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INTRODUCTION 
 
Coronary artery disease (CAD) is a ubiquitous chronic 
heart disease involving the deposition and build-up of 
atherosclerotic plaques in the coronary artery, leading to 
a gradual constriction of the vascular lumen and 
compromised myocardial perfusion [1]. CAD manifests 
in several different ways, including acute myocardial 
infarction (AMI), unstable and stable angina, ischemic 

cardiomyopathy and even sudden cardiac death [2]. The 
advent of emergency percutaneous coronary 
intervention (PCI), which rapidly restores cardiac 
perfusion, has resulted in a tremendously improved 
prognosis for patients with AMI. Nevertheless, AMI is 
still the main cause of death in patients with CAD 
worldwide. AMI is responsible for significant patient 
morbidity and mortality, especially in China, where 
these rates have been increasing annually [3, 4]. 
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ABSTRACT 
 
Despite the well-established role of long non-coding RNAs (lncRNAs) across various biological processes, their 
mechanisms in acute myocardial infarction (AMI) are not fully elucidated. The GSE34198 dataset from the 
Gene Expression Omnibus (GEO) database, which comprised 49 specimens from individuals with AMI and 47 
specimens from controls, was extracted and analysed using the weighted gene co-expression network 
analysis (WGCNA) package. Twenty-seven key genes were identified through a combination of the degree 
and gene significance (GS) values, and the CDC42 (degree = 64), JAK2 (degree = 41), and CHUK (degree = 30) 
genes were identified as having the top three-degree values among the 27 genes. Potential interactions 
between lncRNA, miRNAs and mRNAs were predicted using the starBase V3.0 database, and a lncRNA-
miRNA-mRNA triple network containing the lncRNA XIST, twenty-one miRNAs and three hub genes (CDC42, 
JAK2 and CHUK) was identified. RT–qPCR validation showed that the expression of the JAK2 and CDC42 genes 
and the lncRNA XIST was noticeably increased in samples from patients with AMI compared to normal 
samples. Pearson’s correlation analysis also proved that JAK2 and CDC42 expression levels correlated 
positively with lncRNA XIST expression levels. The area under ROC curve (AUC) of lncRNA XIST was 0.886, and 
the diagnostic efficacy of the lncRNA XIST was significantly better than that of JAK2 and CDC42. The results 
suggested that the lncRNA XIST appears to be a risk factor for AMI likely through its ability to regulate JAK2 
and CDC42 gene expressions, and it is expected to be a novel and reliable biomarker for the diagnosis of AMI. 
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Epidemiological studies related to AMI have shown that 
male sex, hyperlipidaemia, smoking, stress, diabetes, 
hypertension, age, obesity, family history and a 
sedentary lifestyle all culminate in the development of 
AMI [5]. Recent research has focused on identifying 
gene-based prognostic and therapeutic markers for AMI 
to circumvent the daunting challenge of managing 
patients with AMI. Interest in gene sequencing 
technology has increased, because it allows clinicians to 
obtain deeper insights into the relationship between 
genes and diseases [6, 7]. 
 
Several compelling studies have proposed that several 
noncoding RNAs (ncRNAs) are intricately involved in 
multiple biological functions and possess critical 
functions in the occurrence and development of diseases 
[8, 9]. Based on transcript length, noncoding RNAs are 
functionally grouped into two specific subtypes: (1) 
long ncRNAs (lncRNAs) (> 200 nt), which comprise 
long intergenic ncRNAs (lincRNAs), natural antisense 
transcripts, transcribed ultra-conserved regions, and 
enhancer-like ncRNAs; and (2) short ncRNAs (< 200 
nt), which comprise PIWI-interacting RNAs, 
microRNAs, and transcription initiation RNAs [10, 11]. 
Unlike highly conserved short ncRNAs, whose function 
is essentially to participate in posttranscriptional 
modification, lncRNAs are less well conserved but are 
implicated in several physiological processes [12, 13]. 
 
Recent studies have proposed the essential role of 
lncRNAs in cardiovascular diseases [14]. Wang et al. 
confirmed that a lncRNA cardiac and apoptosis-
related RNA (CARL), which has previously been 
associated with cardiomyocyte apoptosis, functions as 
a miR-539 molecular sponge, leading to inhibited 
mitochondrial division and apoptosis by stimulating 
PHB2 gene function [15]. In addition, the lncRNA 
wisp2 super enhancer related RNA (Wisper) 
stimulates myocardial fibrosis after myocardial 
infarction [16]. More importantly, several regulatory 
networks between lncRNAs and microRNAs 
(miRNAs) have recently been documented, providing 
insights into the exact functions of noncoding RNAs 
and their potential as molecular targets when 
developing therapeutic modalities for certain illnesses 
[17, 18]. Therefore, in this study, a scale-free network 
was constructed using weighted gene co-expression 
network analysis (WGCNA) [19], followed by a 
modularized analysis on the scale-free network and 
in-depth scrutinization of the correlations between 
modules, phenotypes and clinical data. Finally, hub 
genes requiring further study were identified among 
the genes that were significantly associated with 
phenotypes present in the meaningful modules. 
Furthermore, using data extracted from the starBase 
V3.0 database, we examined several miRNAs and 

lncRNAs that may target the identified hub genes and 
constructed a lncRNA-miRNA-mRNA triple network 
to identify specific lncRNAs that may have potential 
as sensitive and specific AMI biomarkers. 
 
RESULTS 
 
Data preprocessing 
 
Data were first processed by standardizing data formats, 
adding missing values and removing outliers. A total of 
24580 gene symbols were detected in 97 samples. The 
co-expression network was constructed by selecting the 
top 25% of genes (6145) with a large variance in 
expression levels. Gene expression profiles of 6145 genes 
and clinical characteristics of the samples are described 
in detail in Supplementary Tables 2, 3. 
 
Weighted gene co-expression networks 
 
After calculation, we discovered that a correlation 
coefficient greater than 0.8 (the soft threshold of β is 10) 
was highly correlated and suitable for the construction of 
various gene modules (Figure 1A). A topological overlap 
matrix (TOM) was constructed by calculating the 
correlation and adjacency matrices of gene expression 
profiles. The gene cluster tree is depicted in Figure 1B. 
We then sought to identify the gene modules of each 
gene network using the hierarchical average linkage 
clustering method combined with TOM. Figure 1C 
depicts the heatmap. The dynamic tree cut algorithm 
identified ten gene modules (Figure 1D). 
 
Determining modules of interest 
 
Modules closely related to clinical features often have 
important and specific biological significance. As 
shown in Figure 2, the turquoise module appeared to be 
highly correlated with BMI (r 2 = 0.33, P = 9e-04). An 
in-depth calculation was performed to discern the 
association between the colour module and gene 
significance (GS). Figure 3A shows that the association 
between the turquoise module and gene significance 
was 0.45 (P = 9.1E-51). All gene symbols in the 
turquoise module and their GS values and 
corresponding P values are described in detail in 
Supplementary Table 4.  
 
Module preservation test 
 
Gene expression profiles of patients with AMI were 
subjected to a preservation analysis. We identified one 
strong module and two moderately preserved modules 
between patients with AMI and control subjects 
(Supplementary Figure 1). Both Zsummary and 
medianRank statistical results were consistent, 
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suggesting that the preservation analysis was not 
affected by the size of the module. The turquoise 
module was noted to be highly preserved, while the 
yellow and blue modules were moderately preserved. 
These interesting findings suggested the presence of 
significant variabilities in the gene expression patterns 
between the AMI and control groups. 
 
Enrichment analysis of interesting modules 
 
KEGG pathway and GO enrichment analyses of genes 
in the turquoise module were performed to dissect 
their physiological purposes functions. Figure 4A 
depicts the KEGG signalling pathways, and the 
biological process, cytological component and 
molecular function are shown in Figure 4B–4D. Nine 
hundred ninety-five genes in the turquoise module 
were primarily enriched in the following potentially 
AMI-related inflammatory pathways: hsa05152: 

tuberculosis; hsa04668: TNF signalling pathway; 
hsa05161: hepatitis B; hsa04068: FoxO signalling 
pathway; hsa04660: T cell receptor signalling 
pathway; hsa04620: Toll-like receptor signalling 
pathway; hsa04064: NF-kappa B signalling pathway; 
hsa04662: B cell receptor signalling pathway; 
hsa05132: Salmonella infection; hsa04666: Fc gamma 
R-mediated phagocytosis; hsa04932: nonalcoholic 
fatty liver disease; hsa05164: influenza A; and 
hsa04621: NOD-like receptor signalling pathway. The 
details of these analyses are also presented in 
Supplementary Tables 5, 6. 
 
Construction of a PPI network and identification of 
hub genes 
 
Nine hundred ninety-five genes in the turquoise module 
were used to build the PPI network. As shown in Figure 
5A, a PPI network consisting of 936 nodes and 4107 

 

 
 

Figure 1. Weighted gene co-expression network analysis. (A) Analysis of network topology for various soft-thresholding powers. (B) 
Heatmap of the topological overlap in the gene network. (C) Relationship among all the modules. (D) Clustering dendrogram of genes. Gene 
clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity. 
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edges was built using the STRING tool. In addition, a 
PPI network of genes with the top 100-degree values is 
depicted in Figure 5B to better show the interaction 
between key genes and other genes. We noticed that the 

JAK2, CDC42 and CHUK genes are widely associated 
with other genes. The gene degree values were 
calculated using the Cytohubba plug-in in Cytoscape 
software, and gene degree values ≥ 5 are also shown in 

 

 
 

Figure 2. Module-feature associations. Each row corresponds to a modulEigengene and the column to the clinical phenotype. Each cell 
contains the corresponding correlation in the first line and the P-value in the second line. The table is color-coded by correlation according to 
the color legend. 
 

 
 

Figure 3. (A) Association between gene significance and module membership. Scatterplot shows a highly significant correlation between 
gene significant (GS) versus module membership (MM) with AMI in the turquoise module. (B) key genes with top 50 GS values and they 
degree values ≥ 5 were defined by Venn diagram. 
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Supplementary Table 7. As shown in Figure 3B and 
Supplementary Table 8, 27 genes with the top 50 GS 
values and degree values ≥ 5 were defined as key genes, 
and the CDC42 (degree = 64), JAK2 (degree = 41), and 
CHUK (degree = 30) genes were identified as having 
the top three-degree values among the 27 genes. Then, 
combined with GO and KEGG analysis results, we 
noticed that the JAK2, CDC42 and CHUK genes are 
involved in the signalling pathways and biological 
processes related to AMI; therefore, the JAK2, CDC42 
and CHUK genes were selected as hub genes for further 
research. 
 
Construction of the lncRNA-miRNA-mRNA 
regulatory network 
 
First, we identified lncRNAs that may potentially target 
the JAK2, CDC42 and CHUK genes based on 
information obtained from the starBase database. As 
shown in Supplementary Table 9, only one lncRNA, 
XIST was identified that might represent a common 
lncRNA forming ceRNA networks with both the JAK2 
and CDC42 genes. As shown in Supplementary Tables 
10, 11, we predicted miRNAs that potentially bind to 
the JAK2, CDC42, and CHUK genes and the lncRNA 
XIST. One hundred miRNAs bound to JAK2; 178 
miRNAs bound to CDC42; 150 miRNAs bound to 
CHUK; and 454 miRNAs bound to the lncRNA XIST. 
As shown in Figure 6A, 21 common miRNAs 
(Supplementary Table 12) bound to the JAK2, CDC42, 
and CHUK genes and the lncRNA XIST simultaneously. 
Using this information, we built a lncRNA-miRNA-
mRNA network that was visualized using Cytoscape 
software (version 3.71) (Figure 6B). 
 
Validation analysis using RT–qPCR and Pearson’s 
correlation analysis 
 
Figure 7A depicts the RT–qPCR results of the relative 
expression levels of the JAK2 and CDC42 genes and the 
lncRNA XIST, which were significantly increased in 
patients with AMI compared to healthy controls. 
Meanwhile, a Pearson correlation analysis found that 
the expression levels of JAK2 (Figure 7B, R = 0.83, P < 
2.2E-16) and CDC42 (Figure 7C, R = 0.80, P < 2.2E-
16) were positively correlated with the lncRNA XIST 
levels. Conversely, little association was observed 
between the expression levels of the CHUK gene 
(Figure 7D, R = 0.32, P = 1.7E-07) and that of the 
lncRNA XIST. 
 
ROC curve for patients with AMI 
 
The predictive values of the lncRNA XIST, JAK2, 
CDC42 and CHUK for the diagnosis of AMI were 
investigated using a ROC curve analysis. The AUC 

values for the lncRNA XIST (Figure 8A), JAK2  
(Figure 8B), CDC42 (Figure 8C) and CHUK (Figure 
8D) were 0.886 (95% CI 0.885–0.913; P = 0.0163) with 
a cut-off value of 0.772, a sensitivity of 94.8% and a 
specificity of 82.4%, 0.706 (95% CI 0.664-0.746; P < 
0.001) with a cut-off value of 0.560, a sensitivity of 
78.7% and a specificity of 77.3%, 0.692 (95% CI 
0.649–0.732; P < 0.001) with a cut-off value of 0.548, a 
sensitivity of 74.5% and a specificity of 80.3%, and 
0.542 (95% CI 0.492-0.593; P = 0.157) with a cut-off 
value of 0.163, a sensitivity of 43.8% and a specificity 
of 72.5%, respectively. As shown in Figure 8E, 8F, we 
noticed that the diagnostic efficacy of the lncRNA XIST 
was significantly better than that of JAK2, CDC42 and 
CHUK, and the diagnostic efficacy of JAK2 and CDC42 
was significantly better than that of CHUK. However, 
neither JAK2 nor CDC42 differed significantly in terms 
of diagnostic efficacy. 
 
Demographic and biochemical characteristics 
 
Neither patients with AMI nor individuals in the control 
group differed significantly in terms of weight, age, 
heart rate, pulse pressure, uric acid level, height, sex 
ratio, BMI or proportion of alcohol consumers  
(Table 1). Patients with AMI were more likely to smoke 
and have higher glucose levels, systolic and diastolic 
blood pressures, weight, serum low-density lipoprotein 
cholesterol (LDL-C), apolipoprotein (Apo) B, 
triglyceride (TG) and total cholesterol (TC) levels, 
creatinine levels, cardiac troponin T (cTnT) levels, body 
mass index (BMI) and creatine kinase (CK) and CK-
MB levels than healthy participants. Patients in the 
control group had markedly increased ApoA1/ApoB 
ratios, ApoA1 levels and serum high-density lipoprotein 
cholesterol (HDL-C) levels. 
 
DISCUSSION 
 
Ischemic cardiovascular disease is the primary 
contributor to global disability and death, despite the 
vast number of innovative therapeutic and diagnostic 
methods that have been developed in the last 10 years. 
In fact, studies predict a steady increase in the number 
of patients who will experience ischemic cardiovascular 
diseases, particularly AMI [20]. A reliable method of 
identifying early stages of AMI is needed to ensure that 
patients receive the best and most appropriate treatment, 
as well as a better prognosis. Although the measurement 
of traditionally available biomarkers associated with 
myocardial injury, such as CK-MB and cTnI/T, has 
significantly improved the rates and speed of AMI 
diagnosis, these markers are not sufficiently specific. 
Interestingly, AMI is characterized by a heterogeneous 
genetic profile, suggesting that AMI development and 
occurrence may rely heavily on the expression 
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Figure 4. GO functional and KEGG pathway enrichment analyses for genes in the object module. The x-axis shows the number of 
genes and the y-axis shows the GO and KEGG pathway terms. The -log10 (P-value) of each term is colored according to the legend. (A) KEGG 
pathway. (B) Biological process. (C) Cytological component. (D) Molecular function. 
 

 
 

Figure 5. PPI network construction and identification of hub genes. (A) PPI network of genes in turquoise module. The edge shows 
the interaction between two genes. (B) PPI network of genes with top 100-degree values. 
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of various genes [21]. Thus, further exploration of AMI-
related genetic markers may provide opportunities for 
the creation of more effective preventive, diagnostic and 
therapeutic methods for treating AMI. 
 
A number of recent studies have shown that the 
occurrence of CAD results from the interaction of 
multiple factors, such as alterations in blood lipid 
levels, an unhealthy lifestyle, environmental factors 
and genetic background [22, 23]. As the pathological 
basis of CAD, atherosclerosis results from abnormal 
lipid metabolism and chronic inflammation [24, 25]. 
According to a recent study, inflammatory or immune-
related genes such as intercellular adhesion molecule 1 
(ICAM1), transmembrane immune signaling adaptor 
TYROBP (TYROBP), integrin subunit alpha M 
(ITGAM) and cathelicidin antimicrobial peptide 
(CAMP) are strongly associated with CAD [26]. 
Similarly, immune- and inflammation-related genes 
and biological processes have been reported to play 
crucial roles in cardiac injury and repair, and together 
with the activation of innate and adaptive immune 
responses, have been suggested to be the hallmarks of 
myocardial infarction (MI). As reported in previous 
studies, the Janus kinase/signal transducer and activator 
of transcription (JAK/STAT) signal pathway is 
required for the development of atherosclerosis [27–
29]. Yang et al. reported that ruxolitinib, a JAK2-
specific inhibitor, reduces the size of atherosclerotic 
plaques by inhibiting the JAK2/STAT3/SOCS3 signal 
pathway [30]. As shown in the study by Zhang et al. 

oncostatin M receptor β (OSMR-β) deficiency 
effectively delays the development of atherosclerosis 
and improves the stability of vulnerable plaques by 
suppressing the JAK2/STAT3 signal pathway, thereby 
reducing the incidence of AMI and ischemic stroke 
[31]. Moreover, Desai HR et al. also described a crucial 
role for JAK2 in the pathogenesis of obesity-related 
inflammatory reactions and insulin resistance, and 
JAK2 deficiency reduces inflammation in the liver and 
visceral adipose tissue in response to metabolic stress, 
increases insulin sensitivity and attenuates insulin 
resistance [32]. Geng et al. suggested that fibronectin 
type III domain containing 5 (FNDC5) alleviates 
obesity-induced cardiac hypertrophy by inhibiting 
JAK2/STAT3-related cardiac inflammation and 
oxidative stress [33]. Similarly, in the current study, we 
noticed that the turquoise module was strongly 
correlated with BMI (r 2 = 0.33, P = 9e-04). 
Meanwhile, as a key gene in the module, the expression 
levels of JAK2 were significantly higher in patients 
suffering from AMI than in control subjects, however, 
whether JAK2 could affect the pathogenesis of AMI by 
mediating insulin resistance and obesity remains 
unclear, and further experiments are needed to clarify 
this mechanism.  
 
Vascular inflammation promotes the occurrence and 
development of atherosclerosis by accelerating the 
senescence of vascular endothelial cells. CDC42, as a 
member of the Rho GTPase family, plays a key role in 
response to pathological and physiological stimulation 

 

 
 

Figure 6. (A) Several common miRNAs that target JAK2, CDC42, and CHUK genes and lncRNA XIST were identified by Venn diagram. (B) A 
lncRNA-miRNA-mRNA ceRNA network that contained one lncRNA XIST, 21 miRNAs and 3 mRNAs (JAK2, CDC42 and CHUK). Edge stands for 
the interaction between two items. 
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[34, 35]. Takashi K. Ito et al. revealed that the CDC42 
pathway contributes significantly to chronic 
inflammation related to endothelial cell senescence, and 
endothelial-specific deletion of CDC42 markedly 
relieves the endothelial inflammatory response and the 
progression of atherosclerosis in atherosclerotic mice 
[36]. Raut SK et al. revealed that the miR-30c-induced 
increase in CDC42 levels promotes diabetes-related 
myocardial injury and hypertrophy [37]. Inhibition of 
CDC42 expression effectively alleviates myocardial 
fibrosis and hypertrophy in patients with salt-sensitive 

hypertension [38]. Moreover, Liu et al. revealed that 
CDC42 levels are noticeably increased in the 
myocardium near areas of myocardial infarction, and 
inhibition of the expression and activity of the CDC42 
protein effectively reduces myocardial fibrosis after 
myocardial infarction in mice [39]. Recent studies have 
identified a crucial role for CDC42 in the progression of 
diabetes and diabetes-associated diseases, such as 
insulin resistance and diabetic nephropathy [35]. 
Similarly, in the current study, we also noticed 
significantly higher CDC42 expression in patients 

 

 
 

Figure 7. (A) The relative expression levels of JAK2, CDC42, CHUK genes and lncRNA XIST between healthy controls and AMI 
samples. The correlation between the expression levels of lncRNA XIST and JAK2 (B), CDC42 (C) and CHUK (D) genes that were 
analyzed by Pearson correlation analysis. 
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suffering from AMI than in control subjects. However, 
additional studies are needed to confirm whether 
CDC42 affects the pathogenesis of AMI by mediating 
insulin resistance, diabetes, obesity and other processes. 
 
Recently, lncRNAs have been repeatedly reported to be 
crucial modulators of the genome regulatory network 
and exert a significant effect on disease development 
[40, 41]. Transcriptome studies have noted that lncRNA 
expression patterns are highly cell- and tissue-specific, 
indicating that the disease prognosis may be predicted 
by assessing these patterns [42]. Previous research has 
described the involvement of lncRNAs in fundamental 
biological phenomena, including gene transcription, 
RNA processing, chromatin modification, gene 
regulation and posttranscriptional gene regulation [43]. 
Several meaningful lncRNAs that may exert regulatory 
effects on the progression of cardiovascular diseases 
(CVDs), such as cardiac hypertrophy, myocardial 
infarction and cardiovascular ageing, have been 
characterized [44, 45]. Zangrando et al. found that up to 
30 lncRNAs are differentially expressed in AMI mouse 

models exhibiting left ventricular remodelling [46]. 
Another compelling study based on a microarray 
analysis identified 545 deregulated lncRNAs involved 
in myocardial fibrosis induced after MI [47]. Recently, 
lncRNA-miRNA-mRNA ceRNA networks have been 
utilized to explore the functional roles of lncRNAs in 
AMI and were successful in identifying key lncRNAs 
involved in AMI [48–50], further emphasizing the 
potential of lncRNAs as biomarkers for the early 
diagnosis of AMI. However, the exact lncRNAs that 
hold this potential remain to be clarified. 
 
Previous research suggested that the lncRNA XIST (X-
inactive specific transcript, encoded by the XIST gene) is 
the cornerstone of mammalian X inactivation [51]. Based 
on accumulating evidence, the lncRNA XIST is important 
in genome maintenance, cell differentiation and 
proliferation [52, 53]. Liang et al. found that the 
downregulation of the lncRNA XIST and miR-7a-5P 
attenuate LPS-induced myocardial apoptosis in a mouse 
model of sepsis [54]. Similarly, Wang et al. described the 
involvement of the lncRNA XIST/miR-150-5p/c-Fos axis 

 

 
 

Figure 8. ROC curve analyses of one lncRNA and three genes for the diagnosis of AMI. (A–D) ROC curve analysis of lncRNA XIST, 
JAK2, CDC42 and CHUK genes. (E, F) The pairwise P-value comparison. 
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Table 1. Comparison of demographic, lifestyle characteristics and serum lipid levels of the participants. 

Characteristic Control (n=240) AMI 
(n=260) Test-statistic P 

Male/female c 176/64 187/73 0.125 0.724 
Age (years) a 53.7±11.72 53.45±9.15 1.931 0.486 
Height (cm) a 164.28±7.5 164.99±6.81 1.795 0.690 
Weight (kg) a 59.90±9.10 60.26±10.11 4.882 0.229 
BMI (kg/m²) a 22.31±3.84 22.09±3.34 3.498 0.352 
Smoking [n (%)] c 79(32.9) 108 (41.5) 3.962 0.047 
Alcohol [n (%)] c 64(26.7) 68(26.2) 0.017 0.897 
SBP (mmHg) a 131.05±19.01 136.67±22.16 9.069 0.002 
DBP (mmHg) a 80.01±11.99 82.90±13.35 7.193 0.018 
PP (mmHg) a 51.06±14.2 53.77±19.62 3.881 0.057 
Glu (mmol/L) a 6.05±1.57 6.45±1.76 8.646 0.009 
TC (mmol/L) a 4.49±1.00 4.82±1.11 11.884 2.37E-4 
TG (mmol/L) b 1.04(0.75) 1.43(0.64) -2.076 0.038 
HDL-C (mmol/L) a 1.65±0.47 1.13±0.30 20.739 1.2035E-40 
LDL-C (mmol/L) a 2.78±0.98 3.06±1.01 9.033 0.004 
ApoA1 (g/L) a 1.42±0.33 0.98±0.29 22.261 5.7606E-43 
ApoB (g/L) a 0.88±0.20 0.96±0.26 17.308 1.1219E-31 
ApoA1/ApoB a 1.67±0.51 1.11±0.47 10.151 0.001 
Heart rate (beats/minutes) a 72.90±9.58 73.67±7.54 3.807 0.322 
Creatinine, (μmol/L) a 70.54±12.54 76.67±13.77 12.923 2.99E-7 
Uric acid, (μmol/L) a 270.50±74.82 280.40±78.24 5.191 0.149 
Troponin T, (μg/L) a 0.05±0.03 3.46±1.86 142.39 1.67E-76 
CK, (U/L) a 77.95±41.61 1094.10±561.61 289.76 3.23E-139 
CK-MB, (U/L) a 12.39±2.42 125.46±49.06 202.91 4.04E-104 

SBP, Systolic blood pressure; DBP, Diastolic blood pressure; PP, Pulse pressure; Glu, Glucose; HDL-C, high-density 
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo, Apolipoprotein; TC, Total cholesterol; TG, 
Triglyceride; CK, creatine kinase, CK-MB, creatine kinase-myocardial band. 
aMean ± SD determined by t-test. 
bMedian (interquartile range) tested by the Wilcoxon-Mann-Whitney test. 
cThe rate or constituent ratio between the different groups was analyzed by the chi-square test. 

 

in LPS-induced myocardial injury, and the knockdown 
of the lncRNA XIST alleviates LPS-induced myocardial 
injury [55]. Peng et al. also found that the lncRNA XIST 
attenuates hypoxia-induced H9c2 cardiomyocyte injury 
by targeting the miR-122-5p/FOXP2 axis [56]. 
Furthermore, Zhang et al. proved that the silencing of 
the lncRNA XIST alleviates myocardial cell apoptosis in 
rats with AMI by targeting miR-449 [57]. According to 
Zhou et al., the lncRNA XIST is overexpressed in 
myocardial cells after MI and promotes MI by targeting 
miR-130a-3p [58]. In addition, Lin et al. also observed 
the overexpression of the lncRNA XIST in the infarct 
area and showed that the lncRNA XIST accelerated 
myocardial apoptosis after MI by targeting miR-101A-
3p to upregulate FOS and apoptosis-related protein 
expression in a mouse model of MI [59]. Furthermore, 
Chen et al. found that lncRNA XIST can activate 

JAK2/STAT3 signal pathway by mediating mir-
494/CDK6 regulatory axis, so as to promote the 
progression of esophageal cancer [60]. Zheng et al. 
found that silencing lncRNA XIST can effectively 
reduce the expression of JAK2 by up-regulating Mir-
337, thereby inhibiting the proliferation and migration 
of gastric cancer cells [61]. Although the above 
evidences suggest that JAK2, CDC42 and lncRNA XIST 
are closely related to AMI, and lncRNA XIST can target 
and regulate the expression of JAK2. However, the 
aforementioned studies on the JAK2, CDC42 and 
lncRNA XIST were all based on animal or cell models, 
and it is unclear whether lncRNA XIST is involved in 
AMI by regulating the expression of JAK2 and CDC42. 
In order to illustrate this mechanism, our constructed a 
lncRNA-miRNA-mRNA triple network contained one 
lncRNA XIST, 21 miRNAs and 3 mRNAs (JAK2, 
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CDC42 and CHUK). We noticed that the expression of 
the JAK2 and CDC42 genes and the lncRNA XIST were 
all noticeably increased in patients with AMI compared 
to healthy subjects, and Pearson correlation analysis 
confirmed that the expression levels of JAK2 and 
CDC42 were positively correlated with the lncRNA 
XIST levels. Results from the ROC curve analysis 
further proved that the diagnostic efficacy of the 
lncRNA XIST was significantly better than that of JAK2 
and CDC42. Thus, we suggest that the lncRNA XIST 
may participate in the occurrence of AMI by targeting 
the expression of JAK2 and CDC42, and lncRNA XIST 
may function as a reliable biomarker for the diagnosis 
of AMI.  
 
This research has several limitations. First, the 
validation cohort included in the current study was 
recruited from only a single center and included small 
sample sizes. We did not clearly determine if 
variabilities exist variabilities among individuals from 
various regions and ethnicities. Therefore, the validity 
of the results in the current study must be further tested 
in multicenter and larger samples. Second, the miRNAs 
that participated in the lncRNA-miRNA-mRNA triple 
network not been verified in our validation samples. 
Follow-up experiments are needed to identify specific 
miRNAs that may be targeted by the lncRNA XIST to 
regulate JAK2 and CDC42 expression. Last, the specific 
mechanism by which the lncRNA-miRNA-mRNA 
network regulates the pathogenesis of AMI has not been 
verified in vivo and in vitro. 
 
In conclusion, based on the ceRNA hypothesis, a triple 
regulatory network consisting of a lncRNA-miRNAs-
mRNAs was constructed to explore its biological 
functions in AMI. We achieved this goal by analysing the 
gene expression profile of patients with AMI 
(GSE34198) using the WGCNA method. JAK2, CDC42 
and CHUK were identified as hub genes based on their 
combined GS and degree values. The identified 
regulatory network contained one lncRNA XIST, 21 
miRNAs and 3 mRNAs (JAK2, CDC42 and CHUK). We 
further identified the primary regulatory factors in this 
network by performing RT–qPCR combined with a ROC 
curve analysis and confirmed that the lncRNA XIST was 
involved in AMI, likely by modulating the expression of 
JAK2 and CDC42, and lncRNA XIST may function as a 
reliable biomarker for the diagnosis of AMI. 
 
MATERIALS AND METHODS 
 
CAD microarray datasets 
 
Gene expression data were extracted from the CAD 
dataset GSE34198 (including 49 AMI and 48 normal 
samples) in the public database Gene Expression 

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo, 
which is hosted on the GPL6102 Illumina human-6 v2.0 
expression BeadChip platform). Gene expression 
profiles were normalized using the normalize Between 
Arrays function in the limma package [62]. Probes that 
detected more than one gene were excluded from this 
study. The average expression level of the same gene 
detected with multiple different probes was calculated 
as the true expression level of the gene. 
 
Construction of the weighted gene co-expression 
network 
 
A critical tool in the study of systems biology is 
WGCNA, which constructs a gene expression data 
profile-based scale-free network [63]. The reliability of 
the constructed scale-free network is ensured by 
removing outlying samples. A standard-scale free 
network was constructed to approximate the appropriate 
soft threshold power (soft power = 10) before the power 
function was used to calculate adjacency values among 
all differentially expressed genes. The adjacency values 
were converted into a topological overlap matrix (TOM), 
and the corresponding dissimilarity (1-TOM) values 
were also derived. The dynamic tree cut method was 
used to identify modules by hierarchically clustering 
genes with the 1-TOM as the distance measure, a 
minimum size cut-off of 100 and a deep split value of 2 
for the resulting dendrogram. In addition, the module 
preservation function in the WGCNA package allowed 
us to determine the degree of module preservation and 
quality statistics [64]. These methods allowed us to 
verify the conservation of the selected modules. 
 
Preservation analysis of five network modules 
 
Based on published analytical methods [65], the degree 
of conservativeness of 10 modules was assessed using a 
composite preservation statistics method based on the 
WGCNA R package modulePreservation function. 
Intramodular connectivity metrics and module density 
in each module were calculated using the Z-summary 
statistic. In the corresponding network, Zdensity 
(function 1) was used to calculate the 4 density 
preservation statistics, Zconnectivity (function 2) was 
used to calculate the 3 connectivity-based statistics, and 
the combined intramodular connectivity metrics and 
module density were measured using Zsummary 
(function 3) and defined as follows: Z density = median 
(ZmeanCor, ZmeanAdj, ZpropVarExpl, ZmeanKME) (function 1); 
Zconnectivity = median (Zcor.kIM, Zcor.kME, Zcor.cor) (function 
2); and Zsummary = (Zdensity + Zconnectivity)/2 (function 3). In 
addition, the module was not determined to be 
preserved if the Z summary < 2; modules were weakly 
to moderately preserved if the 2 < Z summary < 10; and 
modules were highly preserved if the Z summary > 10. 

http://www.ncbi.nlm.nih.gov/geo
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Z statistics strongly depended on the size of the 
modules. Therefore, the medianRank for preservation 
analysis was used to assess preservation statistics 
between modules of various sizes. This analysis 
revealed that preservation statistics were more favorable 
in modules with a lower median rank in contrast to 
those with a higher median rank. 
 
Identification of the module of interest and 
functional annotation 
 
The relationships between modules and clinical 
parameters were evaluated using Pearson’s correlation 
analysis to discern modules of biological significance. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses of genes in 
biologically significant modules were performed  
using the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) online tool (version 
6.8; https://david.ncifcrf.gov/). The threshold was set 
to P < 0.05. 
 
Hub gene analysis 
 
The association between module eigengenes (Mes) and 
the gene expression profile was determined as the 
degree of module membership (MM). The absolute 
values of correlations between genes and external traits 
were defined as the degree of gene significance (GS). A 
further analysis of modules with increased GS and MM 
values was performed to determine biological functions 
[66]. Based on the meaningful modules, a protein–
protein interaction (PPI) network was constructed using 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) online tool (version 11.0; http://www.string-
db.org) [67]. Cytoscape software was then used to 
visualize this PPI network [68]. Cytohubba, one of the 
most commonly used plug-ins in Cytoscape software, is 
often used to determine key genes in PPI networks [69]. 
This program is able to explore important nodes across 
various biological networks using 11 different methods, 
with the method of degree known to exhibit better 
performance. As reported in previous studies [65], 
genes with the top 50 GS values that also have degree 
values ≥ 5 were selected as key genes. Hub genes that 
required further research were also identified using 
information available from GO and KEGG analyses. 
 
The prediction of miRNAs and lincRNAs and 
ceRNA network construction 
 
After GO, KEGG and PPI analyses, meaningful hub 
genes were used to predict lncRNAs that might regulate 
selected hub genes using the starBase database [70]. 
After obtaining the specific lncRNAs that may regulate 
the hub genes, lncRNA-miRNA interactions and 

miRNA-mRNA interactions were subsequently predicted 
based on the starBase database. A Venn diagram was 
constructed to identify several common miRNAs that 
potentially regulate both lncRNAs and mRNAs, and then 
the lncRNA-miRNA-mRNA ceRNA network was 
established and visualized using Cytoscape software. 
 
Study population 
 
Five hundred inpatients (260 patients with AMI and 240 
controls) with chest pain were recruited from the 
Cardiovascular Department of Hunan Provincial People's 
Hospital. All patients diagnosed with AMI underwent 
percutaneous coronary intervention (PCI) within 12 hours 
of the onset of chest pain. AMI was diagnosed based on 
2018 guidelines for the diagnosis of patients with AMI 
[71] as follows: an electrocardiogram showing new 
ischemic changes, echocardiogram showing new localized 
ventricular wall dysplasia or a loss of viable myocardium, 
and cardiac biomarker (cTnT) levels above the upper limit 
of the reference value of the 99 percentile. Age- and sex-
matched healthy subjects with no history of 
cardiovascular or other systemic diseases based on a 
physical examination, blood and electrocardiogram 
(ECG) tests were also recruited for this study. In addition, 
coronary angiography of all healthy subjects showed no 
significant abnormalities. The following exclusion criteria 
were applied: (i) active inflammation; (ii) patients who 
received thrombolytic therapy and those who had other 
underlying heart diseases (such as severe valvular 
abnormalities, cardiomyopathy, or congenital heart 
disease); and (iii) patients who had hepatic and/or renal 
dysfunction, tumours and autoimmune diseases. Baseline 
clinical characteristics, angiography results and laboratory 
test results were determined for all patients. Blood 
samples were collected from patients with AMI upon 
admission prior to the administration of any antiplatelet or 
anticoagulants, as well as before PCI treatment and within 
a few hours after the onset of chest pain. The collection of 
these samples was timed appropriately to capture the 
presence of any potential early diagnostic biomarkers. 
Study protocols were developed according to guidelines 
from the Ethics Committee of Hunan Provincial People's 
Hospital and the 2008 revision of the Declaration of 
Helsinki of 1975 (http://www.wma.net/en/30publications/ 
10policies/b3/). All subjects provided written informed 
consent. 
 
RNA isolation and RT- quantitative PCR (qPCR) 
 
TRIzol reagent (Invitrogen, CA, USA) was used to extract 
total RNA from all samples. The cDNA templates were 
then produced from 1 μg of RNA with the TransScript-
Uni cDNA Synthesis SuperMix kit (AU311-03, Transgen, 
Beijing, China) with the GeneAmp PCR System 9700 HT 
Fast (Applied Biosystems, USA) for 60 min at 37° C. 

https://david.ncifcrf.gov/
http://www.string-db.org/
http://www.string-db.org/
http://www.wma.net/en/30publications/10policies/b3/
http://www.wma.net/en/30publications/10policies/b3/
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Real-time PCR was conducted with a LightCycler 480 II 
Real-time PCR instrument (Roche, Switzerland) using 
TransStart Top Green qPCR SuperMix (AQ131-03, 
Transgen, Beijing, China). At the end of amplification, the 
product quality was verified by constructing a melting 
curve. Samples were analysed in triplicate and included 
no-template controls. The quantitative RT-PCR analysis 
included 1 lncRNA X-inactive specific transcript (XIST) 
and 3 genes such as Janus kinase 2 (JAK2), cell division 
cycle 42 (CDC42) and component of inhibitor of nuclear 
factor kappa B kinase complex (CHUK). All gene 
expression levels were normalized to GAPDH. The 
proprietary qPCR primers used in the experiment are 
shown in Supplementary Table 1, and which were 
designed and validated by Songon Biotech (Songon 
Biotech, Shanghai, China). Relative gene expression was 
assessed with the 2−ΔΔCt method. 
 
Statistical analyses 
 
SPSS (Version 22.0) software was used to analyse all 
data collected in the current study. An independent 
sample t test was used to evaluate continuous data 
(means ± SD) that were normally distributed between 
control subjects and patients with AMI. Triglyceride 
levels that were not normally distributed were reported as 
medians and interquartile ranges and were evaluated 
using the Wilcoxon-Mann–Whitney test. Data such as the 
sex ratio and numbers of smokers and drinkers were 
analysed using the chi-square test. The nonparametric 
ROC curve analysis was performed using MedCalc 
software (MedCalc Software, Mariakerke, Belgium, 
version 19.7.4), which produced an empirical ROC curve 
and nonparametric estimate of the area under the 
empirical ROC curve along with its 95% CI, based on the 
method developed by Hanley et al. [72]. The difference 
between the areas under the two empirical ROC curves 
was assessed using the Z-test [73]. Bioinformatics 
analysis and Pearson’s correlation analysis were 
performed using R software (version 4.1.0). 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 

 
 

 

 
 

Supplementary Figure 1. Preservation analysis of five network modules. The Y-axis represents preserved values and the X-axis 
represents module size. (A) median Rank test; and (B) Z summary statistics test.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–7, 9–11. 
 

Supplementary Table 1. PCR primers for quantitative real-time PCR. 

Gene Forward primer Reverse primer 
XIST 5′-CAGACGTGTGCTCTTC-3′ 5′-CGATCTGTAAGTCCACCA-3′ 
JAK2 5′-TCTGGGGAGTATGTTGCAGAA-3′ 5′-AGACATGGTTGGGTGGATACC-3′ 
CHUK 5′-GCATCATCTGCAGCCATTTA-3′ 5′-CAACAGGTCCTCCTCTCTGC-3′ 
CDC42 5′-GAAGGCTGTCAAGTATGTGG-3′ 5′-CTCTTCTTCGGTTCTGGAGG-3′ 
GAPDH 5′-ACCCAGAAGACTGTGGATGG-3′ 5′-CACATTGGGGGTAGGAACAC-3′ 

 

Supplementary Table 2. Gene expression profiles of 97 samples. 

 
Supplementary Table 3. Disease phenotypes of 114 samples. 

 
Supplementary Table 4. Total of 995 genes in the turquoise module. 

 
Supplementary Table 5. KEGG pathway enrichment analyses for genes in the turquoise module. 

 
Supplementary Table 6. GO functional enrichment analyses for genes in the turquoise module. 

 
Supplementary Table 7. Total of 578 genes with degree values ≥ 5. 
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Supplementary Table 8. Total of 27 genes with the top 50 GS values and degree values ≥ 5. 

GS-PPI common genes Degree Gene significance p.GS 
CDC42 64 0.376966277 0.000141252 
JAK2 41 0.386232529 0.0000933 
CHUK 30 0.397403719 0.0000556 
EPS15 28 0.356581164 0.000337089 
TBK1 25 0.34480493 0.000542962 
CMTM6 21 0.365867874 0.000228432 
UBE2W 20 0.34129215 0.000623711 
STX7 19 0.35431781 0.000369963 
RB1CC1 18 0.351771236 0.000410461 
GNAI3 18 0.339381638 0.000672107 
RHOT1 18 0.389460613 0.0000805 
USP15 16 0.3512465 0.000419297 
NT5C2 15 0.412844637 0.0000264 
GCA 14 0.352973892 0.000390853 
RAB21 14 0.340633205 0.00064003 
PGM2 13 0.362010643 0.000268886 
CHMP2B 13 0.348314938 0.000471956 
DCP2 11 0.349822612 0.000444159 
MAP3K2 10 0.349625256 0.00044771 
TANK 10 0.392836595 0.0000689 
RPGR 10 0.343529475 0.000571102 
SCLT1 7 0.449967423 0.00000376 
OTUD1 6 0.348341685 0.000471449 
SLK 6 0.34532133 0.000531935 
BLZF1 6 0.358564592 0.000310514 
SNX10 5 0.346331928 0.000510947 
SELT 5 0.339541077 0.000667941 

 

Supplementary Table 9. Prediction results based on starBase database. 

 
Supplementary Table 10. All of miRNAs that were predicted to bind to the JAK2, CDC42 or CHUK genes. 

 
Supplementary Table 11. All of miRNAs that were predicted to bind to the lncRNA XIST. 
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Supplementary Table 12. All of miRNAs that 
can simultaneously target JAK2, CDC42, CHUK 
and lncRNA XIST. 

XIST-CDC42-CHUK-JAK2 common miRNAs 
hsa-miR-381-3p 
hsa-miR-92b-3p 
hsa-miR-195-5p 
hsa-miR-497-5p 
hsa-miR-424-5p 
hsa-miR-363-3p 
hsa-miR-15b-5p 
hsa-miR-380-3p 
hsa-miR-32-5p 
hsa-miR-105-5p 
hsa-miR-524-5p 
hsa-miR-92a-3p 
hsa-miR-377-3p 
hsa-miR-300 
hsa-miR-25-3p 
hsa-miR-367-3p 
hsa-miR-15a-5p 
hsa-miR-410-3p 
hsa-miR-214-3p 
hsa-miR-520d-5p 
hsa-miR-16-5p 

 


