs to be validated in other 
cohorts. The other limitation is that we did not explore 
the specific molecular mechanism of this model in 
glioma, and some results need to be verified in vitro and 
in vivo. 
 
In summary, our results reveal the clinical utility and 
potential molecular mechanisms of HDAC genes in 
glioma. A model based on six HDAC genes (HDAC1, 
HDAC3, HDAC4, HDAC5, HDAC7, and HDAC9) can 
predict the overall survival of glioma patients well and 
these genes are potential therapeutic targets. Future 
research should validate this model in a large cohort, 
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and experiments in vivo and in vitro will improve our 
understanding of the molecular mechanisms of glioma. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
 
Please browse Full Text version to see the data of Supplementary Tables 1 to 2. 
 
Supplementary Table 1. The used data source of TCGA and CGGA. 

 
Supplementary Table 2. Clustering of glioma based on 11 HDAC genes in TCGA. 

 
Supplementary Table 3. Coefficient of HDAC in the included model. 

Gene Coefficient  HR 
HDAC9 0.215663405 1.240685 
HDAC7 0.487987014 1.629034 
HDAC5 −0.567053902 0.567194 
HDAC4 −0.670958585 0.511218 
HDAC3 0.502378317 1.652647 
HDAC1 0.179033415 1.196061 

 
 
Please browse Full Text version to see the data of Supplementary Table 4. 
 
Supplementary Table 4. Differential expressed genes between high-and low-risk group. 

 


