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INTRODUCTION 
 

The idiopathic inflammatory myopathies (IIMs) are 

characterized by muscle injury, with an annual 

incidence of 7.98 per million people, according to data 

from 1966 to 2013 [1]. IIMs include polymyositis 

(PM), dermatomyositis (DM), inclusion body myositis 

(IBD), juvenile dermatomyositis (JDM), anti-

synthetase syndrome (ASS), and immune-mediated 

necrotizing myopathies (IMNM); historically, the two 

most common IIMs are PM and DM [2]. The disease 

progression and muscle impairments of PM and  

DM are similar, irrespective of the presence of skin 

lesions [3]. In addition, clinical studies have shown 

similar serological characteristics between PM  

and DM, especially with certain myositis-specific 

autoantibodies [4, 5]. Despite several decades of 
research, the exact pathogenesis of PM and DM 

remains unknown; their etiology may be a 

combination of multiple factors, such as immune 
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ABSTRACT 
 

Objective: Polymyositis (PM) and dermatomyositis (DM) are heterogeneous disorders. However, the etiology of 
PM/DM development has not been thoroughly clarified. 
Methods: Gene expression data of PM/DM were obtained from Gene Expression Omnibus. We used robust 
rank aggregation (RRA) to identify differentially expressed genes (DEGs). Gene Ontology functional enrichment 
and pathway analyses were used to investigate potential functions of the DEGs. Weighted gene co-expression 
network analysis (WGCNA) was used to establish a gene co-expression network. CIBERSORT was utilized to 
analyze the pattern of immune cell infiltration in PM/DM. Protein–protein interaction (PPI) network, Venn, and 
association analyses between core genes and muscle injury were performed to identify hub genes. Receiver 
operating characteristic analyses were executed to investigate the value of hub genes in the diagnosis of 
PM/DM, and the results were verified using the microarray dataset GSE48280. 
Results: Five datasets were included. The RRA integrated analysis identified 82 significant DEGs. Functional 
enrichment analysis revealed that immune function and the interferon signaling pathway were enriched in 
PM/DM. WGCNA outcomes identified MEblue and MEturquoise as key target modules in PM/DM. Immune cell 
infiltration analysis revealed greater macrophage infiltration and lower regulatory T-cell infiltration in PM/DM 
patients than in healthy controls. PPI network, Venn, and association analyses of muscle injury identified five 
putative hub genes: TRIM22, IFI6, IFITM1, IFI35, and IRF9. 
Conclusions: Our bioinformatics analysis identified new genetic biomarkers of the pathogenesis of PM/DM. We 
demonstrated that immune cell infiltration plays a pivotal part in the occurrence of PM/DM. 
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activation, genetic background, and environmental 

factors [6]. 

 

In general, elucidating specific molecular pathways 

associated with a given disease would be of great 

significance in identifying disease subgroups, monitoring 

disease activity, and selecting treatment approaches. 

Studies of PM/DM-associated genes in the immune 

system and inflammatory response signaling pathways 

have also been reported, such as interferon-alpha (IFN-α) 

[7, 8], nuclear factor-κB (NF-κB) [9], IFN-γ [7, 8], tumor 

necrosis factor α (TNF-α) [10], toll-like receptors (TLRs) 

[11], and retinoic acid-inducible gene 1 (RIG-1) [12]. 

According to the literature, gene microarray technology 

has been extensively utilized to analyze gene expression 

in muscle or skin tissues of PM/DM patients. However, 

there are some contradictions regarding these micro-

array data [13–17] in reflecting the importance of IFN1-

induced genes in the pathogenesis of DM and PM. 

These contradictions may be attributed to factors such 

as diverse analytic methods and platforms, inconsistent 

specimen quantity, and different sample sources. 

 

Bioinformatics analysis is an efficient means of deep 

detection and mining of transcriptomic data. Furthermore, 

the robust rank aggregation (RRA) method has been 

utilized to discriminate variation in mRNA profiles 

between several datasets in diverse disease types, such as 

in tumors [18–20]. In this study, we included five mRNA 

microarray datasets from Gene Expression Omnibus 

(GEO) and used the RRA method to select differentially 

expressed genes (DEGs) between PM/DM and healthy 

controls. We next analyzed the molecular mechanisms of 

PM/DM using Gene Ontology (GO) functional 

enrichment analysis and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analysis. In addition, 

other enrichment analyses such as gene set enrichment 

analysis (GSEA) and gene set variation analysis (GSVA) 

were used to study the molecular pathways of PM/DM. 

Weighted gene co-expression network analysis 

(WGCNA) was utilized to create a gene co-expression 

network and identify the most relevant modules in 

PM/DM. CIBERSORT analysis was utilized to estimate 

the various immune infiltrates in PM/DM. Protein–protein 

interaction (PPI) network analysis was performed to 

screen key genes, and Venn diagram analysis was used to 

assemble the DEGs of seven datasets. Subsequently, 

analysis of the correlation between core genes and muscle 

injury was conducted to indicate the potential functions of 

core genes in PM/DM. Finally, verification testing was 

carried out to identify five novel hub genes in the 

pathogenesis of PM/DM. We expect that the newly 

described DEGs and altered pathways between PM/DM 

and healthy controls found in this study may help to 

elucidate possible molecular mechanisms for their 

pathogenesis. 

MATERIALS AND METHODS 
 

Study design and data collection 

 

Gene expression datasets were filtered using the GEO 

(http://www.ncbi.nlm.nih.gov/geo) database [21]. We 

comprehensively retrieved microarray studies using the 

keywords “Polymyositis,” “Dermatomyositis,” 

“Myositis,” “Gene expression,” “Homo sapiens,” and 

“Microarray.” Datasets were filtered using the next 

enrollment criteria: (1) including more than 10 

specimens; (2) original information or gene expression 

analysis data obtainable in GEO. In light of the above 

criteria, GSE1551 [13], GSE3112 [22], GSE39454 [23], 

GSE46239, and GSE128470 [24] were finally recruited. 

Subsequently, the normalization and quality control of 

these data were executed with the “affy” R package 

[25]. We used the "sva" package [26] to eliminate the 

batch effect. The probes were transformed into 

homologous gene symbols using the R package 

“Rsubread” [27]. If several probes matched an identical 

sign, their average value was obtained. Further, genes 

without a corresponding genetic symbol were deleted. 

 

DEG screening 
 

We established seven different groups for five GEO 

series: the GSE39454 series, which was split into 

GSE39454PM and GSE39454DM series; GSE128470, 

which was divided into GSE128470 PM and 

GSE128470 DM series. Data were analyzed using the 

“limma” (linear models for microarray data) R package 

[28] to detect all DEGs between PM/DM and healthy 

controls. The values for statistical significance were set 

as adjusted P≤0.05 and |log2 fold change (FC)|≥1, 

except for GSE39454 PM and GSE39454 DM, which 

were set as P≤0.05 and |log2FC|≥1. Volcano maps were 

drawn using the “ggplot2” [29] package. Principal 

component analysis (PCA) was used to extract two 

features from each group of genes. PCA score trajectory 

plots can be used to show whether there is overlap 

between PM/DM and the control group. When there 

was no substantial overlap, it suggested that there was a 

significant difference between PM/DM and the control 

group, which could be analyzed in the next step. 

 

RRA analysis  
 

To reduce the discrepancies and merge the outcomes of 

multiple microarray studies, we conducted RRA 

analysis to recognize substantial DEGs. RRA is an 

efficient tool to combine results from several arrays 

[30]. First, we acquired lists of up-ranked and down-
ranked genes of each series that were produced by 

analyzing the FC of expression between PM/DM and 

controls. The “Robust Rank Aggregation” R package 

http://www.ncbi.nlm.nih.gov/geo
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was utilized to aggregate all sorted gene lists in the 

datasets [30]. The Benjamini and Hochberg false 

discovery rate (FDR) method was utilized to generate 

the adjusted P-value ranked genes with adjusted P<0.05 

and log2FC>0.5 were regarded as significant (set 1).  

 

Functional and pathway enrichment analysis 

 

To examine the effect of DEGs on the pathogenesis of 

PM/DM, we executed GO functional enrichment 

analysis and KEGG pathway analysis of the significant 

genes identified by RRA. The “clusterProfiler” R 

package automates the classification of biological 

terminology and gene cluster enrichment analysis. The 

analysis and visualization modules were amalgamated 

into a repeated workflow [31]. Furthermore, we used 

the “GOplot” R package (circle plot, chord plot, cluster 

plot) to append quantitative data about pathways to the 

GO terms of interest [32]. An adjusted P<0.05 and FDR 

<0.05 were considered the criteria for judgment. 

 

Enrichment analysis by GSEA and GSVA 

 

To identify the possible functional pathways associated 

with DEGs in PM/DM, we executed GSEA to investigate 

the biological processes and pathways of these genes and 

used the GSEA plot function of the “clusterProfiler” R 

package to carry out GSEA [31]. The annotated gene set 

“h.all.v7.0.symbols.gmt” in the MsigDB V6.2 database 

[33] was regarded as a reference gene set. FDR<0.25, 

normalized P<0.05 and |normalized enrichment score 

(NES)|>1 was deemed to show meaningful enrichment. 

Further, we used the gseaplot2 function of the 

“clusterProfiler” R package to visualize the results of 

GSEA [31]. The R package “GSVA” was utilized to 

calculate the signaling pathways in enrolled datasets [34]. 

Subsequently, the R package “limma” was used to 

research the meaningful distinguishing gene sets between 

PM/DM and healthy controls [28]. The gene set 

“h.all.v7.0.symbols.gmt” was chosen as the reference 

gene set. Volcano maps were drawn using the “ggplot2” 

[29] package. The “pheatmap” package was used to 

generate the heatmap plots to visualize the results of 

GSVA analysis [35]. Signaling pathways that were 

usually enriched by GSEA and GSVA analysis were 

regarded as possible PM/DM-related pathways. 

 

WGCNA 

 

We used the “WGCNA” R package to make a co-

expression network on the basis of the above DEGs. We 

built a weighted adjoining matrix, identified outliers by 

sample clustering, and removed the outliers. In addition, 
we defined the association degree (soft threshold 

parameter) to indicate a strong intergenic association 

while carrying out scale-free network verification. 

Further, we converted the adjoining matrix to a 

topological overlap matrix (TOM) to estimate the 

degree of connectedness between genes. To avoid bias 

and error, the minimum number of genes in each 

module was set to 30. Using the average linkage 

hierarchical clustering method on account of the TOM 

discrepancy measure, we categorized the genes with 

similar expression spectra using gene modules, 

displaying them on branches and with different colors 

of clustering trees to display the relationships between 

modules. The correlation cutoff was set at 0.8. To verify 

the interactions occurring significantly above the 

expected probability due to chance, a control network 

analysis was also performed using a Z-test, and q-value 

analysis was also performed to the correction analysis 

of multiple tests. The relationship between gene module 

and phenotype was computed and the modules related 

to clinical characteristics were selected. 

 

Assessment of immune cell infiltration by 

CIBERSORT 

 

Here, we adopted the CIBERSORT method to analyze 

the expression of 22 immune cell categories across 

seven gene expression matrix datasets [36]. We selected 

the characteristic gene matrix file LM22, which is a 

leukocyte gene characteristic matrix for identifying 22 

human hemopoietic cell phenotypes [36]. We then set 

the run mode to batch mode, utilized the quantile 

standardization of expression matrix, and set 500 

permutations for penetration analysis. Results with 

P<0.05 were considered statistically significant. The 

Mann-Whitney U test was utilized to discover the 

meaningfully distinct infiltrating immune cell sorts 

between PM/DM and healthy controls. In addition, we 

used “ggplot2” package [29] to design boxplots to show 

the differentiation in immune cell infiltration. 

 

PPI network analysis 
 

The STRING database is an online database for 

retrieving known proteins and forecasting PPI, including 

the direct physical interrelations between proteins and 

their connections to indirect functions [37]. We provided 

the meaningful genes from the above-mentioned RRA 

analysis to the STRING database to construct a PPI 

network (set 2). We set the medium confidence score 

as>0.4 when outputting the network analysis results and 

exported the TSV format data to Cytoscape3.7.2 [38]. 

The CytoHubba (version 0.1) plug-in for Cytoscape was 

utilized to distinguish the association degrees of genes in 

the PPI network and visualize the network. The 

Molecular Complex Detection (MCODE version 1.6.1) 
software (http://apps.cytoscape.org/apps/mcode) was 

adopted to choose the key modules from the PPI network 

in Cytoscape with MCODE scores >5 (set 3 and set 4).  

http://apps.cytoscape.org/apps/mcode
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Venn diagram analysis 

 

Venn diagram analysis was carried out using the Venn 

Diagram R package (version 2.12.1) [39] for the DEGs 

of seven datasets. Overlapping DEGs (set 5) were 

maintained for further analysis. The comprehensive 

analysis of sets 1- 5 indicated the core genes. The core 

genes were used for the next analysis. 

 

Correlation between core genes and muscle injury 
 

We searched for muscle injury-associated genes using 

the GeneCards website (https://www.genecards.org/) 

with the term “muscle injury.” A relevance score based 

on a scale of 0 to 100 was used to demonstrate the 

strength of the association between genes and muscle 

injury. The higher the score, the more relevant it was. 

The relevant scores were sorted in descending order, 

and the top 16 genes were considered the uppermost 

muscle injury-related genes. Furthermore, we used the 

“corrplot” package [40] to calculate the correlation 

between core genes and muscle injury-related genes. In 

addition, we used “ggcorrplot” package [41] to visualize 

the correlation. The final core genes were determined 

according to the correlation score. 

 

Diagnostic effectiveness evaluation  
 

For diagnostic analysis, we selected GSE39454 and 

GSE128470, which contain both PM and DM samples. In 

addition, we carried out confirmation studies using data 

from a microarray dataset (GSE48280, including 5 DM 

patients, 5 PM patients, and five healthy controls) [42]. 

The receiver operator characteristic (ROC) curves were 

diagramed and area under curve (AUC) was counted 

respectively to appraise the performance of each dataset 

(GSE39454 PM, GSE39454 DM, GSE128470 PM, 

GSE128470 DM, GSE48280 PM and GSE48280 DM) 

utilizing the R packages “pROC” [43]. We defined a 

guideline to distinguish different diagnostic criteria, 

including excellent accuracy (0.9≤AUC<1), decent 

accuracy (0.8≤AUC<0.9), fair accuracy (0.7≤AUC<0.8), 

poor accuracy (0.6≤AUC<0.7), and insufficient accuracy 

(0.5≤AUC<0.6) [44]. If the AUC value of a hub gene 

was >0.8, it was regarded as having excellent specificity 

and sensitivity for identifying PM/DM. 

 

RESULTS 
 

Essential information of selected microarrays 
 

In light of the above inclusion criteria, GSE1551, 

GSE3112, GSE39454, GSE46239, and GSE128470 were 

finally selected. A total of 145 samples (81 DM samples, 

22 PM samples, and 42 control samples) were evaluated 

in our study. Analyses of GSE1551, GSE3112, and 

GSE128470 series were undertaken on the GPL96 

platform (Affymetrix Human Genome U133A Array), 

and GSE39454 and GSE46239 were performed on the 

GPL570 platform (Affymetrix Human Genome U133 

Plus 2.0 Array). The details of these datasets are 

presented in Table 1. Our analysis of microarray data is 

based on the basic workflow (Figure 1). 

 

Evaluation of DEGs in PM/DM 

 

First, to exclude individual variations between 

participants, all five microarray datasets were 

normalized using the “affy” R package. The 

standardized boxplots are presented in Supplementary 

Figure 1; all participants in each dataset attained 

acceptable homogeneity. Secondly, the PCA plots of all 

data series are shown in Supplementary Figure 2. In 

view of the gene expression of all participants, PCA 

showed differing distribution patterns between PM/DM 

and control groups. The ranges between the participants 

in the control group were similar, as were the ranges 

between the participants in the DM or PM groups. 

Furthermore, we utilized the “limma” R package to 

screen out the DEGs on account of the above screening 

criteria, and the volcano plots of the seven microarrays 

are displayed in Figure 2. 

 

RRA integrated analysis of DEGs 

 

The RRA analysis posits that each gene is irregularly 

arranged in each dataset. The lower the P-value in RRA 

outcomes, the higher the gene grade and the reliability 

of distinguishing gene expression. After the integrated 

analysis, 82 significant DEGs (70 upregulated and 12 

downregulated) were identified (Supplementary Table 

1; set 1). The heatmap of the top 20 upregulated and 

five downregulated genes is displayed in Figure 2H. 

The top 10 meaningfully upregulated genes found in 

PM/DM included ISG15 (P = 4.77E-08), C1QB (P = 

7.73E-08), HLA-A (P = 9.33E-07), HLA-C (P = 1.53E-

06), HLA-B (P = 2.15E-06), PSMB8 (P = 7.57E-06), 

C1QA (P = 9.28E-06), GBP1 (P = 1.05E-05), UBE2L6 

(P = 1.07E-05), PARP12 (P = 3.04E-05). 

 

Functional annotation 

 

According to the above experimental results, 82 DEGs 

were subjected to GO [including three main function 

modules: biological process (BP), molecular function 

(MF), and cellular component (CC)] and KEGG 

analyses. The analyses demonstrated that the type I 

interferon signaling pathway (GO: 0060337; adjusted P 

= 2.14E-31) was the most meaningfully enriched BF, 
followed by cellular response to type I interferon (GO: 

0071357; adjusted P = 2.14E-31) and response to type I 

interferon (GO: 0034340; adjusted P = 3.93E-31). 

https://www.genecards.org/
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Table 1. Characteristics of the enrolled microarray datasets. 

GSE ID DM PM Control Tissues Analysis type Platform Year 

GSE1551 13  10 Muscle Array GPL96 2005 

GSE3112  6 11 Muscle Array GPL96 2005 

GSE39454 8 9 5 Skeletal muscle Array GPL570 2012 

GSE46239 48  4 Skin Array GPL570 2013 

GSE128470 12 7 12 Muscle Array GPL96 2019 

 

Different analysis methods showed differing results; 

thus, we used the GO bar plot (Figure 3A), cluster plot 

(Figure 3B), chord plot (Figure 2C), circle plot (Figure 

3D), and cneplot (Figure 3E) to visualize the DEGs and 

GO terms. Furthermore, KEGG pathway enrichment 

analysis showed that Epstein-Barr virus infection 

(hsa05169; adjusted P = 7.91E-09) and coronavirus 

disease - COVID-19 (hsa05171; adjusted P = 2.98E-07) 

were significantly enriched (Figure 3F). 

 

GSEA and GSVA 

 

We comprehensively analyzed the results of all GSEA 

and GSVA datasets. We screened out four commonly 

enriched pathways: allograft rejection, inflammatory 

response, interferon-alpha response, and interferon-

gamma response (Figures 4–6A and Supplementary 

Figure 3). Analyses of the present research revealed that 

interferon response and inflammatory response were the 

biological pathways most relevant to the pathogenesis 

of PM/DM. 

 

WGCNA 

 

In this study, the WGCNA R package was utilized for 

co-expression network construction. Before analysis, 

we determined suitable soft thresholds to establish a 

scale-free network (Supplementary Figure 4). To ensure 

the scale-free topology model curve fit the plateau 

smoothly, different soft thresholds were selected for 

each dataset (Supplementary Figure 4). Hereafter, the 

stepwise method was used for dynamic cluster analysis. 

First, dynamic hybrid cutting was used to generate the 

dendrogram (Supplementary Figure 5). Each leaf 

represents a single gene that has a close expression 

profile when placed together to form a branch, and the 

branch represented a gene module. Subsequently, we 

also computed the characteristic genes of each module 

and clustered the modules in parallel, especially when 

the correlation was >0.8; then, these modules were 

merged. Thus, we obtained significant modules 

excluding the nonsense one (gray; Supplementary 

Figure 5). The adjacency heatmap of characteristic 

genes showed that the red and blue modules were the 

most positively and negatively correlated with the 

occurrence of PM/DM, respectively (Figure 6B–6F). 

Taken together, these results indicated that MEblue and 

MEturquoise are key target modules in PM/DM. 

 

Immune cell infiltration outcomes 

 

The boxplots of the immune cell infiltration results 

demonstrated that compared with those in the healthy 

control participants (immune cell infiltration results of 

healthy controls are shown in Supplementary Figure 6), 

M1 (P = 0.03) and M2 (P<0.0001) macrophage 

 

 
 

Figure 1. Data analysis and processing flow. The data processing in this study is divided into five steps. 
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infiltration in GSE1551 was higher and that of 

regulatory T cells (Tregs) (P< 0.0001) in GSE1551 was 

less (Figure 7A). M2 macrophages (P< 0.0001) in 

GSE3112 infiltrated more, and memory B cells (P = 

0.007), eosinophils (P = 0.003) and follicular helper T 

cells (P = 0.015) in GSE3112 infiltrated less (Figure 

7B). M1 macrophages (P = 0.002) in GSE39454 (DM) 

infiltrated more (Figure 7C), and M1 macrophages (P = 

0.019) in GSE39454 (PM) infiltrated more (Figure 7D). 

M1 macrophages (P = 0.01) and M2 macrophages (P = 

0.001) in GSE46239 infiltrated more and resting 

dendritic cells (P = 0.001) and Tregs (P = 0.041) in 

GSE46239 infiltrated less (Figure 7E). M0 

macrophages (P< 0.0001) and M1 macrophages (P = 

0.001) in GSE128470 (DM) infiltrated more, and CD8 

T cells (P = 0.004) in GSE46239 infiltrated less (Figure 

7F). M1 macrophages (P = 0.001) in GSE128470 (PM) 

infiltrated more, and neutrophils (P = 0.003), plasma 

cells (P = 0.01) and Tregs (P = 0.013) in GSE128470 

(PM) infiltrated less (Figure 7G). Overall, our results 

indicated that M0, M1, and M2 macrophages in 

PM/DM patients infiltrated more, and Tregs in PM/DM 

patients infiltrated less. 

 

PPI network analysis 

 

Using the STRING online database, we input significant 

genes from the RRA method for PPI network analysis, 

and we used Cytoscape software to show the results. In 

the PPI network, the connectivity between nodes was 

highlighted to determine the interrelations between the 

proteins encoded by genes in PM/DM, and a PPI 

network of 65 object genes was established. The genes 

situated in the centric node were recognized as key 

 

 
 

Figure 2. Volcano diagrams of the seven microarrays and heatmap of the robust rank aggregation (RRA) analysis. Red points 
indicate upregulated genes, while blue points indicate downregulated genes. Gray points indicate genes with no meaningful difference. (A) 
GSE1551 (dermatomyositis, DM); (B) GSE3112 (polymyositis, PM); (C) GSE39454 (DM); (D) GSE39454 (PM); (E) GSE46239 (DM); (F) 
GSE128470 (DM); (G) GSE128470 (PM); (H) Heatmap of the top 20 upregulated and five downregulated genes in the RRA method. Red and 
blue indicate high and low expression of genes in patients with PM/DM, respectively. 
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genes that may play crucial physiological regulatory 

actions in PM/DM (Figure 7H, orange node genes) (set 2). 

Among the 65 nodes, 16 proteins were picked by degree 

through Cytoscape CytoHubba plug-in; namely, central 

genes (ISG15, MX1, STAT1, CXCL10, OAS2, TRIM22, 

IFI6, IFITM1, IFI35, IFI27, IRF9, GBP2, OAS1, RSAD2, 
GBP1, and IFIT3) (Figure 7H, orange node genes) (set 2). 

In addition, another Cytoscape plug-in, MCODE, was 

used to further categorize the PPI to recognize sub-

network. Here, we utilized MCODE for cluster analysis. 

The top meaningful module was selected after clustering 

(Figure 7I, orange node genes) (set 3). Cluster 1 included 

28 genes and the 12 core genes in the central node 

contained ISG15, MX1, IFI6, IFITM1, IFI35, IFI27, 
IRF9, OAS1, OAS2, RSAD2, GBP1, and IFIT3. The top 

two significant module was obtained and included nine 

genes (C1QB, VSIG4, CD163, CCL2, MS4A4A, CCL8, 

CCR1, TYROBP, and C1QA) (Figure 8A) (set 4). 

Venn diagram analysis and identification of core 

genes 

 

We used the Venn diagram analysis for DEGs of seven 

datasets and identified nine overlapping genes (Figure 8B) 

(set 5), including ISG15, IFIT3, IRF9, LY96, C1R, 
CD163, C1QB, C1QA, and LGALS3BP (Figure 8B). The 

comprehensive analysis of set 1, set 2, set 3, set 4, and set 

5 recognized core genes. The core genes, including, 

IFIT3, ISG15, MX1, STAT1, CXCL10, OAS2, TRIM22, 

IFI6, IFITM1, IFI35, IFI27, IRF9, GBP2, OAS1, RSAD2, 

and GBP1 were selected for further analysis. 

 

Correlation between core genes and muscle injury 

 

We searched genes associated with the muscle injury in 

the GeneCards database. The muscle injury-related 

genes in the top 16 of relevance scores contained RYR1, 

 

 
 

Figure 3. Gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway 
analysis of differentially expressed genes. (A) GO bar plot (Figure 3A); (B) GO cluster plot; (C) GO chord plot; (D) GO circle plot; (E) GO 
cneplot; (F) KEGG bar plot.  
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Figure 4. Gene set enrichment analysis (GSEA) results of six microarrays.  Normalized enrichment score (NES) demonstrates 

the analysis outcomes across gene sets. False discovery rate (FDR) indicates if a set was meaningfully enriched. (A) GSE1551 
(dermatomyositis, DM); (B) GSE3112 (polymyositis, PM); (C) GSE39454 (DM); (D) GSE46239 (DM); (E) GSE128470 (DM);  
(F) GSE128470 (PM). 
 

 
 

Figure 5. Gene set variation analysis (GSVA) results of six microarrays. (A) GSE1551 (dermatomyositis, DM); (B) GSE3112 

(polymyositis, PM); (C) GSE39454 (DM); (D) GSE39454 (PM); (E) GSE46239 (DM); (F) GSE128470 (DM). 
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TTN, DMD, IL6, TNF, CAV3, DES, MSTN, DYSF, INS, 
MYOD1, ACTA1, MYH7, TGFB1, SOD1, and SCN4A. 

The correlation between muscle injury-related genes in 

the top 16 of relevance scores and above core genes was 

analyzed (Figure 8). According to the results of 

correlation analysis, we identified five final hub genes 

(TRIM22, IFI6, IFITM1, IFI35, and IRF9) associated 

with PM/DM, which were used for subsequent 

investigation. Hub genes are generally regarded as key 

functional genes and are highly associated with other 

genes. 

 

Diagnostic value of the five hub genes 

 

To validate the diagnostic value of five hub genes 

(TRIM22, IFI6, IFITM1, IFI35, and IRF9) in PM/DM 

patients, the next phase of our study was to execute ROC 

analyses to investigate the sensitivity and specificity of 

hub genes for PM/DM diagnosis. The ROC outcomes 

verified that five hub genes could differentiate between 

PM/DM patients and healthy controls in GSE39454 DM, 

GSE39454 PM, GSE48280 DM and GSE128470 DM (all 

P<0.05), and the AUCs were between 0.799 and 1 (Figure 

9A–9D). However, the diagnostic value of the five hub 

genes (especially IFI35 and IFI6) in GSE1551DM, 

GSE3112PM, and GSE46239 DM was uncertain 

(Supplementary Figure 7A–7E). This result may be 

attributed to the large difference in sample size between 

DM patients and healthy controls in GSE46239 and the 

small sample sizes of GSE1551 and GSE3112 that lead to 

some bias. Our results indicated that expression of 

TRIM22, IFI6, IFITM1, IFI35, and IRF9 was related to 

disease diagnosis and that these genes could act as 

biomarkers to verify the diagnosis of PM/DM and 

validate the effectiveness of PM/DM treatment. 

 

DISCUSSION 
 

PM and DM are common autoimmune disorders 

clinically presenting with skeletal muscle injury [45]. At 

present, there is no specific diagnostic antibody for PM 

and DM. The diagnosis mainly depends on medical 

experience and invasive muscle biopsy [45]. Hence, 

there is an imperative need to better understand the 

pathogenesis of PM/DM to generate novel strategies for 

the diagnosis and treatment of PM/DM. 

 

In the current research, a large number of bioinformatic 

analysis tools have been used to identify five hub genes 

(TRIM22, IFI6, IFITM1, IFI35, and IRF9) between 

PM/DM and health control subjects on the basis of gene 

expression profiles attained from GSE1551 (DM), 

GSE3112 (PM), GSE39454 (DM), GSE39454 (PM), 

GSE46239 (DM), GSE128470 (DM), and GSE128470 

(PM) datasets. We explored the biological functions of 

these DEGs utilizing GO enrichment and KEGG 

pathway analyses; these results demonstrated that DEGs 

are significantly associated with the IFN response 

 

 
 

Figure 6. Gene set variation analysis (GSVA) of GSE128470 (polymyositis, PM) and weighted gene co -expression 
network analysis (WGCNA) results of five datasets. (A) GSVA result of GSE128470 (PM); (B) WGCNA result of  

GSE1551; (C) WGCNA result of GSE3112; (D) WGCNA result of GSE39454; (E) WGCNA result of GSE46239; (F) WGCNA result of 
GSE128470. 
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pathway. Moreover, deep enrichment analysis by GSEA 

and GSVA revealed that immune function and the IFN 

signaling pathway are pivotal features implicated in 

PM/DM, which was in accordance with the findings of 

previous studies [13–17, 46]. Most notably, WGCNA 

was conducted to identify meaningful modules 

correlated with PM/DM, indicating that MEblue and 

MEturquoise could be identified as key target modules 

in PM/DM. Furthermore, this study is the first to use a 

bioinformatics analysis with an immune cell infiltration 

analysis in PM/DM. The results indicated that M0 

macrophages, M1 macrophages, and M2 macrophages 

in PM/DM patients infiltrated more, and Tregs in 

PM/DM patients infiltrated less. We performed PPI 

network analysis and Venn diagram analysis, and we 

assessed the associations between core genes and 

muscle injury to identify hub genes. Next, we 

performed ROC analyses to investigate the sensitivity 

and specificity of five hub genes for the diagnosis of 

PM/DM, and results indicated that expression of 

TRIM22, IFI6, IFITM1, IFI35, and IRF9 are related to 

the diagnosis of PM/DM. 

 

 
 

Figure 7. Boxplots of the proportion of 22 immune cell sorts in polymyositis (PM) and dermatomyositis (DM) and the 
outcomes of protein–protein interaction (PPI) network analysis. (A) GSE1551 (DM); (B) GSE3112 (PM); (C) GSE39454 (DM); (D) 

GSE39454 (PM); (E) GSE46239 (DM); (F) GSE128470 (DM); (G) GSE128470 (PM); (H) Results of Cytoscape plug-in CytoHubba; (I) the top 
significant module of Cytoscape plug-in MCODE. 
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The five hub genes (TRIM22, IFI6, IFITM1, IFI35, and 
IRF9) are all IFN pathway genes. In all signaling 

pathways of PM/DM, the one centered on IFNs has 

been the most studied and IFNs have been identified as 

playing vital roles in PM/DM. Initial investigation of 

cytokine expression revealed the upregulation of IFN-γ 

in PM/DM muscle [47], which leads to the localized 

overexpression of IFN-γ-related genes [48]. These 

findings suggested that transcriptomic changes are 

involved in the pathogenesis of PM/DM. According to 

the cell surface receptor binding ligand family, the IFN 

pathway is divided into three categories: type 1 IFNs 

(IFN1; including IFN-α and IFN-β), type 2 IFNs (IFN2 

or IFN-γ), and type 3 IFNs (IFN3 or IFN-λ), which 

 

 
 

Figure 8. Protein–protein interaction (PPI) network analysis, Venn diagram analysis and correlation between core genes and 
muscle injury. (A) The top two significant modules of Cytoscape plug-in MCODE. (B) Results of Venn diagram analysis; (C) Association result of 

GSE1551 (DM); (D) Association result of GSE3112 (PM); (E) Association result of GSE39454 (DM); (F) Association result of GSE39454 (PM); (G) 
Association result of GSE46239 (DM); (H) Association result of GSE128470 (DM); (I) Association result of GSE128470 (PM). 
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share overlapping signaling pathways [49, 50]. Analysis 

has suggested that IFN1 is potentially relevant to the 

pathogenesis of DM [13, 14]. In particular, over-

expression of IFN1-related genes has been described in 

the muscle [13], skin [14], and circulating leukocytes 

[15, 16] of DM patients. Furthermore, the expression of 

IFN1-induced genes is associated with the disease 

activity of DM [15, 16]. In addition, a previous study on 

the skin of DM patients demonstrated that both IFN-β 

and IFN-γ are highly correlated with the degree of the 

IFN transcriptional response, whereas IFN-α are not 

[14]. However, related investigation on the IFN 

pathway in the pathogenesis of PM is lacking. Although 

both PM and DM were implicated in some studies, the 

IFN pathway was found to be associated with DM but 

not with PM [13, 17]. Nevertheless, in other studies, 

PM and DM samples showed similar gene expression 

profiles, although there were differences in several other 

details [15, 46]. Thus, the role of the IFN pathway in the 

pathogenesis of PM/DM remains controversial. 

 

TRIM22 encodes an IFN-induced member of the 

tripartite motif (TRIM) family, which is localized to the 

cytoplasm. Previous studies indicated that this protein 

might participate in the antiviral effects of IFN [51]. 

Previous reports on TRIMs in autoimmunity have been 

 

 
 

Figure 9. Receiver operating characteristics of five hub genes. (A) GSE39454 (DM); (B) GSE39454 (PM); (C) GSE48280 (DM); (D) 

GSE128470 (DM). 
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inconclusive. TRIMs, as active modulators of IFN 

production and inflammasome activity, may counteract 

autoimmune or inflammatory disorders if their activity 

or expression is improved. Conversely, TRIMs that 

negatively regulate IFN production or inflammasome 

activity may be beneficial in some diseases, as they can 

prevent the excessive production of pathogenic 

cytokines, thus avoiding the progression of autoimmune 

and autoinflammatory diseases [52]. In addition, the 

researchers found that variants in TRIM22 influenced 

the activation of NOD2-dependent IFN-β signaling and 

the upregulation of NF-κB pathways in early-onset 

inflammatory bowel disease, and the TRIM22-NOD2 

network affected antiviral pathways leading to 

inflammation [53]. Meanwhile, only one early-onset 

Crohn’s disease (CD) patient had a TRIM22 variant that 

was consistent with the previous result [54]. These 

results suggested the TRIM22 variant affects pediatric 

patients with inflammatory bowel disease. Another 

study showed that psoriasis was associated with the 

overexpression of antiviral genes (such as ISG15 and 

TRIM22) in the skin, but not in the blood [55]. 

However, the role of TRIM22 in the development of 

multiple sclerosis (MS) has been debatable [56–58]. 

Therefore, the role of TRIM22 in connective tissue 

disorders needs further elucidation and interpretation.  

 

IFI6, also known as G1P3, is one of the IFN-

stimulating genes (ISGs). IFI6 may be crucial in 

mediating apoptosis in many cancers [59], and it may 

have antiviral activity against the hepatitis C virus [60]. 

Furthermore, the expression of IFI6 is elevated in the 

blood or platelet samples of patients with systemic 

lupus erythematosus (SLE), rheumatoid arthritis (RA), 

primary antiphospholipid syndrome, and MS [61–63]. 

Meanwhile, bioinformatic analysis of psoriasis and SLE 

cases suggested IFI6 is a primary IFN-inducible gene 

[64, 65]. IFITM1, a member of the IFN-induced 

transmembrane protein family, is a known regulator of 

immunity and antiviral activity [66]. It is interesting to 

note that mounting evidence has shown that IFITM1 is 

highly expressed in many tumor tissues [67]. However, 

the definite mechanism of IFITM1 in autoimmune 

diseases remains unclear. IFI35 encodes IFN-induced 

35 kDa protein, an IFN-induced protein, which mainly 

participates in, and regulates the response of, the innate 

immune system [68–70]. IFI35 forms complexes with 

N-myc and STAT interactor (NMI), regulating various 

immune responses, such as restricting virus-triggered 

IFN-β production [70] and passively adjusting NF-κB 

signaling, leading to the restraint of endothelial cell 

proliferation and migration [70]. IFI35 plays different 

roles in connective tissue disease. For example, IFI35  
is deemed a biomarker of neuroinflammation and 

therapeutic reaction in MS [71]. Additionally, IFI35 

promotes the proliferation of mesangial cells, which is 

modulated by methyl CpG-binding domains in lupus 

nephritis [72].  

 

IRF9 encodes a transcription factor that plays a principal 

role in antiviral immunity. It participates in the IFN 

response and modulates cell proliferation [73] and 

immune system activity [74–76]. In general, TRIM22, 

IFI6, IFITM1, IFI35, and IRF9 are IFN-inducible genes 

that play significant functions in antiviral, cell 

proliferation, differentiation, apoptosis, and immune 

regulation functions. Previous studies have generally 

studied IFN-inducible genes in DM muscle tissue, but 

fewer have been conducted on PM tissues [13, 14, 17]. 

Recently, RNA sequence analysis of muscle biopsies in 

patients with DM and other forms of myositis (not 

including PM) suggested IFN1- and IFN2-inducible 

genes are differentially activated in various kinds of 

myositis, especially in DM [8]. Moreover, the role of 

IFN-inducible genes in PM and DM blood samples is 

controversial [15, 77, 78]. Therefore, bioinformatics 

analyses are needed to aggregate the findings of previous 

studies. This investigation showed that IFN-inducible 

genes are related to PM and DM by analyzing the data of 

previously performed transcriptome microarrays. 

 

Another important finding of our study is the role of 

immune cell infiltration in PM/DM. While immune 

infiltration has been well studied in other autoimmune 

diseases, it had not yet been studied in PM/DM. We 

utilized CIBERSORT to perform a widespread 

assessment of the immune microenvironment in 

PM/DM, discovering elevated levels of macrophage 

infiltration, while resting Tregs infiltrated less; these 

findings may be correlated to the progression of 

PM/DM. Previous studies on macrophage differen-

tiation patterns in PM/DM have demonstrated that DM 

and PM have different activation patterns and 

macrophage distribution. Specifically, in PM patients, 

macrophages activated in the early stage were mainly 

located in the myointima, which was the dominant 

histological manifestation. Whereas in DM, 

macrophages activated in late stages mainly appeared in 

the perifascicular area [79]. Other studies on 

macrophages and PM/DM have mainly focused on the 

activated receptors on the macrophage surface, such as 

CD206 and CD163. These studies have shown that 

activated macrophages are strongly correlated with the 

poor prognosis and mortality of PM/DM [80–82]. 

Another concern is that macrophage activation 

syndrome is caused by phagocytosis of hematopoietic 

components by activated macrophages. Macrophage 

activation syndrome is more common in RA and SLE; 

however, it has also been reported in some cases of DM 
[83, 84]. The above reports combined with our results 

have illustrated that macrophage infiltration is vital in 

the occurrence and progression of PM/DM. 
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The purpose of this investigation was to appraise 

biomarkers of PM/DM and to further investigate the 

function of immune cell infiltration in PM/DM. Our 

research has some limitations. First, we did not conduct 

in vivo tests to verify these outcomes. Second, we need to 

further study the definite mechanism of immune response 

caused by the five hub genes. Third, the CIBERSORT 

method is based upon finite genetic data, which might 

diverge from the heterogeneous interrelations of cells, 

characteristics of diseases, or plasticity of phenotypes. 

Finally, Mariampillai et al. [85] used unsupervised 

multiple correspondence analysis and hierarchical 

clustering analysis to aggregate patients by a database of 

the French myositis network according to myositis-

specific antibodies, transcriptomic signatures, and 

clinicopathological correlations. They reclassified IIMs 

into four subgroups: DM, IMNM, ASS, and IBM  

[85, 86] and put forward the view that patients with PM 

were mainly present in IMNM and ASS clusters, and the 

use of PM should probably be discontinued. According to 

the latest classification, the PM patients we selected may 

be mixed with IMNM and ASS patients. However, as the 

original data of the five GEO series were not 

serologically grouped and discussed, it is not clear 

whether PM patients had a mixture of IMMN and ASS. 

Moreover, we did not explore the association of the five 

hub genes with the serological phenotypes (autoantibody 

profiles) of PM/DM patients. Although bioinformatics 

can reveal the internal mechanism, the results of our 

study need to be further validated by in vivo and in vitro 

tests and medical analysis. 

 

We have comprehensively supplied a profound 

understanding of the overall molecular changes in the 

pathological mechanism of PM/DM and recognized five 

hub genes as potential therapeutic targets, including 

TRIM22, IFI6, IFITM1, IFI35, and IRF9. Moreover, 

through functional enrichment and pathway analysis, 

we discovered that these DEGs were generally enriched 

in immune function and the IFN signaling pathway. The 

WGCNA method identified MEblue and MEturquoise 

as key target modules in PM/DM. To our knowledge, 

this is the first study to focus on the role of immune cell 

infiltration in PM/DM. Additionally, we found that 

macrophage infiltration is influential in the occurrence 

and progression of PM/DM. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Standardization of the five gene expressions. (A) Before normalization of GSE1551 microarray; (B) After 
normalization of GSE1551 microarray; (C) Before normalization of GSE3112 microarray; (D) After normalization of GSE3112 microarray;  
(E) Before normalization of GSE39454 microarray; (F) After normalization of GSE39454 microarray; (G) Before normalization of GSE46239 
microarray; (H) After normalization of GSE46239 microarray; (I) Before normalization of GSE128470 microarray; (J) After normalization of 
GSE128470 microarray. 
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Supplementary Figure 2. Principal component analyses (PCA) performed on of seven data series. (A) GSE1551 

(dermatomyositis, DM); (B) GSE3112 (polymyositis, PM); (C) GSE39454 (DM); (D) GSE39454 (PM); (E) GSE46239 (DM); (F) GSE128470 (DM); 
(G) GSE128470 (PM). 
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Supplementary Figure 3. Gene set enrichment analysis (GSEA) result of GSE39454 (PM). 

 

 
 

Supplementary Figure 4. Weighted gene co-expression network analysis (WGCNA) soft thresholds of the five microarrays. 
(A) GSE1551; (B) GSE3112; (C) GSE39454; (D) GSE46239; (E) GSE128470. 
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Supplementary Figure 5. WGCNA cluster dendrograms of the five microarrays. (A) GSE1551; (B) GSE3112; (C) GSE39454;  
(D) GSE46239; (E) GSE128470. 
 

 
 

Supplementary Figure 6. Boxplots of the proportion of 22 immune cell sorts in healthy controls of the five microarrays.  
(A) GSE1551 (Control); (B) GSE3112 (Control); (C) GSE39454 (Control); (D) GSE46239 (Control); (E) GSE128470 (Control). 
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Supplementary Figure 7. Receiver operating characteristics of five hub genes. (A) GSE128470 (PM); (B) GSE48280 (PM);  

(C) GSE1551 (DM); (D) GSE3112 (PM); (E) GSE46239 (DM). 
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Supplementary Table 
 

Supplementary Table 1. The 82 DEGs identified by RRA method. 

Gene symbol P value Up/down regulated in DM/PM 

ISG15 4.77E-08 up 

C1QB 7.73E-08 up 

HLA-A 9.33E-07 up 

HLA-C 1.53E-06 up 

HLA-B 2.15E-06 up 

PSMB8 7.57E-06 up 

C1QA 9.28E-06 up 

GBP1 1.05E-05 up 

UBE2L6 1.07E-05 up 

OR7E47P 2.15E-05 down 

PARP12 3.04E-05 up 

IRF9 3.38E-05 up 

LY96 5.85E-05 up 

NMI 9.99E-05 up 

IFIT3 1.69E-04 up 

SLC15A3 1.76E-04 up 

LGALS3BP 1.90E-04 up 

IFI35 2.12E-04 up 

IFITM3 2.27E-04 up 

IFI27 2.28E-04 up 

CHRNA1 2.63E-04 up 

SIGLEC1 2.63E-04 up 

TAP1 5.12E-04 up 

TIMP1 6.93E-04 up 

CXCL10 7.25E-04 up 

IFITM1 8.10E-04 up 

CDKN1A 8.63E-04 up 

VAMP8 0.001155721 up 

IFIT5 0.001253081 up 

PSMB9 0.001357084 up 

ZC3HAV1 0.001371369 up 

CD163 0.001371369 up 

HLA-J 0.00152631 up 

PRUNE2 0.001846685 up 

RARRES3 0.002123177 up 

VCAM1 0.002561986 up 

MYBPH 0.002561986 up 

SP100 0.003358794 up 

IFITM2 0.003358794 up 

IFI6 0.003424865 up 

AK055981 0.00382214 down 

LY6E 0.004165117 up 

IFI16 0.004177547 up 

C1R 0.004677307 up 
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CCL2 0.005467811 up 

GBP2 0.006409146 up 

HLA-F 0.007232014 up 

TMSB10 0.007643577 up 

HLA-G 0.00845383 up 

STAT1 0.008518256 up 

MN1 0.008826432 down 

VSIG4 0.009121644 up 

CXCL9 0.00982952 up 

IFI44L 0.010198991 up 

PLSCR1 0.010662011 up 

TYROBP 0.010970035 up 

CCR1 0.011538863 up 

PYCARD 0.011605535 up 

C1S 0.014028206 up 

PSME1 0.01403303 up 

SAT1 0.015290515 up 

MS4A4A 0.015378785 up 

ATP2B2 0.016792652 down 

SP110 0.017703687 up 

NIPSNAP3B 0.018377843 down 

OAS1 0.019487544 up 

MX1 0.025685464 up 

TRIM22 0.027970236 up 

RHOBTB1 0.028239088 down 

TM6SF1 0.028442829 down 

OAS2 0.034005353 up 

LAP3 0.034005353 up 

MIF 0.034015527 up 

CCL8 0.0361287 up 

HERC5 0.040246026 up 

PDP1 0.040568569 down 

LMO1 0.040568569 down 

KLF10 0.040568569 down 

NREP 0.043705414 down 

TFRC 0.044294258 down 

RSAD2 0.045653159 up 

RP4-781L3.1 0.045787271 up 

 


