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INTRODUCTION 
 
Lung cancer is one of the leading causes of cancer 
death worldwide, causing approximately 1.76 million 
deaths annually [1]. Among major histological types, 
lung adenocarcinoma has gradually increased in 
incidence in most countries during the past few decades 
and has become the most common histological type, 
accounting for approximately 40% of all histological 

types [2]. However, there is considerable heterogeneity 
in the genomic drivers of lung adenocarcinoma, and  
the prognosis is not optimistic. 75% of patients are 
often diagnosed at an advanced stage, and the  
average five-year survival rate is less than 15% [3–5]. 
Although many potential therapeutic targets have been 
identified in LUAD, currently identified mutation 
genes are not detected in most LUAD patients. Based 
on this, more effective biomarkers are needed to  
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ABSTRACT 
 
There is considerable heterogeneity in the genomic drivers of lung adenocarcinoma, which has a dismal prognosis. 
Bioinformatics analysis was performed on lung adenocarcinoma (LUAD) datasets to establish a multi-autophagy 
gene model to predict patient prognosis. LUAD data were downloaded from The Cancer Genome Atlas (TCGA) 
database as a training set to construct a LUAD prognostic model. According to the risk score, a Kaplan-Meier 
cumulative curve was plotted to evaluate the prognostic value. Furthermore, a nomogram was established to 
predict the three-year and five-year survival of patients with LUAD based on their prognostic characteristics. Two 
genes (ITGB1 and EIF2AK3) were identified in the autophagy-related prognostic model, and the multivariate Cox 
proportional risk model showed that risk score was an independent predictor of prognosis in LUAD patients 
(HR=3.3, 95%CI= 2.3 to 4.6, P< 0.0001). The Kaplan-Meier cumulative curve showed that low-risk patients had 
significantly better overall (P<0.0001). The validation dataset GSE68465 further confirmed the nomogram’s robust 
ability to assess the prognosis of LUAD patients. A prognosis model of autophagy-related genes based on a LUAD 
dataset was constructed and exhibited diagnostic value in the prognosis of LUAD patients. Moreover, real-time 
qPCR confirmed the expression patterns of EIF2AK3 and ITGB1 in LUAD cell lines. Two key autophagy-related 
genes have been suggested as prognostic markers for lung adenocarcinoma. 
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better detect, diagnose and evaluate the prognosis of 
LUAD. 
 
Autophagy is a degradation process in which cells 
recover damaged organelles and remove excess damaged 
organelles through lysosomes to maintain homeostasis 
[6]. It is widely found in eukaryotic cells as a way of cell 
self-renewal. Autophagy belongs to type II programmed 
cell death and plays a wide range of pathophysiological 
roles in the occurrence and development of multiple 
diseases, such as neurodegenerative diseases, cancer, 
and autoimmune diseases [7, 8]. Nevertheless, 
autophagy plays a dual role in promoting and 
inhibiting tumor progression [9–11]. On the one hand, 
autophagy prevents cell damage and inflammation and 
enforces quality control of proteins and organelles 
during the early stages of tumor development, thus 
preventing tumor proliferation and invasion [12–14]. 
On the other hand, autophagy protects tumor cells and 
maintains tumor metabolism and survival as a defense 
mechanism in the advanced tumor stage. Such a 
mechanism further promotes tumor occurrence and 
even promotes metastasis to increase the aggressivity 
of cancer and eventually lead to resistance to 
therapeutic drugs [15–18]. 
 
To explore LUAD-related autophagy genes, we 
constructed LUAD-related autophagy prognostic 
signatures based on the LUAD dataset from The  
Cancer Genome Atlas (TCGA) Database. The mRNA 
differential expression in the TCGA-LUAD cohort 
was analyzed. Then we analyzed autophagy-related 
genes (ARGs) by KEGG [19, 20] and GO pathway 
analysis and constructed a protein-protein interaction 
(PPI) network. The Univariate Cox proportional 
hazards model screened 210 autophagy-related genes, 
further included in the Least Absolute Shrinkage and 
Selection Operator (LASSO) for analysis. The protein 
expression level of related genes was further validated 
in The Human Protein Atlas (HPA). A Multivariate 
Cox proportional-hazards model was utilized to further 
screen the above genes, and the prognosis model was 
constructed according to the clinical characteristics of 
the TCGA-LUAD cohort. Survival analysis was 
performed on the TCGA-LUAD cohort to assess the 
prognostic value of the risk score (the median risk 
score was used as the basis for grouping into High and 
Low-Risk groups.). We further classified the TCGA-
LUAD dataset according to high and low risk and 
performed pathway enrichment analysis with GSEA 
(Gene Set Enrichment Analysis). Based on the 
clinicopathological characteristics of the TCGA-
LUAD cohort, a nomogram was constructed to predict 
the three-year and five-year individual survival 
probability, which was further validated in the 
GSE68465 dataset. 

RESULTS 
 
Research flow chart of this study 
 
This study aimed to build a robust and reliable LUAD-
ARGs risk model and conduct a downstream analysis. 
The research flowchart was shown in Figure 1. 
Differentially expressed ARGs were screened from the 
TCGA-LUAD dataset. Subsequently, these DE-ARGs 
were used to establish a specific risk model in the 
training dataset, which was further confirmed using the 
validation dataset. 
 
Differential expression of ARGs in LUAD 
 
There were 594 cases in the TCGA-LUAD cohort, 
including 535 LUAD tissue samples and 59 normal 
samples. Cases with missing information were removed, 
and a total of 518 patients with LUAD were eventually 
included. The corresponding clinicopathological 
characteristics of the TCGA-LUAD cohort were 
displayed in Table 1. After comparison with 232 
autophagy genes in the HADb database, 210 lung 
adenocarcinoma-related autophagy genes were 
obtained. Further differentiation analysis was conducted 
by the R package “limma”, and screening criteria were 
set as follows:|Log2FC | >1, adj. P < 0.05. Finally, 31 
ARGs were obtained, of which 12 gene expressions 
were upregulated, and 19 were downregulated in tumor 
tissues. Differential expression of these 31 genes is 
shown in the volcano map and heatmap (Figure 2). 
 
Functional enrichment analysis and PPI network of 
differentially expressed LUAD-ARGs 
 
Figure 3 summarizes the GO term and KEGG pathway 
enrichment analysis results for these 31 ARGs. Mainly 
enriched biological processes (BP) include normal 
death, glutamate receptor signaling pathway, neuronal 
apoptosis process, and apoptosis intrinsic signaling 
pathway (Figure 3A). Moreover, we found that 
autophagy, the ErbB signaling pathway, IL-17 signaling 
pathway, PD-L1 expression in tumors, and PD-1 
checkpoint signaling pathway were enriched in these 31 
genes (Figure 3B). In addition, these genes were 
significantly associated with negative regulation of 
neuron migration and neuron death during KEGG 
pathway enrichment analysis (Figure 3C, 3D). We 
constructed a PPI network of the above ARGs in String 
(http://string-db.org/) (Figure 3E). 
 
Establishment of prognostic markers and risk model 
for TCGA lung adenocarcinoma 
 
The Univariate Cox proportional-hazards model was 
implemented on 210 ARGs, and 27 genes were 

http://string-db.org/
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significantly associated with TCGA-LUAD (P<0.01, 
Figure 4). Then, the 27 genes were included in the 
LASSO Cox analysis to remove ARGs that might be 
highly correlated with other ARGs (Figure 5). According 
to the lambda values of different genes in Lasso Cox 

analysis, the optimal number was 13, the optimal lambda 
was 0.07859. Then, the multivariate Cox proportional 
hazards model was utilized to further analyze the above 
genes. We ultimately identified two genes (EIF2AK3, 
ITGB1) that were related to LUAD prognosis. 

 

 
 

Figure 1. Simple flow chart of this study. TCGA-LUAD and GSE68465 cohorts were used for analysis in this study. Training cohorts were 
used to detect prognostic genes. Lasso regression model was used to establish prognostic signatures based on prognostic genes. We then 
confirmed the expression patterns of EIF2AK3 and ITGB1 in LUAD cell lines. 
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Table 1. Clinicopathological parameters of LUAD patients in the TCGA database. 

Clinical parameters Variable Total(518) Percentages(%) 

Age 
<=65 251 48.5% 
>65 257 49.6% 
NA 10 1.9% 

Gender Female 277 53.5% 
Male 241 46.5% 

Pathological stage 

Stage I 288 55.6% 
Stage II 120 23.2% 
Stage III 78 15.1% 
Stage IV 24 4.6% 

NA 8 1.5% 

T 

Tx 3 0.6% 
T1 174 33.6% 
T2 277 53.5% 
T3 47 9.1% 
T4 17 3.3% 

N 

Tx 14 2.7% 
N0 342 66.0% 
N1 92 17.8% 
N2 67 12.9% 
N3 2 0.4% 
NA 1 0.2% 

M 

Mx 142 27.4% 
M1 23 4.4% 
M0 347 67.0% 
NA 6 1.2% 

Survival status Dead 183 35.3% 
Alive 335 64.7% 

T, Tumour; N, Lymph Node; M, Metastasis. 
 

We calculated each gene’s risk score according to ARG 
mRNA expression level and the regression coefficient 
obtained from the LASSO Cox regression analysis.  
The TCGA-LUAD cohort was divided into High-Risk 

and Low-Risk groups according to the median risk score. 
Figure 6 shows the distribution of risk scores in LUAD 
patients and their relationship with survival time. Gene 
expression of LUAD in the High Risk and Low-Risk 

 

 
 

Figure 2. Expression of autophagy-related differential genes. (A) Volcano plot of differentially expressed autophagy-related genes, 
the horizontal axis was the differential expression multiple (Log2FC>2), the longitudinal axis was -log10(FDR), the blue point was the up-
regulated gene, and the red point was the down-regulated gene. (B) Heatmaps of autophagy-related differentially expressed genes, a 
sample of the horizontal axis and vertical axis for different genes, red for the highly expressed genes, blue for low expressed genes 
(screening condition:| Log2FC | > 1, adj. p < 0.05). 
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Figure 3. GO, KEGG enrichment analysis, and PPI network. (A, B) GO analysis of 31 differentially expressed autophagy-related genes. 
(C) A circle graph of the top five GO terms with the most gene abundance. (D) Heatmaps of the correlations between ARGs and pathways. 
The color of each block depends on the logFC value. (E) PPI network inner mapping of 31 autophagy-related differentially expressed genes. 
 

 
 

Figure 4. Cox regression analysis was used to screen autophagy genes related to the prognosis of lung adenocarcinoma.  
(A) Forest plots of autophagy genes associated with LUAD survival were screened by univariate Cox risk regression analysis (P <0.01).  
(B) Boxplot of autophagy genes associated with LUAD survival. Sample: Normal and Tumor. 



www.aging-us.com 7333 AGING 

groups was shown as a heatmap. The HR>1 gene 
(ITGB1) was considered a prognostic risk gene  
for LUAD, and the HR<1 gene (EIF2AK3) was 
considered a prognostic protective gene for LUAD 
(Table 2). 

Autophagy-related genes as an independent prognostic 
factor for LUAD 
 
The prognostic value of each gene’s risk score was 
calculated. In the TCGA-LUAD cohort, the univariate 

 

 
 

Figure 5. ARGs with prognostic potential were screened by LASSO regression. (A) Filter the optimal parameter (lambda) when 
drawing A vertical line. (B) The lasso coefficient distribution of 13 ARGs with non-zero coefficients was determined by the optimal 
lambda(0.07859). 
 

 
 

Figure 6. Prognostic characteristics of autophagy genes in patients with lung adenocarcinoma. (A) Distribution of risk scores in 
the TCGA-LUAD cohort with different risks (low: blue, high: red). (B) The dot plot showed the survival time and risk score in the TCGA-LUAD 
cohort. (C) Heatmap of autophagy-related gene expression profiles in LUAD prognostic characteristics. 
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Table 2. Genes included in prognostic gene signature. 

Gene symbol Full name Coefficient HR P value 
EIF2AK3 Eukaryotic translation initiation factor 2-alpha kinase 3 -1.0834879 -3.4 0.0008 
ITGB1 Integrin, beta 1 0.51830575 2.15 0.031 

HR, hazard ratio. 
 

Cox proportional hazards model showed a remarkable 
correlation between risk score and overall survival 
(HR=3.72, 95%CI=2.74-5.05, P<0.0001) (Figure 7A). 
The Multivariate Cox proportional-hazards model 
showed that risk score was an independent prognostic 
marker for LUAD (HR =3.30, 95%CI = 2.3-4.6, P< 
0.0001) (Figure 7B). Moreover, the Kaplan-Meier curve 
demonstrated that the overall survival of patients in the 
High-Risk group was significantly lower than that in the 
Low-Risk group (Figure 7C). 

The area under the curve (AUC) values for predicting 
the three-year, five-year, and ten-year overall survival 
rate were 0.699, 0.673, and 0.727, respectively, 
demonstrating that this prognostic model had better 
sensitivity and specificity than other single indicators 
(Figure 7D). In addition, to increase the robustness of 
the clinical value of the prognostic model, decision 
curve analysis (DCA) was conducted. The results 
showed that: in the range of Pt of about 0.1-0.9, this 
prognostic model had a better clinical application value 

 

 
 

Figure 7. Autophagy-related genetic markers were significantly associated with survival of lung adenocarcinoma.  
(A) Univariate Cox risk regression analysis: forest plot of the association between risk factors and LUAD survival. (B) Multivariate Cox risk 
regression analysis: autophagy-related gene markers were independent predictors of TCGA-LUAD. (C) Kaplan-Meier analysis of the TCGA-
LUAD cohort was significantly stratified by median risk. A high-risk score was significantly associated with poor survival in the TCGA-LUAD 
cohort. (D) Accuracy of the Time-Roc curve in predicting 3-year, 5-year, and 10-year survival in the TCGA-LUAD cohort. 



www.aging-us.com 7335 AGING 

than a single indicator (Figure 8A). The clinical impact 
curve was further drawn, and the risk stratification  
in LUAD patients was predicted by a simple model 
and a complex model of 1000 persons, as shown in 
Figure 8B. Nevertheless, we further analyzed the 
Kaplan-Meier cumulative curves of the High-Risk  
and Low-Risk groups based on whether they had 
undergone radiotherapy and chemotherapy (excluding 
patients with no information on radiotherapy and 
chemotherapy recorded). The results showed no 

significant difference in OS of the Low-Risk group 
(P=0.4, Figure 9A). However, a significant difference 
in OS of the High-Risk group was found (P<0.05, 
Figure 9B). 
 
GSEA of LUAD patients with high-risk and low-risk 
characteristics 
 
We performed GSEA to analyze related biological 
processes and signaling pathways associated with 

 

 
 

Figure 8. Validation of the clinical value of the prognostic model. (A) Drawing a decision analysis curve: in the Pt range of about 0.1-
0.9, this prognostic model has a better clinical application value than A single indicator. (B) Developing clinical impact curves to predict risk 
stratification of LUAD patients in 1000 persons using simple and complex models. 
 

 
 

Figure 9. Kaplan-Meier analysis of the high-risk group and low-risk group based on whether they had undergone 
radiotherapy and chemotherapy. (A) The Low-Risk group’s Kaplan-Meier curve. (B) The High-Risk group’s Kaplan-Meier curve. 
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autophagy genes in high- and low-risk populations. We 
compared the gene expression profiles of high-and low-
risk LUAD patients according to the characteristics of 
two autophagy-related genes in the training set. The 
GSEA results showed that genes in the high-risk group 
were mainly involved in the tumorigenesis pathway and 
myogenesis process, including UV response dn (NES= 
1.89, P=0, FDR q=0.074), the apical junction (NES=1.74 
P=0, FDR q=0.148), myogenesis (NES=1.69, P=0, FDR 
q=0.119), angiogenesis (NES=1.66, P=0, FDR q=0.097). 
Genes in the low-risk group were mainly involved in 
DNA repair (NES=-2.19, P=0, FDR q =0.0003), Myc 
targets V1(NES=-1.81, P=0.03, FDR q=0.02), E2F target 
genes (NES=-1.78, P=0.012, FDR q=0.017), G2M cell-
cycle checkpoint (NES=-1.69, P=0.018, FDR q=0.028). 
The GSEA results are shown in Figure 10. 
 
Establishment of a nomogram model for LUAD 
patients 
 
A nomogram is a tool for predicting clinical outcomes 
with multiple risk factors based on multivariate 
regression analysis. In the present study, age, gender, 
and TNM staging were used to build a nomogram 
model to predict the three-year and five-year overall 

survival of the TCGA-LUAD cohort. As shown in 
Figure 11A, six corresponding lines were drawn for 
each patient according to the above six influencing 
factors, and the corresponding points were found on the 
total score axis to determine the score, and the C-index 
to evaluate the OS of the model was 0.738. After these 
scores were summarized, the probability of survival of 
the patients for three years and five years was 
determined by drawing lines downward from the total 
score axis. In addition, we obtained good consistency 
with the three-year and five-year calibration curves of 
the TCGA-LUAD cohort (Figure 11B) and validation 
dataset GSE68465 (Figure 11C). 
 
Protein expression patterns of risk genes 
 
We obtained the protein expression pattern of EIF2AK3 
and ITGB1 genes in the HPA database to further verify 
their gene expression in the risk model (Figure 12). The 
results showed that EIF2AK3 was expressed at low 
levels in LUAD tissues and moderately expressed in 
normal lung tissues, ITGB1 was moderately expressed 
in normal lung tissues, and highly expressed in LUAD 
tissues. This observation was consistent with the mRNA 
expression levels of the genes we had previously 

 

 
 

Figure 10. The GSEA analysis results in the TCGA-LUAD cohort. (A) “DNA repair”, (B) “Myc targets V1”, (C) “E2F target genes”,  
(D) “G2-M cell-cycle checkpoint”, (E) “UV response dn”, (F) “Apical junction”, (G) “Myogenesis”, (H) “angiogenesis”. 
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observed. Furthermore, we analyzed the relationship 
between CNVs and mRNA expression levels of 
EIF2AK3 and ITGB1 genes through the cBioportal 
database. CNVs were found to be correlated with the 
mRNA expression of these genes (Figure 12C). 
 
RT-qPCR 
 
Human EIF2AK3 and ITGB-1 specific primers were 
designed and total RNA was extracted by NCI-H1975 
(human lung adenocarcinoma cell) and BEAS-2B 

(human normal lung epithelial cell). Then, mDNA 
was used as a template to transcribe cDNA using 
random primers (HiScript III 1st Strand cDNA 
Synthesis Kit (+gDNA WIper), Nanjing, China). 
Then, the expression of the target gene was quantified 
using a qPCR fluorescence kit (SYBR GREEN  
qPCR MIXT Beijing, China). The cycle parameters 
were polymerase activation at 95° C for 30 seconds, 
followed by 40 cycles at 95° C for 5 seconds and  
60° C for 30 seconds. GAPDH was used as an  
internal control. The expression of 2-ΔΔCt was

 

 
 

Figure 11. The nomogram can predict the prognosis probability in LUAD. (A) A nomogram of the TCGA-LUAD cohort (training set) 
was used to predict the OS. (B) Calibration maps were used to predict the 3-year and 5-year survival in the training set. (C) Calibration plots 
for 3-year and 5-year survival in the GSE68465 lung adenocarcinoma cohort (test group). The x-axis and y-axis represented the predicted and 
actual survival rates of the nomogram, respectively. The solid line represents the predicted nomogram, and the vertical line represents the 
95% confidence interval. 
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multiple changes in gene expression between the 
experimental group the and control group. All primer 
sequences are listed in Table 3. Meanwhile remarkably 
elevated levels of ITGB1 and demoted levels of 
EIF2AK3 were also verified by RT-qPCR in LUAD cell 
lines (Figure 13, Supplementary Material 4 - RT-qPCR 
Data). 

DISCUSSION 
 
Worldwide, lung cancer is one of the most common 
cancers with high morbidity and mortality, irrespective of 
gender, accounting for about 2.1 million annual deaths 
and nearly one-fifth of the global cancer mortality rate 
[1]. Lung adenocarcinoma accounts for about 40% of all 

 

 
 

Figure 12. Immunohistochemical (IHC) results and the copy number and mRNA expression levels of two ARGs in the 
autophagy prognostic model. (A, B) The protein expressions of EIF2AK3 and ITGB1 were detected by the immunohistochemical method 
through the HPA database, and the staining intensity was labeled as low, moderate, and high. (C) OncoPrint showed the change of copy 
number and mRNA expression of two ARGs in the autophagy prognostic model. 
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Table 3. Primers and their sequences for RT-qPCR analysis. 

Primer Sequence 
H-EIF2AK3-F AAGGTTGGAGACTTTGGGTTAG 
H-EIF2AK3-R GAATCTGCTCTGGGCTCATATAC 
H-ITGB1-F CATGTTGTGGAGAATCCAGAGT 
H-ITGB1-R GCAGTAATGCAAGGCCAATAAG 

 

lung tumors [19]. Unfortunately, LUAD is a highly 
heterogeneous and invasive disease with overall 
survival of fewer than five years and is often associated 
with genetic alterations [3, 21]. Nowadays, with the 
rapid rise of next-generation sequencing technology and 
bioinformatics, more and more studies have begun to 
focus on the critical role of genes in predicting LUAD 
[22–24]. 
 
It is widely acknowledged that autophagy, as a process 
of self-degradation, plays the role of housekeeper 

genes in the clearance of intracellular pathogens and 
damaged organelles [8]. Autophagy can be divided 
into macroautophagy (MA), microautophagy (MI), or 
chain-mediated autophagy (CMA) [23]. Autophagy 
deficiency has been associated with many diseases  
and tumor pathogenesis [24–28], where it plays  
a dual role in different cancer stages, acting as  
an inhibitor of tumor development in early stages  
and exhibiting a protective effect on cancer cells 
leading to invasion and metastasis in advanced stages 
[21, 29]. 

 

 
 

Figure 13. Cell line culture of (A) BEAS-2B (human normal lung epithelial cells) and (B) NCI-H1975 (human lung adenocarcinoma cells).  
The expression levels of EIF2AK3 (C) and ITGB1 (D) in LUAD cell lines were detected by RT -qPCR. LUAD cell line: NCI-H1975. Data were 
means ± SEM. ***P < 0.001. Experiments were repeated three times. 
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Autophagy is closely bound to the occurrence, 
development, and prognosis of tumors [30, 31]. Many 
studies have assessed the correlation between cancer 
prognosis and autophagy and the construction of a 
prognosis model, such as screening autophagy-related 
clinical prognostic indicators and the construction of a 
clinical prognosis model in patients with gastric cancer, 
colorectal cancer, and thyroid cancer [32–35]. 
 
A study of 66 NSCLC patients found that patients with 
high LC3 expression had a better prognosis than  
those with low LC3 expression [36]. Furthermore, a 
systematic review and meta-study of p62/SQSTM1 in 
lung cancer patients found that overexpression of p62 
was linked to overall survival in lung cancer patients 
[37, 38]. Beclin-1 expression was negatively correlated 
with tumor size and tumor stage of lung 
adenocarcinoma, and Beclin-1 expression was decreased 
in NSCLC tissues compared with normal tissues [39]. 
Considering that autophagy plays a vital role in cancer 
development and existing studies on the correlation 
between autophagy genes and adenocarcinoma [40, 41], 
we hypothesized that ARGs would have a great prospect 
in the prognosis assessment of lung adenocarcinoma. A 
prognosis model obtained by combining various 
algorithms would play a role in predicting overall 
survival in LUAD patients. 
 
Herein, we sought to establish a model consisting of 
autophagy-related genes, which can accurately predict 
of prognosis of LUAD patients. We analyzed the 
expression of 210 ARG genes from the TCGA-LUAD 
dataset. GO, and KEGG pathway enrichment analysis 
results confirmed involvement in the autophagy process 
in LUAD. The univariate Cox proportional hazards 
model showed that 27 ARGs were associated with 
overall survival. We further developed 13 prognostic 
markers from the TCGA-LUAD cohort by LASSO 
regression and characterized two autophagy genes 
(ITGB1 and EIF2AK3) by the multivariate Cox risk 
regression model. In addition, the protein expression 
and CNVs of the above two genes were validated in the 
HPA (Human Protein Atlas) database and the 
Cbioportal database. 
 
Moreover, we calculated the risk score for each LUAD 
patient using the mRNA expression level of the selected 
genes and the corresponding risk factor. In the TCGA-
LUAD cohort, patients were stratified based on the risk 
score. More importantly, we used the GEO dataset 
GSE68465 to further validate the above results. In 
addition, our GSEA results showed that pathways such 
as cell cycle and DNA repair were enriched in the Low-
Risk group, while the High-Risk group was involved in 
tumor progression and exhibited significant differences 
in signaling pathways. 

Integrin-β (ITGB) superfamily is one of the Integrin 
superfamily, which consists of 8 different members in 
the human body [42]. ITGB1 is a subunit of the isomer 
transmembrane receptor, formed by binding to the ITGA 
subunit or corresponding ligand, and is associated with 
FAK phosphorylation at tyrosine 397. Based on these 
advances, more and more studies have shown that 
ITGB1 has the potential to regulate cell-matrix 
interaction, cell proliferation, diffusion, metastasis, and 
even the progression of EMT (epithelial-mesenchymal 
transformation) [43]. Previous studies have confirmed 
that integrin β1 deficiency increases myocardial 
dysfunction and apoptosis after myocardial infarction 
[44]. Previous studies have shown that integrin β1 
(ITGB1) is overexpressed in tumor cells and is involved 
in angiogenesis, tumor progression, and metastasis [45]. 
Interestingly, meta-studies found that the high-level 
expression of ITGB1 was significantly correlated with 
the overall survival difference in lung and breast cancer 
patients. No correlation was found between the high 
expression of ITGB1 and overall survival in colorectal 
cancer [46]. Moreover, high expression of ITGB1 has 
been reported to significantly promote the invasion of 
gastric cancer [45]. Compared with TNM staging, 
ITGB1 overexpression has been reported to predict a 
poor prognosis of pancreatic cancer [47]. In addition, the 
upregulated expression of ITGB1 was also significantly 
correlated with tumor metastasis and tumor necrosis 
[48]. An increasing body of evidence suggests that 
ITGB1 is abnormally highly expressed in various solid 
cancers, and ITGB1-DT promotes the development of 
LUAD by forming a positive feedback loop with 
ITGB1/Wnt/β-catenin/Myc [49]. 
 
PERK (also known as PEK, EIF2AK3) is a  
type I transmembrane protein with a serine/threonine 
cytoplasmic domain [50]. It is activated primarily  
by the accumulation of misfolded proteins in the 
endoplasmic reticulum (ER) [51]. The role of PeRK  
on a physiological level is unclear. It has been 
established that the loss of PERK is the cause of Human 
Wolcott -- Rallison syndrome (wRS) [52]. Another 
physiological function of PeRK appears to be to 
promote mammary maturation [53]. ER stress has been 
implicated in the pathophysiology of many diseases, 
including heart disease, cancer, and neurodegenerative 
diseases [54]. Secreted proteins and membrane protein 
synthesis in ER are essential for the normal contractile 
function of cardiomyocytes. Inadequate adaptive ER-
PQC (endoplasmic reticulum protein quality control) 
and UPR (unfolded protein response) in cardiomyocytes 
lead to protein toxicity, accumulation of end-misfolded 
proteins, aggregation formation, and ultimately damage 
to cardiomyocyte contractile function and heart failure 
[55]. The relationship between PERK and cancer 
progression is a particularly interesting aspect of the 
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PERK signal. It is a well-established fact that solid 
tumors are prone to hypoxic areas, and hypoxic tumors 
are particularly aggressive and chemically resistant 
Hypoxia is a potent inducer of PERK dependent eIF2α 
phosphorylation, consistent with PERK’s important pro-
survival function in hypoxia-exposed cells, where 
PERK signaling increases tumor size, vascularization, 
and cell survival [53]. Early studies have shown that 
PERK (EIF2AK3) plays a role in tumor angiogenesis 
[56]. Dai et al. [57] have shown that activating the 
PERK/eIF2/ATF4 signaling pathway in pancreatic 
adenocarcinoma cells can prevent tumor progression. 
Glowi et al. regulated the drug resistance and clonal 
survival of cancer through mutual regulation between 
GCN2 (EIF2AK4) and PERK (EIF2AK3) [58]. In 
breast cancer, the expression of PERK (EIF2AK3) was 
down-regulated, but its activity was shown to be 
constitutionally elevated in drug-resistant cells, and it 
was found that PERK could be a potential target for 
drug-resistant cancer therapy [58]. Wang et al. found 
that silica nanoparticles (SINPs) induced the 
accumulation of autophagosomes by activating the 
EIF2AK3 and AtF6 UPR pathways in liver cells [59]. 
 
However, to the best of our knowledge, no  
studies on autophagy-related genes combined with 
clinicopathological parameters to predict LUAD have 
been reported. In this study, using the TCGA-LUAD 
dataset, we found 31 ARGs mainly related to neuronal 
death, glutamate receptor signaling pathway, neuronal 
apoptosis signaling pathway, autophagy regulation, 
and endopeptidase activity. Glutamate is a signaling 
medium that stimulates the proliferation of non-
neuronal tumor cells [60, 61]. It is worth noting that 
many studies have found that tumor cells from 
neuronal tissue express the Ionic Glutamate Receptor 
(IGLUR) subunit, which is differentially expressed in 
a variety of cancer cells, such as lung cancer, thyroid 
cancer, breast cancer, gastric cancer, and glioblastoma 
multiforme [62, 63]. Moreover, Xiao et al. found that 
the upregulated expression of glutamate receptor 
GRM4 can observably inhibit the proliferation of 
breast cancer cells and reduce the migration and 
invasion ability [64]. 
 
In our constructed LUAD prognosis model, we found 
ARGs ITGB1 and EIF2AK3 played opposing roles as 
“risk” and “protective” genes in the prognosis of 
LUAD. In addition, we conducted a risk score and 
survival analysis, which demonstrated that the High-
Risk group had a significantly poorer prognosis than the 
Low-Risk group. This suggests that our prognostic 
model can be used to predict the prognosis of LUAD 
patients. Furthermore, we combined autophagy-related 
genes with clinicopathological parameters of the 
TCGA-LUAD cohort to plot the three-year and five-

year survival rates. Calibration curves showed that the 
predicted survival rates of LUAD patients were 
consistent with the actual survival rates, which indicated 
that the constructed ARG-based LUAD prognostic 
model has diagnostic value in predicting prognosis. 
 
Based on this, we believe that the model constructed by 
these two autophagy genes and clinicopathological 
parameters allows for more accurate prognoses for 
patients with lung adenocarcinoma. We concede that 
ITGB1 and EIF2AK3 have limitations in predicting the 
prognosis of lung adenocarcinoma. Our study only tested 
and validated our findings in two databases. Meanwhile, 
in the LUAD cell line, it was also confirmed by RT-qPCR 
that the ITGB1 level was significantly increased and the 
EIF2AK3 level was significantly decreased (Figure 13). 
Indeed, a robust and reliable prediction model that can be 
implemented at the clinical level requires further 
validation in a multicenter study with larger sample size. 
Furthermore, functional experiments in vitro are essential 
to further explore the possible mechanisms underlying the 
role of autophagy genes in LUAD. 
 
CONCLUSIONS 
 
In conclusion, our study established a novel model 
based on two autophagy-related gene signatures and a 
nomogram based on the mRNA expression levels in 
LUAD patients to predict the prognosis of lung 
adenocarcinoma patients, which will provide valuable 
information for the diagnosis of LUAD patients and the 
development of new treatment modalities. 
 
MATERIALS AND METHODS 
 
Data mining 
 
We downloaded the gene expression profiles of  
LUAD with corresponding clinical data of patients  
from the Cancer Genome Atlas (TCGA; 
https://portal.gdc.cancer.gov/) and the Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) 
database. There were 535 LUAD and 59 non-tumor cases 
of the RNA-seq expression data from the TCGA-LUAD 
cohort (Supplementary Material 2 - TCGA-LUAD 
Clinical Data). Moreover, we also searched the GEO 
database to download RNA-Seq data by setting a filter: 
(1) Case Number: at least 100 cases; (2) Type: expression 
profiling data; (3) Including survival data. Ultimately, 439 
patients who had complete survival information obtained 
from the GSE68465 dataset were included in our study 
(Supplementary Material 3 - GEO68465 Clinical Data). 
The Human Autophagy-dedicated Database (HADb; 
http://www.autophagy.lu/autophagy.html) was used to 
search for autophagy-related genes (Supplementary 
Material 1 - Autophagy genes). 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.autophagy.lu/autophagy.html
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Differential expression, enrichment analysis, and 
PPI networks of ARGs in LUAD 
 
The r package “limma” (version 4.0.5) was used to 
perform the DEG analysis. The screening criteria for 
DEGs were |Log2FC|>1 and an adjusted P-value<0.05. 
Gene Ontology (GO) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses were 
carried out with the R package “clusterprofileiler”. The 
STRING database (https://string-db.org/) was used to 
build a protein-protein interaction (PPI) network of 
autophagy-related genes. 
 
Prognostic model establishment and validation 
 
Potential ARGs were screened out using the univariate 
Cox proportional hazards model according to the 
overall survival of LUAD patients (p<0.01). To avoid 
overfitting and reduce the number of prognostic 
predictors used to predict overall survival, the LASSO 
Cox regression analysis was utilized by the R package 
“glmnet” to screen the genes. Next, we used the 
multivariable Cox proportional hazards model to 
construct the prognosis model of LUAD-ARGs. We 
calculated the risk score by adding the expression value 
of each factor×the value of the regression coefficient. 
Then the optimal cutoff values for the risk score were 
calculated (utilizing the R packages “survival”, 
“survminer”, and “bilateral test”). Finally, the LUAD 
patients were divided into Low-Risk and High-Risk 
groups according to the cutoff value. 
 
Gene set enrichment analysis 
 
GSEA (version 4.1.0, http://www.broadinstitute.org/ 
gsea/index.jsp) was used to assess biological pathways 
or gene sets that differ significantly between the High-
Risk and Low-Risk groups. Parameters were set as 
follows: | NES | > 1, P< 0.05, FDR q < 0.25. 
 
The establishment of the prognostic nomogram 
 
Age, Gender, Risk score, and other clinicopathological 
characteristics were chosen to establish the nomogram 
in the company by using the R packages “rms” and 
“survival”. Then, the consistency between actual and 
predicted survival through calibration curves was 
assessed. 
 
Analysis of these vital ARGs expression level 
 
To further confirm results from the above analysis,  
the Human Protein Atlas (HPA) database 
(http://www.proteinatlas.org/) was wielded to identify 
the expression of these ARGs at the protein level in 
LUAD tissues and normal tissues. cBioPortal 

(https://www.cbioportal.org/), a visual analytic tool, 
was used to analyze the ARGs expression. 
 
Statistical analysis 
 
The Kaplan-Meier Plotter was used to analyze the 
difference in survival time between the two different 
risk groups, using the R package “timeROC” to plot 
ROC curves and assess the Risk Score’s sensitivity and 
specificity for prognosis prediction. A time-dependent 
ROC curve was performed to compare the accuracy of 
three-year, five-year, and ten-year overall survival 
predictions. We used Decision Curve Analysis to 
evaluate the clinical prediction model as a supplement 
to ROC curve analysis to further confirm the feasibility 
of the prognostic model. 
 
Availability of data and materials 
 
We obtained datasets from publicly available databases 
for this analysis. These data are available in the following 
databases: TCGA: https://portal.gdc.cancer.gov/;  
GEO: https://www.ncbi.nlm.nih.gov/geo/; HADb: 
http://www.autophagy.lu/autophagy.html. 
 
In addition to the gene expression data of LUAD 
downloaded from the TCGA database, the original data 
in this manuscript also included clinical data of TCGA-
LUAD, and clinical data of the GSE68465 dataset in the 
GEO database, collation of autophagy-related genes, 
and RT-qPCR data of EIF2AK3 and ITGB1. They can 
be found in the four documents of TCGA-LUAD 
Clinical Data, GEO68465 Clinical Data, Autophagy 
Genes, and RT-qPCR Data in the Supplementary 
Materials. 
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