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ABSTRACT 
 
Background: Only a minority of patients clinically benefit from immune checkpoint therapy. Tumor clones with 
neoantigens have immunogenicity; therefore, they are eliminated by T-cell-mediated immune editing. 
Identifying neoantigen clones with the ability to induce immune elimination may better predict the clinical 
outcome of immunotherapy. 
Methods: We developed ioTNL model, which indicates the immunoediting-based optimized tumor neoantigen 
load, by identifying tumor clones that could induce immune elimination. Data of more than two hundred 
patients from our patient pool and previously reported studies who underwent anti-PD-(L)1 therapy were 
collected to validate the prediction performance of ioTNL model. Clonal architectures, immune editing scores 
and ioTNL scores were identified. The association between the response as well as prognosis and the ioTNL 
were evaluated. Panel sequencing of genes from 2,469 patients within 20 cancer types was performed to 
profile the landscape of immunoediting. 
Results: As expected, the ioTNL score could predict the response in patients who underwent immune 
checkpoint inhibitor (ICI) immunotherapy for various cancers, including non-small cell lung cancer (NSCLC; p = 
0.0066), skin cutaneous melanoma (SKCM; p = 0.026) and nasopharyngeal carcinoma (NPC; p = 0.0025). Patients 
with a high ioTNL score demonstrated longer survival than those with a low score. We verified the ioTNL on our 
cohort through panel sequencing and found that the ioTNL was associated with the response (p = 0.025) and 
prognosis (p = 0.00082) in anti-PD-(L)1 monotherapy. In addition, we found that the immune editing score 
correlated with the tumor mutation burden (TMB) and the objective response rate of immunotherapy. 
Conclusions: Identifying neoantigen clones with the ability to induce immune elimination would better predict 
the efficacy of immunotherapy. We have proved that the reliable method of ioTNL can be applied to whole-
exome sequencing (WES) and panel data and would have a broad application in precision diagnosis in 
immunotherapy. 
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INTRODUCTION 
 
Although immunotherapy using checkpoint inhibitors 
has significantly improved the overall survival of 
patients in many malignancies, only a minority of 
patients achieve benefits [1]. The challenge in 
predicting the efficacy of checkpoint inhibitors using 
biomarkers is far from being solved. Checkpoint 
inhibitors induce tumor elimination by exploiting T cell 
responses to tumor antigens. Neoantigens, a type of 
tumor-specific antigens derived from non-silent 
mutations, are presented by major histocompatibility 
complex (MHC) molecules and then recognised by 
T-cell receptors (TCR) as “non-self” peptides. 
 
Several recent studies have revealed that neoantigens 
are an important factor in determining the response to 
checkpoint inhibitors [2, 3]. The neoantigen load, 
which is the sum of putative neoantigens, has been 
identified as a predictive biomarker in patients treated 
with checkpoint inhibitors in several clinical cohorts. A 
disadvantage of assessing the traditional neoantigen 
load is that different neoantigens are treated equally, 
although their characteristics are complicated in 
tumors. Neoantigens derived from truncal mutations 
were reported to have higher immunogenicity and 
correlated more with the response than those from non-
truncal mutations [2]. The heterogeneity of neoantigens 
might influence immune surveillance, thereby 
mediating tumor evolution [4]. A fitness model 
constructed based on the evolutionary theory of 
neoantigens proved its ability to predict the efficacy of 
immunotherapy [3]. For each tumor clone, it is 
believed that a small set of high-quality neoantigens 
with high binding affinity to the MHC and TCR, rather 
than all the putative neoantigens, is sufficient to induce 
a T-cell response. 
 
A recent study reported that neoantigens could direct 
immune escape through multiple immunoediting 
mechanisms under immune selection pressure [2]. 
Reduced numbers of neoantigens were observed due to 
a decrease of neoantigen expression or deletion of 
chromosomal regions containing truncal alterations, 
thus resulting in immune escape [5, 6]. In some cases, 
the tumor might lose the heterozygosity of HLA genes 
or decrease the expression of genes in the neoantigen 
presentation pathway as an immune escape mechanism 
[7, 8]. These reports lead to a hypothesis that only the 
tumor clones with immune elimination capability can be 
recognised and eliminated by T cells, while immune-
edited tumor clones would acquire immune escape from 
administration. Therefore, patients with a high 
neoantigen concentration in clones that show immune 
elimination capability might respond better to 
immunotherapy. 

In this study, we developed an ioTNL score for 
quantitative characterisation of the neoantigen 
concentration with immune elimination capability at the 
patient level to predict the clinical outcome of 
immunotherapy. We included five cohorts treated with 
checkpoint inhibitors to investigate the relationship 
between the ioTNL and patient response or survival 
(Supplementary Table 1). Our work proved that the 
ioTNL could predict the clinical outcome following 
treatment with checkpoint inhibitors. Immunoediting is 
a relevant predictor of neoantigen immunogenicity that 
can be considered while selecting neoantigen targets for 
adoptive cell transfer and vaccine studies. 
 
RESULTS 
 
Constructing the neoantigen quantitative model with 
immune elimination capability 
 
We developed ioTNL, an algorithm model that 
evaluates the concentration of neoantigens in tumor 
clones with immune elimination capability 
(Supplementary Figure 1). If a tumor clone acquired 
immune escape and tolerance to immunoediting 
neoantigens, it would not contribute to the tumor 
immunogenicity and would be discarded while 
calculating the neoantigen load. Only the tumor clones 
with immune clearance ability would be retained 
(Figure 1A). The calculation of the ioTNL comprises 
several steps. First, the cluster of each tumor clone is 
identified based on the allele frequency and 
corresponding ploidy of the detected mutations. Second, 
the immune editing score of each clone is calculated. 
The tumor was heterogeneous with different clones, and 
the immune stages of clones were various. We used the 
ratio of the neoantigen to non-silent mutation to 
calculate the immune editing score. A tumor clone with 
a high immune editing score was considered to be in the 
immune escape stage, otherwise, in the immune 
elimination stage. Subsequently, the neoantigen load 
indexes of the immune elimination clones were 
estimated. Neoantigens are identified as 8 to 11 amino 
acids for class I MHC-binding peptides, which arise 
from non-silent mutations. A previous study reported 
that insertions and deletions (InDels) generate a higher 
number of neoantigens than missense mutations. Based 
on the hypothesis that InDel mutations may be more 
immunogenic than missense mutations, neoantigens 
derived from InDels were also included in the ioTNL 
model [9]. Therefore, the design of the ioTNL model is 
consistent with the idea that truncal neoantigens in 
clonal have higher immunogenicity and correlated more 
with the response than subclonal neoantigens [2]. 
Finally, the sum of the cancer cell fraction of each 
neoantigen in the immune elimination clones was 
calculated as the ioTNL score. 
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Figure 1. The model of immunoediting-based optimized neoantigen load (ioTNL). (A) Illustration showing the concept of ioTNL 
model. Left, due to the instability of the genome, the tumor produces different clones. If tumor clones acquired immune escape and 
immune tolerance to neoantigens, they would not contribute to the tumor immunogenicity and would be discarded. Only the tumor 
clones with immune clearance ability would be retained. Right, we demonstrated a hypothetical tumor of three clones. Tumor cells from 
clone 1 and clone 2 were immune-eliminated cells while tumor cells from clone 3 were immunoedited cells. We assumed that this tumor 
had five neoantigens so that the tumor neoantigen load was equal to 5. However, neoantigens from immunoedited cells were excluded 
so that the ioTNL score of this tumor was equal to 1.1. (B) Distribution of ioTNL score in the NSCLC cohort. Patients with objective 
response (ORR) were labeled in blue while patients with non-objective response (NOR) were labeled in cyan. The scores of ioTNL were 
transformed into log10 format. (C) Boxplot of the distribution of ioTNL scores between patients with ORR and NOR. (D) Sensitivity and 
specificity of ioTNL in predicting ORR and DCB in NSCLC cohort. (E) Barplots of ORR rate (left) and DCB rate (right) between ioTNL-H group 
and ioTNL-L group. 
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Better response to checkpoint inhibitors is associated 
with higher ioTNL in multiple cancers 
 
To investigate the implications of the ioTNL in the 
response to checkpoint inhibitor treatment, we 
considered a non-small cell lung cancer (NSCLC) 
cohort from the study by Fang et al. [10]. The cohort 
included 65 patients who were treated with second-line 
anti-PD-1/PD-L1 therapy. Previous studies revealed that 
the tumor mutation burden (TMB) was associated by 
whole-exome sequencing (WES), and the ioTNL score 
of each patient was calculated (Supplementary Table 2, 
Figure 1B). We found that patients with an objective 
response rate (ORR; [CR/PR]) had significantly higher 
ioTNL than those with a no objective response (NOR, 
SD/PD; p = 0.045, Figure 1C), as well as in a durable 
clinical benefit (DCB, p = 0.019, Supplementary Figure 
2A). The ROC curve showed that the AUCs were 0.676 
and 0.689 in predicting the ORR and DCB, respectively 
(Figure 1D). Patients were divided into ioTNL high and 

low groups based on the Youden index (the maximum 
sensitivity and the best specificity under the AUC 
curve). Patients with high ioTNL had a higher ORR 
(45% vs. 11%, p = 0.007) and DCB (55% vs. 15.6%, 
p = 0.002) than those with low ioTNL (Figure 1E). 
 
We analysed three more clinical cohorts of different 
cancer types treated with immune checkpoint inhibitors 
(ICIs) to further validate the prediction efficacy of the 
ioTNL. The three cohorts were a skin cutaneous 
melanoma (SKCM) cohort of 64 patients who 
underwent nivolumab treatment (Riaz et al.), [11] an 
intrahepatic cholangiocarcinoma (ICC) cohort of 17 
patients (Feng et al.) [12] and a nasopharyngeal 
carcinoma (NPC) cohort of 61 patients (Fang et al.) [13] 
The ioTNL scores of 33 patients who received 
nivolumab as the second-line therapy were evaluated in 
the SKCM cohort (Supplementary Table 3). A relatively 
higher median ioTNL score was observed in patients 
who achieved an ORR (p = 0.058, Figure 2A, left). 

 

 
 

Figure 2. Validation of ioTNL in multiple datasets. (A) Boxplots of the distribution of ioTNL scores between patients with ORR and 
NOR in the SKCM cohort (left), the NPC cohort (middle) and the ICC cohort (right). (B) Barplots of ORR rate between ioTNL-H group and 
ioTNL-L group in the SKCM cohort (left), the NPC cohort (middle) and the ICC cohort (right). 
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Moreover, patients in the ioTNL-high group, 
determined by the Youden index described above, had a 
significant ORR (41.7% vs. 5.6%, p = 0.0256, Figure 
2B, left) compared with those in the ioTNL-low group. 
A similar result was achieved in the second validation 
cohort of 61 patients with advanced NPC who received 
anti-PD-1 therapy alone or in combination with 
chemotherapy. In contrast to most anti-PD-1-responsive 
solid tumors, NPC has a modest mutation burden 
(Supplementary Table 4). Patients with a high ioTNL 
had a significantly better ORR (p = 0.0025, Figure 2B, 
middle) and DCB (p = 0.008, Supplementary Figure 
2B). Furthermore, we collected the data of 17 patients 
with ICC who received the combination of nivolumab 
and chemotherapy (Supplementary Table 5). Patients 
who achieved CR or PR showed a tendency of higher 
ioTNL than those who did not (p = 0.139, Figure 2A, 
right); however, the tendency was not significant due to 
the small cohort size. In addition, patients in the ioTNL-
high group demonstrated a higher ORR than those in 
the ioTNL-low group (80% vs. 33.3%, p = 0.131, 
Figure 2B, right). 

Higher ioTNL predicts a more favourable prognosis 
in multiple cancers 
 
We examined the association between the ioTNL and 
prognosis in the NSCLC, SKCM, NPC and ICC cohorts 
to understand the implications of immunoediting 
heterogeneity on patient survival. We speculated that 
patients with a low immune editing score, the 
neoantigens in which were considered to be in the 
immune elimination stage, are more likely to benefit 
from checkpoint inhibitor therapy. As expected, we 
observed that higher ioTNL scores had a significantly 
positive association with better survival in these 
patients. In the NSCLC cohort, progression-free 
survival (PFS) in patients with a high ioTNL was longer 
than in those with a low ioTNL (median 161 days vs. 61 
days, P < 0.001, Figure 3A). In the melanoma cohort, 
the overall survival (OS) was prolonged (p = 0.011, 
Figure 3B) in patients with a high ioTNL than in those 
with a low ioTNL. Analysis of the NPC cohort also 
indicated that the OS was significantly longer in the 
ioTNL-high than in the ioTNL-low group (median 105

 

 
 
Figure 3. Prognosis analysis of ioTNL in multiple datasets. Kaplan-Meier estimator was used to visualize the survival of ioTNL-H 
group and ioTNL-L group in the NSCLC cohort (A), the SKCM cohort (B), the NPC cohort (C) and the ICC cohort (D). (E) Forest plot for the 
hazard ratios of ioTNL in four cohorts. Larger boxes indicate statistical significance. 



www.aging-us.com 4591 AGING 

days vs. 52.5 days, p = 0.047, Figure 3C). Analysis of 
the ICC cohort revealed a longer PFS among patients in 
the ioTNL-high group (p = 0.025, Figure 3D). The 
hazard ratios of above four datasets revealed high 
ioTNL level was a positive factor for prognosis 
(Figure 3E). 
 
Association between the ioTNL score and other 
immunotherapy biomarkers 
 
We analysed the association between TMB as well as 
TNL and clinical outcomes to compare the predictive 
performance of ioTNL with known genomic 
biomarkers of immunotherapy (Supplementary Figure 
3). The TMB could significantly predict response 
only in the NSCLC cohort (p = 0.01, Supplementary 
Figure 3A, left). Similarly, TNL could also predict 
response only in the NSCLC cohort (p = 0.0475, 
Supplementary Figure 3A, right). In the other three 
cohorts, patients with a high TMB or a high TNL had 
a tendency of better response; however, the outcomes 
were not significant (Supplementary Figure 3B–3D). 
We used the ROC curve to measure the predictive 
efficiency in the four cohorts. We found that the 
AUC of the ioTNL was greater than that of the TMB 
and TNL in all four cohorts (Figure 4A–4D, left). 
Following this, the association between the TMB as 
well as TNL and survival were analyzed. TMB could 
predict survival in two cohorts, namely, NSCLC (P < 
0.001, Figure 4A, middle) and SKCM (p = 0.027, 
Figure 4B, middle). Similarly, TNL could predict 
survival in the NSCLC (p = 0.0037, Figure 4A, right) 
and the SKCM cohorts (p = 0.03, Figure 4B, right). 
However, the ioTNL could predict survival in all four 
cohorts and had more significant p values (Figure 
3A–3D). The association between biomarkers of the 
microenvironment and the ioTNL was compared in 
the SKCM cohort. Immune checkpoint genes (PD-1, 
PD-L1 and CTLA4), immune cell abundance (CD8+ 
T cell and CD4+ T cell) as well as immune signatures 
(cytolytic, IFN-gamma and T cell exhaustion 
signatures) were identified from RNA transcriptome 
data. None of these microenvironment biomarkers 
correlated with the ioTNL (Spearman correlation 
<0.2, Figure 4E). Taken together, our data 
demonstrated that the ioTNL is a better genomic 
biomarker than the TMB and TNL in predicting the 
efficacy of immunotherapy. In addition, the ioTNL is 
independent of the microenvironment biomarkers. 
 
Panel-based immune editing score correlated with 
the TMB and ORR of immunotherapy in different 
cancers 
 
Compared with WES, target sequencing on an 
appropriate region size of the panel would be a cost-

effective alternative for clinical detection. To 
facilitate the application of immunoediting status to 
clinical detection and the assessment of the ioTNL, 
we designed YuceOne, a 1.4M panel assembled by 
screening genomic regions and HLA genes that are 
susceptible to neoantigens. We collected the data of 
2,469 patients across 20 cancer types and applied 
them on YuceOne to detect mutations and predict 
neoantigens (Supplementary Table 6). The same 
approach was followed to calculate the immune 
editing scores in each clone cluster for each patient. 
We demonstrated the landscape of immune editing 
scores across 20 cancer types and found that the 
majority of the clones had scores ranging from 0 to 
10, with a median value of approximately 1 (Figure 
5A). Carcinomas such as LUSC, SKCM, PRAD, 
BLCA and STAD had lower median immune editing 
scores than 1, implying stronger immune clearance in 
the clones. On the other hand, carcinomas such as 
SARC, LIHC and THYM had higher median immune 
editing scores than 1, implying more severe immune 
escape in the clones (Figure 5A). 
 
A previous study reported a significant correlation 
between the median TMB and the ORR following 
anti–PD-(L)1 therapy [1]. To explore whether the 
immune editing score has a similar correlation with 
the TMB and ORR, we collected the median TMB 
and response data of ICI monotherapy for each 
cancer type. We plotted the median TMB and the 
ORR for anti–PD-(L)1 therapy against the 
corresponding median immune editing score across 
multiple cancer types (Supplementary Table 7). There 
was a significant negative correlation between the 
immune editing score and the TMB (R = −0.54, p = 
0.014, Supplementary Figure 4A). Carcinomas with a 
high TMB such as SKCM, LUSC and BLCA had 
lower median immune editing scores, indicating 
stronger immune clearance in the tumor clones. We 
also observed a similar tendency of negative 
correlation between the immune editing score and 
clinical response; however, the outcomes were not 
significant (R = −0.45, p = 0.12, Supplementary 
Figure 4B). The lower the median immune editing 
score in one cancer type, the higher the ORR for its 
anti–PD-(L)1 therapy. 
 
ioTNL identified by the target panel predicted the 
clinical outcome of immunotherapy 
 
The datasets used for evaluating and verifying the 
ioTNL were derived from WES. To expand the 
application of the ioTNL model and explore whether it 
can predict the response to immunotherapy on a panel 
level, we collected the data of 21 patients with NSCLC 
with complete clinical outcomes who underwent anti- 
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Figure 4. Association between ioTNL score and other immunotherapy biomarkers. Comparison of the response prediction 
among TMB, TNL and ioTNL in the NSCLC cohort (A, left), the SKCM cohort (B, left), the NPC cohort (C, left) and the ICC cohort (D, left). 
Kaplan-Meier analysis of patient survival of TMB and TNL in the NSCLC cohort (A, middle and right), the SKCM cohort (B, middle and right), 
the NPC cohort (C, middle and right) and the ICC cohort (D, middle and right). (E) Spearman correlation of ioTNL with genomic biomarkers 
and microenvironment-related biomarkers in SKCM cohort. Positive correlations are labeled in blue and negative correlation are labeled in 
red. Size of circle represented the value of correlation. 
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PD-1/PD-L1 therapy and identified the ioTNL using 
YuceOne. Consistent with the previously reported 
findings, the ioTNL scores could successfully predict 
the response to immunotherapy (Supplementary 
Table 8). Patients with a DCB and ORR showed a 
higher ioTNL (Figure 5B). Patients in the ioTNL-
high group, had a significant DCB (100% vs. 21%, p 
= 0.001, Figure 5C) and ORR (57% vs. 7%, p = 

0.025, Figure 5D) compared with those in the ioTNL-
low group. Meanwhile, PFS analysis revealed that 
patients with higher ioTNL had a longer survival time 
(P < 0.001, Figure 5D). For comparison, the TMB 
and TNL were also evaluated in our cohort 
(Supplementary Table 2), and the ROC curves 
showed that the ioTNL performed better in predicting 
the response to immunotherapy (Figure 5E). 

 

 
 
Figure 5. Landscape of immune editing score and application of ioTNL on panel-based Yuce cohort. (A) Landscape of immune 
editing score in 20 cancer types. The immune editing scores were scale in log10 on y-axis. 20 cancer types were label on x-axis and arranged 
in ascending order by their median immune editing score. (B) Boxplots of the distribution of ioTNL scores between patients with DCB and 
NDB (left), also with ORR and NOR (right). (C) Barplots of DCB rate (left) and ORR rate (right) between ioTNL-H group and ioTNL-L group. (D) 
Kaplan-Meier analysis of patient progression-free survival between ioTNL-H group and ioTNL-L group. (E) Comparison of sensitivity and 
specificity between ioTNL and TMB in predicting patient DCB (left) and ORR (right). 
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DISCUSSION 
 
We developed an algorithm named ioTNL optimised 
from the tumor neoantigen load based on the immune 
editing stages. The ioTNL was related to the response 
and survival in NSCLC, SKCM, melanoma, ICC and 
NPC. Our data demonstrated that ioTNL could be a 
prediction model for checkpoint inhibitors, which is 
more robust than the traditional neoantigen count model 
and the TMB. 
 
Compared with an assessment of the TMB, relatively 
few studies have revealed the correlation between the 
TNL and clinical outcomes. In these studies, the TNL 
was usually worse than the TMB in predicting clinical 
efficacy, likely due to the high false-positive rate of 
neoantigen prediction. Another reason might be that 
neoantigens are heterogeneous in tumors. The 
information on neoantigen clones would be ignored by 
directly counting the number of neoantigens. Some 
algorithms, such as DAI, focus on identifying 
neoantigen profiling with high immunogenicity and 
demonstrate the difference in the predicted affinity for 
any given wild-type/mutant peptide pair [14]. Similarly, 
the fitness model selects the neoantigen with the highest 
immunogenicity from missense derived to determine the 
sufficient size of a cancer cell population. Some studies 
have reported that clonal but not subclonal neoantigens 
are associated with patient survival, such as the clonal 
neoantigen burden, DAI and CSiN [15]. The studies 
optimized the neoantigen quantification method based 
on the quality and clonality; however, they did not 
consider immune editing during the evolution of the 
tumor and host immune microenvironment. 
 
Here, we proposed a direction for improvement based 
on the neoantigen immunoediting stages. If the tumor 
clone has been immune edited and lost the ability of 
immune elimination, the possibility of recognising and 
eliminating these immune tolerant neoantigens will be 
reduced. Neoantigens in immune edited clones do not 
contribute to the immunogenicity of tumors. An 
extensive analysis of a patient with metastatic colorectal 
cancer during the 11 years of spatiotemporal follow-up 
showed that the persistent clone had a higher 
immunoediting score than the eliminated clone [16]. 
Depletion of neoantigens has been observed in 
microsatellite instability (MSI) colorectal cancer, 
known to be sensitive to ICIs [17]. These studies 
support our hypothesis that tumor clones designated as 
immunoedited had immune privilege despite the 
presence of tumor-infiltrating immune cells. Therefore, 
these clones were resistant to checkpoint inhibitors, and 
only clones with elimination capability were sensitive to 
the drugs. Tumor immunoediting influences the 
intratumoral heterogeneity and shapes clonal evolution. 

Additionally, we optimised the algorithm of 
immunoediting score calculation. A former study 
reported that the ratio of the neoantigen to non-silent 
mutation could be calculated to evaluate the 
immunoediting status [18]. It represents the ratio of the 
expected to observed immunogenic mutations per non-
silent mutation, which is highly dependent on the 
background mutation reference sets for the expected 
neoantigen rate. Therefore, we assessed the prediction 
efficiency with and without reference sets. We found 
that the model without a reference set demonstrated best 
practice performance (Supplementary Figure 5). It has 
been reported that the neoantigens caused by InDels 
have higher immunogenicity than those from missense 
mutations [19]. We also considered InDel-derived 
neoantigens in the ioTNL algorithm, except for 
missense-derived neoantigens. Another optimisation is 
that the ioTNL enriches truncal neoantigens by 
calculating the total cancer cell fraction as the 
neoantigen concentration instead of the neoantigen load 
of tumor clones. 
 
Assessment of the ioTNL could be more suitable for 
clinical application. In one way, the ioTNL is an RNA-
independent method. The expression of mutated genes 
is essential for neoantigen prediction. Some algorithms, 
such as the fitness model and CSiN, need transcriptome 
data to determine whether the mutation is expressed. 
We used TCGA data instead of transcriptome 
sequencing to predict the expression level of genes. We 
assessed the prediction performance of the ioTNL 
model by comparing models with or without RNA 
sequencing data to evaluate the expression level of the 
neoantigens in the SKCM cohort. We found that the 
performance of the algorithm without RNA sequencing 
data was not inferior to that with RNA sequencing data 
(Supplementary Figure 6). Obtaining RNA tissue 
specimens of high quality is a significant challenge in 
clinical practice, especially for formalin-fixed paraffin-
embedded (FFPE) samples. Such optimisation not only 
improves the convenience but also reduces the 
sequencing cost to apply the ioTNL. Furthermore, the 
ioTNL was validated through the multiple genes 
targeted panel. This panel was designed to capture HLA 
genes and regions that enrich neoantigens rather than 
hotspot mutations. The targeted panel was more suitable 
for clinical application than WES was due to the low 
specimen input and cost. 
 
There are some limitations to our study. Although we 
validated the ioTNL in four different cohorts, including 
the main cancer types for immune checkpoint therapy 
(NSCLC and SKCM), the scale of the validation cohort 
remains limited. More cancer types should be covered 
in the future, not only including cancers with high load 
neoantigens (i.e., NSCLC and SKCM) but also those 
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with median load neoantigens (i.e., ICC and NPC). 
Recent studies revealed that genomic biomarkers such 
as the TMB failed to predict the clinical outcome of 
combination immunotherapy. The ioTNL had a better 
predictive ability than the TMB and TNL in our data. 
However, the ioTNL needs to be verified as a genomic 
biomarker for predictive performance in combination 
immunotherapy, combined with microenvironmental 
biomarkers, such as PD-L1, IFN-gamma signature and 
T cell infiltration. Finally, the accurate identification of 
neoantigens is the supreme challenge for the ioTNL 
algorithm, which is also a common challenge in the 
research on neoantigens. We believe the addition of 
mass spectrometry data would improve the accuracy of 
identifying the neoantigens by applying artificial 
intelligence technology. 
 
In conclusion, we developed a neoantigen algorithm 
based on immune editing to evaluate the response and 
prognosis of ICIs. We validated the prediction 
performance of the ioTNL in four cancers, including 
NSCLC, SKCM, ICC and NPC. The ioTNL predicted 
the response and prognosis better than the TMB and 
TNL. The multiple genes targeted panel was developed 
for ioTNL testing and can be considered to personalise 
immunotherapy. The immunoediting stages integrated 
into the ioTNL should also be considered in neoantigen 
selection for adoptive cell transfer and vaccine 
development. 
 
METHODS 
 
Mutation calling 
 
After removing the reads containing sequencing 
adapters and low-quality reads with more than five 
ambiguous bases, high-quality reads were aligned to the 
NCBI human reference genome (hg19) using BWA 
(v0.5.9) [20] with default parameters. Picard (v1.54) 
[21] (http://picard.sourceforge.net/) was used to mark 
duplicates, followed by the use of the Genome Analysis 
Toolkit [22] (v1.0.6076, GATK IndelRealigner) to 
improve alignment accuracy. 
 
Somatic SNVs were detected by VarScan2.2.5 [23] 
based on the BWA align algorithm and high-confidence 
somatic SNVs were called if the following criteria were 
met: (I) both the tumor and normal samples were 
covered sufficiently (≥ 10×) at the genomic position; (II) 
the variants were supported by at least 5% of the total 
reads in the tumor in contrast to less than 2% in the 
normal; (III) the variants were supported by at least three 
reads in the tumor; (IV) the distance between adjacent 
somatic SNVs were over 10 bp; (V) the mapping 
qualities of reads supporting the mutant allele in the 
tumor were significantly higher than 30 (Wilcoxon rank 

sum test, P < 0.2); (VI) the base qualities of reads 
supporting the mutant allele in the tumor were 
significantly higher than 20 (Wilcoxon rank sum test, 
P < 0.05); (VII) the mutations were not enriched within 
the 5 bp 5’ or 3’ of the read end (Wilcoxon rank sum 
test, P < 0.1); (VIII) the mutant allele frequency changes 
between the tumor and blood were statistically 
significant (Fisher’s exact test, P < 0.05). 
 
High-confidence somatic InDels were called based on 
the following steps: (I) candidate somatic InDels were 
predicted with the GATK somatic InDel detector with 
default parameters; (II) for each predicted somatic 
InDel, local realignment was performed with combined 
normal and tumor bam files; (III) frequent of variant 
reads less than 10% were filtered. (IV) high-confidence 
somatic InDels were defined after filtering germline 
events. 
 
Finally, all mutations were re-annotated using in-house 
annotation software based on SnpEff [24]. 
 
Copy number analysis and tumor purity assessment 
 
Copy number variants (CNV) were called by exome-
wide profile comparisons between tumors and matched 
peripheral blood using CNVkit (v0.8.1). Allele-specific 
copy number and tumor purity of the tumor genome 
were assessed using ascatNgs (v3.1.0). 
 
HLA class I neoantigen predictions, prioritization, 
and selection 
 
HLA genotype is identified with combination use of 
Polysover [25] and BWA-HLA. 9-mer polypeptides 
centered on mutated residues were scanned to identify 
candidate peptides binding to HLA class I, i.e., peptide 
sequences surrounding mutated amino acids resulting 
from missense mutations, frame-shift or non-frame-shift 
indels. The affinity of 8–11 mer peptides binding to 
HLA class I was predicted using the NetMHCPan4.0 
[26] binding algorithm. 
 
Tumor clone determination 
 
PyClone (v0.13.0) was used to infer the cancer cell 
fraction (CCF) of mutations in tumors. Major copy 
number and minor copy number of each mutation 
were acquired from the result of ascatNgs software. 
Moreover, set prior to major_copy_number. For some 
samples whose copy number of each SNV and tumor 
purity information were not accessible, those 
parameters were set to the default value and set prior 
to total_copy_number. PyClone was deployed with 
10,000 iterations and a burn-in of 1000 for all 
samples. 

http://picard.sourceforge.net/
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Calculation of immune editing score and ioTNL 
score 
 
ioTNL was calculated by counting neoantigen 
concentration selected from tumor clones which could 
induce immune elimination. We calculated the ratio of 
neoantigen to non-silent mutation as immune editing 
score to quantify the immune editing stages for tumor 
clones. 

neoantigen

nonsilent mutation

n
Immune editing score

n
=  

Tumor clonal architecture was calculated by PyClone. 
Cancer cell fraction of each neoantigen in the immune 
elimination clone were sum up as final ioTNL. 

1

n

i i
i

ioTNL load CCF
=

= ×∑  

Where n represents the total number of immune 
elimination clone, loadi is the number of neoantigens in 
the immune elimination clone i and CCFi is the cancer 
cell fraction in the immune elimination clone i. We 
found the best cutoff of immune editing score from 0.5 
to 1.5 in increment of 0.1 when the best prediction 
performance of ioTNL was found. The best prediction 
performance of ioTNL was found as maximum area of 
ROC curve. The cutoff of ioTNL was identified by 
Youden index (the maximum sensitivity and the best 
specificity under the AUC curve). 
 
Statistical analysis 
 
Categorical variables were evaluated with Fisher’s exact 
tests. Unpaired Mann–Whitney U test was used to 
compare differences for continuous variables between 
groups. Correlation analysis was assessed by Pearson 
coefficient. ROC analysis was done using the ROCR 
package in R. Significance of overall survival (OS) and 
progression-free survival (PFS) was determined via 
Kaplan-Meier analysis with log-rank analysis. The 
hazard ratio was calculated by the coxph function of the 
survival package in R. All statistical analysis was 
performed in the R statistical environment version 3.6.1. 
All tests were two-tailed and p-value < 0.05 was 
considered significant. 
 
Ethics approval and consent to participate 
 
A 68-year-old squamous cell carcinoma of the lung 
cancer patient01 was enrolled in Shanghai Tenth 
People’s Hospital on 2018. The study was approved 
by Shanghai Tenth People’s Hospital ethics 
committee. The patient provided written informed 
consent. 

Availability of data and material 
 
All of the published data used in the article can be 
found on the NCBI website and supplementary material, 
all the material used in the experiment can be bought. 
Codes and YuceOne (panel-based) data are available 
upon reasonable request. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. The study diagram of the ioTNL model. 
 
 

 
 
Supplementary Figure 2. Boxplots of the distribution of ioTNL scores between patients with DCB and NDB in the NSCLC cohort (A) and 
the NPC cohort (B). 
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Supplementary Figure 3. Barplots of ORR rate of different TMB levels and TNL levels in the NSCLC cohort (A), the SKCM cohort (B), the 
NPC cohort (C) and the ICC cohort (D). 
 

 
 
Supplementary Figure 4. Immune editing score was associated with TMB and objective response rate of immunotherapy. 
(A) Correlation between median immune editing score and median TMB in 20 cancer types. (B) Correlation between median immune 
editing score and objective response rate of immunotherapy in multiple cancer types. Size of circle represents the number of patients that 
involved in the evaluation of immune editing score. 
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Supplementary Figure 5. Prediction efficiency with different reference set of ORR (A) and DCB (B) in the NSCLC cohort. 
 

 
 

Supplementary Figure 6. Prediction efficiency with different gene expression dataset. 
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Supplementary Tables 
 
Supplementary Table 1. Detailed information of the introduced immunotherapy cohorts. 

Cohort Cohort size Histology Treatment Sequence type References 
NSCLC cohort 65 Non-small-cell lung cancer Anti-PD-(L)1 WES Fang et al., 2019 

SKCM cohort 64 Skin cutaneous melanoma Anti-PD-1 WES Riaz et al., 2017 

NPC cohort 61 Nasopharyngeal carcinoma Anti-PD-(L)1 WES Fang et al., 2018 

ICC cohort 17 Intrahepatic 
cholangiocarcinoma 

Anti-PD-1 + 
chemotherapy WES Feng et al., 2020 

Yuce cohort 21 Non-small-cell lung cancer Anti-PD-1 Panel – 

Total 228     

 
 
Please browse Full Text version to see the data of Supplementary Tables 2, 4 and 6. 
 
Supplementary Table 2. Summary of ioTNL and clinical characteristics in NSCLC cohort. 

 
 
Supplementary Table 3. Summary of ioTNL and clinical characteristics in SKCM cohort. 

Patient Sample TMB TNL ioTNL Treated Response ORR OS Status 
PT100 PT100-BE 0.13 0.1 0 NIV3-PROG PD NOR 120 1 
PT101 PT101-BE 0.1 0.07 0 NIV3-PROG PR ORR 119.1 0 
PT103 PT103-BE 0.26 0.19 0 NIV3-PROG PD NOR 69.1 0 
PT104 PT104-BE 0.16 0.1 0 NIV3-PROG PR ORR 116.9 0 
PT106 PT106-BE 18.59 7.89 340.327 NIV3-PROG PD NOR 13 1 
PT108 PT108-BE 0.62 0.16 3.098 NIV3-PROG SD NOR 130.4 0 
PT10 PT10-BE 2.48 0.89 28.9125 NIV3-NAIVE SD NOR 36.6 1 
PT11 PT11-BE 2.3 1.26 47.0899 NIV3-NAIVE PD NOR 119.6 1 
PT13 PT13-BE 4.48 2.08 82.1663 NIV3-NAIVE PD NOR 40 1 
PT17 PT17-BE 0.16 0.16 0 NIV3-PROG PD NOR 8.1 1 
PT18 PT18-BE 4.31 2.5 92.5359 NIV3-NAIVE PR ORR 153.3 0 
PT24 PT24-BE 0.1 0.03 0 NIV3-NAIVE PD NOR 21.3 0 
PT25 PT25-BE 2.27 1.36 0 NIV3-NAIVE PD NOR 14.4 1 
PT27 PT27-BE 4.69 2.88 0 NIV3-NAIVE PD NOR 67.9 1 
PT28 PT28-BE 1.2 0.68 7.0901 NIV3-NAIVE PD NOR 105.7 1 
PT29 PT29-BE 11.54 7.17 0.5179 NIV3-NAIVE PD NOR 39 1 
PT30 PT30-BE 1.82 0.42 18.1944 NIV3-NAIVE CR ORR 150.4 0 
PT31 PT31-BE 10.86 5.48 166.906 NIV3-NAIVE PD NOR 137.3 0 
PT32 PT32-BE 3.2 1.45 56.7156 NIV3-PROG PD NOR 16.3 0 
PT34 PT34-BE 3.77 2.63 107.228 NIV3-PROG PR ORR 119.1 0 
PT36 PT36-BE 0.19 0.1 0 NIV3-PROG SD NOR 154.4 0 
PT37 PT37-BE 0.57 0.27 3.73814 NIV3-PROG SD NOR 92.3 1 
PT38 PT38-BE 9.4 4.56 94.1405 NIV3-PROG SD NOR 23.9 1 
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PT3 PT3-BE 4.93 2.24 98.4519 NIV3-NAIVE PR ORR 163.4 0 
PT44 PT44-BE 10.39 4.88 274.331 NIV3-NAIVE PR ORR 156.1 0 
PT46 PT46-BE 4.02 2.43 0 NIV3-PROG PD NOR 32.4 1 
PT47 PT47-BE 24.8 12.64 535.166 NIV3-PROG PD NOR 102.6 1 
PT48 PT48-BE 1.83 0.93 21.0797 NIV3-PROG CR ORR 149.4 0 
PT4 PT4-BE 6.9 1.78 97.4983 NIV3-NAIVE SD NOR 90.4 1 
PT51 PT51-BE 5.91 2.5 93.7713 NIV3-PROG PD NOR 8.1 0 
PT52 PT52-BE 7.68 4 130.458 NIV3-PROG PD NOR 68 1 
PT53 PT53-BE 2.08 0.52 14.6259 NIV3-PROG PR ORR 61.9 1 
PT58 PT58-BE 22.65 10.97 524.13 NIV3-PROG SD NOR 71.3 1 
PT59 PT59-BE 9.58 3.77 127.405 NIV3-NAIVE SD NOR 101.1 1 
PT5 PT5-BE 0.85 0.36 6.06482 NIV3-NAIVE PD NOR 31.7 1 
PT60 PT60-BE 17.36 8.07 451.967 NIV3-NAIVE PD NOR 105.4 0 
PT66 PT66-BE 3.94 1.7 72.4464 NIV3-NAIVE PD NOR 77.4 1 
PT67 PT67-BE 0.45 0.26 0 NIV3-PROG SD NOR 147.4 0 
PT68 PT68-BE 19.34 9.46 382.127 NIV3-PROG PR ORR 120.3 0 
PT70 PT70-BE 11.3 7.72 417.55 NIV3-PROG SD NOR 44.4 1 
PT71 PT71-BE 0.35 0.13 0 NIV3-NAIVE SD NOR 35.1 0 
PT72 PT72-BE 12.11 5.76 262.428 NIV3-NAIVE PR ORR 110 1 
PT73 PT73-BE 0.45 0.1 1.02686 NIV3-NAIVE SD NOR 40.1 0 
PT74 PT74-BE 1.48 0.75 32.3266 NIV3-NAIVE NE NOR 2.9 1 
PT76 PT76-BE 6.55 3.21 124.572 NIV3-NAIVE NE NOR 1.4 1 
PT77 PT77-BE 1.11 0.49 6.35038 NIV3-NAIVE SD NOR 67.3 1 
PT79 PT79-BE 15.62 8.46 409.153 NIV3-PROG SD NOR 31.1 1 
PT82 PT82-BE 1.19 0.42 17.9164 NIV3-PROG SD NOR 61.3 1 
PT83 PT83-BE 8.3 2.51 79.4521 NIV3-PROG SD NOR 66 0 
PT84 PT84-BE 0.57 0.37 2.72251 NIV3-NAIVE PD NOR 21.6 1 
PT85 PT85-BE 3.45 1.74 98.2943 NIV3-PROG PD NOR 129.1 0 
PT86 PT86-BE 14.85 8.33 353.337 NIV3-PROG PD NOR 38.9 1 
PT87 PT87-BE 17.14 8.34 383.341 NIV3-NAIVE SD NOR 139.1 0 
PT89 PT89-BE 4.81 1.77 83.7375 NIV3-NAIVE SD NOR 120.6 1 
PT8 PT8-BE 2.38 1.02 54.6892 NIV3-NAIVE PD NOR 37 1 
PT90 PT90-BE 8.72 4.33 132.597 NIV3-PROG PD NOR 24.9 1 
PT92 PT92-BE 16.27 6.78 225.266 NIV3-PROG SD NOR 47.6 1 
PT93 PT93-BE 0.81 0.46 11.4005 NIV3-PROG PD NOR 121.3 0 
PT94 PT94-BE 9.19 4.93 141.264 NIV3-NAIVE CR ORR 140.1 0 
PT98 PT98-BE 0.59 0.33 10.0383 NIV3-PROG SD NOR 106.7 1 
PT9 PT9-BE 11.13 3.88 166.344 NIV3-NAIVE PD NOR 13.1 1 

 
 
Supplementary Table 4. Summary of ioTNL and clinical characteristics in NPC cohort. 
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Supplementary Table 5. Summary of ioTNL and clinical characteristics in ICC cohort. 

Sample TMB TNL ioTNL Response ORR OS OS.Status PFS PFS.Status 

ICC001 2.85 1.39 69.4077 PR ORR 334 0 NA 0 
ICC002 2.96 1.12 37.032 PR ORR 151 1 114 1 
ICC003 1.33 0.65 14.3812 SD NOR 415 1 236 1 
ICC004 4.65 2.03 80.6436 CR ORR 572 0 324 1 
ICC005 4.5 1.5 50.0041 SD NOR 154 1 86 1 
ICC006 2.56 1.37 14.8543 SD NOR 143 1 129 1 
ICC007 3.24 1.36 48.5457 PD NOR 138 1 45 1 
ICC008 0.94 0.25 1.94014 SD NOR 277 1 172 1 
ICC009 1.91 0.5 4.8922 SD NOR 353 1 230 1 
ICC010 1.46 0.94 9.91282 PD NOR 136 1 66 1 
ICC011 3.37 1.63 57.3618 PR ORR 165 1 82 1 
ICC012 1.63 0.53 17.841 PR ORR 285 1 NA 0 
ICC013 6.28 2.24 82.7309 PR ORR 420 0 NA 0 
ICC014 4.46 2.26 74.1739 SD NOR 251 1 144 1 
ICC015 1.39 0.97 0 PR ORR 190 1 92 1 
ICC016 1.3 0.68 0.29386 SD NOR 49 1 47 1 
ICC017 2.94 1.23 36.0288 PR ORR 129 1 117 1 

 
 
Supplementary Table 6. Details of predicted neoantigens and corresponded mutations information in pancancer by 
YuceOne panel. 

 
 
Supplementary Table 7. Median immune editing score and corresponded median TMB and ORR of immunotherapy 
in pancancer. 

OncoTree Median Immune Editing Score Median TMB ORR # of Patients 
BLCA 0.841269841 8.1 NA 28 
BRCA 1.1 3.8 5.7149 41 
CHOL 1.391891892 2.5 NA 114 
COREAD 1.453608247 4.5 0 254 
CUP 1.041666667 3.6 NA 46 
ESCA 1.307692308 5 11 99 
HNSC 1.346153846 6.3 14.5987 65 
KIRC 0.927536232 2.7 23.7273 31 
LIHC 1.5 3.6 17.6074 115 
LUSC 0.704545455 9 17.402 186 
non-LUSC 1 7.6 16.7981 1116 
OV 0.9 3.6 9.93794 16 
PAAD 1.2 2.112786 0.0006 52 
PRAD 0.830188679 3.6 7.49976 11 
SARC 1.546391753 2.5 9.32155 60 
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SKCM 0.768421053 14.4 37.039 58 
STAD 0.883116883 3.6 NA 140 
THCA 1.1875 2.5 NA 7 
THYM 1.48 1.3 NA 19 
UCEC 1.094594595 5.4 NA 11 

 
 
Supplementary Table 8. Summary of ioTNL and clinical characteristics in Yuce cohort. 

Sample TMB ioTNL Benefit DCB ORR PFS Status 

Yuce001 3.36 0 PD NDB DOR 0.9 1 
Yuce002 8.73 0 PD NDB DOR 2.2 1 
Yuce003 16.13 0 PD NDB DOR 1.2 1 
Yuce004 12.76 5.60849 SD DCB DOR 7.6 0 
Yuce005 5.38 0 PD NDB DOR 2.8 1 
Yuce006 18.13 9.29958 PR DCB ORR 3.7 0 
Yuce007 8.06 1.15252 PD NDB DOR 1.2 1 
Yuce008 1.34 0 SD DCB DOR 7.3 0 
Yuce009 2.02 1.39332 PD NDB DOR 0.9 1 
Yuce010 6.72 8.75306 SD DCB DOR 14 1 
Yuce011 15.4 3.86614 PR DCB ORR 2.7 0 
Yuce012 12.07 5.79855 CR DCB ORR 6 0 
Yuce013 11.27 2.93277 CR DCB ORR 14.8 0 
Yuce014 4.65 1.43219 SD DCB DOR 8 1 
Yuce015 9.96 0 PD NDB DOR 3 1 
Yuce016 6.64 1.64018 PD NDB DOR 2.8 1 
Yuce017 12.61 5.50955 SD DCB DOR 13 0 
Yuce018 1.34 0 PD NDB DOR 1.5 1 
Yuce019 3.35 0 PR DCB ORR 3.8 0 
Yuce020 4.02 2.21275 PD NDB DOR 3 1 
Yuce021 5.36 2.54265 PD NDB DOR 1.8 1 

 
 


