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INTRODUCTION 
 

The reward system in the brain, which is comprised  

of areas such as the ventral tegmental area (VTA), 

substantia nigra pars compacta (SNpc), nucleus 

accumbens (NAc), striatum, and prefrontal cortex 

(PFC), regulates fundamentally motivational behaviors. 

Among various neurotransmitters, dopamine (DA)  

has been investigated most intensively because it is a 

key neurotransmitter mediating reward-relevant neural 

circuitry. 

 

Dopaminergic (DAergic) neurons residing in the VTA 

and SNpc regulate response to rewards, goal-directed 

behavior and movement [1]. DA is also considered  

to have a significant influence on feeding behavior, 

since DA-deficient mice become hypophagic, which 

ultimately leads to death by starvation unless L-DOPA 

treatment is applied [2, 3]. In addition, a previous study 

using rodents has shown that VTA DAergic neurons can 

be activated by ghrelin, an appetite-promoting peptide, 

which increases food intake [4]. Additionally, DAergic 

neuron depletion of the SNpc produces animals with a 

deficit in drinking and feeding [5]. Moreover, it has also 

been suggested that DA is released from the SNpc 
during feeding in humans [6]. Therefore, the DAergic 

neurons in the VTA and SNpc play an important role in 

the regulation of feeding-related motivation [7]. 
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ABSTRACT 
 

The ventral tegmental area (VTA), substantia nigra pars compacta (SNpc) and nucleus accumbens (NAc) are 
involved in the regulation of appetite and motivational behaviors. A traditional Japanese (Kampo) medicine, 
ninjin’yoeito (NYT), has been reported to improve decreased motivation and anorexia in patients with 
Alzheimer’s disease and apathy-like model mice. Thus, NYT may affect the activities of neurons in the VTA, 
SNpc and NAc. However, little is known about the underlying mechanisms of NYT. Here, we investigated the 
effects of NYT on the electrophysiological properties of dopaminergic neurons in the VTA and SNpc, as well as 
on those of medium spiny neurons (MSNs) in the NAc (core and shell subregions), by applying the patch-clamp 
technique in the brain slices. NYT reduced the resting membrane potential of VTA and SNpc dopaminergic 
neurons. In contrast, NYT increased the firing frequency of NAc MSNs accompanied by shortened first spike 
latency and interspike interval. Furthermore, NYT attenuated the inward rectification and sustained outward 
currents. In conclusion, NYT may directly influence the excitability of dopaminergic neurons in the VTA and 
SNpc, as well as MSNs in the NAc (core and shell). NYT may modulate dopamine signals in appetite and 
motivational behaviors. 
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The accumulated evidence has shown the function of 

NAc regarding feeding behavior, motor locomotion, 

impulsivity, motivation, learning, goal-directed 

behavior, processing of emotion, and encoding value of 

rewards [8, 9]. In particular, previous studies 

demonstrated that the NAc is involved in feeding 

behavior, based on the reports that a GABA receptor 

antagonist injected into the NAc increases food intake 

in rats [7, 10–12]. In addition, since the NAc area 

interacts with the VTA and SNpc areas [7], the NAc 

can play a key role in the DAergic pathway. Indeed, 

the medium spiny neurons (MSNs), which compose 

nearly 95% of the neurons in the NAc, are received 

projections from the majority of VTA DAergic 

neurons [8, 9]. Therefore, the NAc is closely involved 

in feeding-related motivation, suggesting that the NAc 

is a noteworthy target for treating a patient with 

anorexia. 

 

A traditional Japanese (Kampo) medicine, ninjin’yoeito 

(NYT), which composed of 12 crude drugs (Rehmanniae 

Radix, Angelicae Acutilobae Radix, Atractylodis 

Rhizoma, Poria, Ginseng Radix, Cinnamomi Cortex, 

Polygalae Radix, Paeoniae radix, Citri Unshiu 

Pericarpium, Astragali Radix, Glycyrrhizae Radix and 

Schisandrae Fruits), is often prescribed in Japan for the 

treatment of declined constitution due to disease, fatigue 

and malaise, anorexia, perspiration during sleep, cold 

limbs, and anemia. Recently, NYT has been reported in 

clinical studies to ameliorate apathy, anorexia and 

cognitive dysfunction in patients with Alzheimer’s 

disease (AD) [8, 9]. Yamada et al. reported that NYT 

ameliorates decreased motivation of nest-building (as an 

indicator of goal-directed behavior) and amount of food 

intake (as an indicator of appetite) in mice with apathy-

like behaviors induced by water immersion stress [10]. 

This report also showed that some ingredients of NYT 

inhibit DA transporter (DAT) and DA degrading 

enzymes, catechol-O-methyltransferase and monoamine 

oxidase inhibitor B, suggesting that NYT may regulate 

the DA transmission in the reward system. Since 

DAergic neurons project into areas such as the PFC, 

hippocampus, NAc and striatum [11], NYT may affect 

not only the DAergic neurons but also the postsynaptic 

neurons in these regions. Considering that NYT has no 

effect on impaired responding to food reward in the 

ventral striatal D2-MSN dysfunction mice [12], the 

ventral striatum including the NAc is one of the potential 

targets for NYT. 
 

Thus, since NYT may have multiple effects on 

motivation-related functions (goal-directed behavior 

and feeding behavior), several brain regions related to 

the reward system are likely to be candidates for action 

sites of NYT. Motivation-related functions are 

controlled by DA signaling, which can be determined 

by the neuronal excitability changes of both presynaptic 

DAergic neurons and their postsynaptic neurons. 

Therefore, we considered that NYT may change the 

neuronal excitability of DAergic neurons in the VTA 

and SNpc, as well as that of MSNs in the NAc. 

However, it is unclear whether NYT can directly affect 

these neurons. In this study, in order to better 

characterize the mechanisms of NYT, we aimed to 

clarify the direct effects of NYT on VTA and SNpc 

DAergic neurons as presynaptic neurons, as well as 

NAc MSNs as postsynaptic neurons by using the patch-

clamp technique in the brain slices. 

 

RESULTS 
 

Effects of ninjin’yoeito on the electrophysiological 

properties of VTA and SNpc DAergic neurons 

 

We investigated the effect of NYT on the neuronal 

excitability of VTA and SNpc DAergic neurons in 

normal transgenic mice expressing tyrosine hydroxylase 

green fluorescence protein (TH-GFP) using the  

patch-clamp technique. Because Kampo medicines 

contain many pharmacological agents, it is difficult  

to determine the appropriate concentration for the 

experiments. Therefore, in order to clarify the 

appropriate concentration of NYT on DAergic neurons, 

we investigated the effects of low concentration NYT 

(0.1, 1 and 10 μg/mL) on VTA DAergic neurons. Low 

concentration NYT tends to decrease resting membrane 

potential (RMP), but the effects were not statistically 

significant (data not shown). However, as shown in this 

study, 100 μg/mL NYT showed a significant effect on 

DAergic neurons and thus we performed all the 

subsequent experiments in 100 μg/mL NYT. 

 

Figure 1A shows a representative RMP recording of a 

VTA DAergic neuron. NYT slightly but significantly 

reduced the RMP of VTA DAergic neurons (Figure 1B). 

A five-minute washout returned the membrane 

potential to the pre-application level. To clarify 

whether this is a VTA-specific change, we also 

examined the effects of NYT on DAergic neurons in 

the SNpc. Figure 1C shows a representative RMP 

recording of an SNpc DAergic neuron. NYT also 

slightly but significantly reduced the RMP of SNpc 

DAergic neurons (Figure 1D). This effect was also 

reversed after a 5-minute washout. Hyperpolarizing 

effect of NYT was also observed in DAergic neurons 

with spontaneous firing in the VTA and SNpc with a 

tendency to suppress firing frequency (Supplementary 

Figure 1). 

 
These results show the possibility that NYT may not 

increase the neuronal excitability of the VTA and SNpc 

DAergic neurons. 
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Effects of ninjin’yoeito on the electrophysiological 

properties of MSNs in the NAc core subregion 

 

Since NYT failed to increase the neuronal excitability of 

VTA and SNpc DAergic neurons, we next investigated 

the electrophysiological effects of NYT on the neuronal 

excitability of NAc MSNs in normal C57BL/6J mice as 

postsynaptic neurons of DAergic neurons. Since the NAc 

region is further separated into two subregions (core and 

shell) [13–15], we examined the effects of NYT on 

MSNs in both subregions. 

 

Figure 2 shows the results of MSNs in the NAc core. 

Figure 2A shows a positive current stimulation protocol 

 

 
 

Figure 1. The effects of NYT on the resting membrane potential of VTA and SNpc DAergic neurons. (A) The representative 

resting membrane potential recording of a VTA DAergic neuron. (B) The effect of NYT on the resting membrane potential of VTA DAergic 
neurons (n = 11 from eight mice). (C) The representative resting membrane potential recording of an SNpc DAergic neuron. (D) The effect of 
NYT on the resting membrane potential of SNpc DAergic neurons (n = 10 from seven mice). Error bars are expressed as mean ± SEM. 
Statistical analyses were performed by one-way RM ANOVA followed by Dunnett’s multiple comparisons test, *p < 0.05, **p < 0.01; Baseline 
vs. NYT. The bars indicate the duration of the NYT application. 
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Figure 2. The effects of NYT on the electrophysiological properties of MSNs in the NAc core subregion. (A) The protocol of 

positive current injections (50 pA increments from 0 to 400 pA, 250 msec) and the representative membrane potential recordings obtained 
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by 200 pA current injection. The relationship of (B) firing frequency, (C) first spike latency and (D) interspike interval obtained by positive 
current injections (n = 11 from seven mice). (E) The protocol of negative current injections (50 pA increments from -800 to 0 pA, 250 msec) 
and the representative membrane potential recordings obtained by negative current injections. (F) The I-V relationship obtained by negative 
current injections (n = 11 from seven mice). (G) The input resistance in -800 pA (left) and -200 pA (right) current injections (n = 11 from seven 
mice). (H) The resting membrane potential (n = 9 from seven mice). (I) The protocol of voltage pulses (10 mV increments from -70 to -40 mV, 
100 msec, holding potential = -70 mV) and the representative current recordings obtained by voltage pulses. (J) The I-V relationship obtained 
by voltage pulses (n = 5 from two mice). Error bars are expressed as mean ± SEM. Statistical analyses were performed by one-way or two-way 
RM ANOVA followed by Dunnett’s multiple comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001; Baseline vs. NYT, #p < 0.05, ##p < 0.01,  
###p < 0.001; NYT vs. Washout. The arrows indicate the time points of analysis. 
 

for the MSNs in the NAc core and its representative 

recordings obtained by 200 pA current injection. NYT 

significantly increased firing frequency in 250, 350 and 

400 pA current injections compared to the baseline 

(Figure 2B). In addition, NYT significantly shortened the 

first spike latency and interspike interval (ISI) in 250 pA 

current injection compared to the baseline (Figure 2C, 

2D). Figure 2E shows a negative current stimulation 

protocol for an inward rectification measurement and 

representative recordings obtained by the negative 

current injection. NYT significantly shifted the current-

voltage (I-V) relationship downward between -800 and -

300 pA current injections compared to the baseline 

(Figure 2F). The representative recording and the I-V 

relationship of NYT-sensitive membrane potential are 

shown in Supplementary Figure 2A. In a voltage-clamp 

mode experiment, NYT significantly inhibited inward 

currents between -110 and -100 mV voltage stimulation 

compared to the baseline (Supplementary Figure 2B, 2C). 

The inhibition is similar to the effect of inward  

rectifier potassium channel blocker, cesium chloride 

(CsCl) (Supplementary Figure 2D). In addition, NYT 

significantly raised the input resistance in -800 and -200 

pA compared to the baseline (Figure 2G). In contrast, 

there was no significant effect of NYT on the RMP of 

MSNs in the NAc core (Figure 2H). Figure 2I shows a 

protocol of voltage stimulation for MSNs in the NAc 

core and representative recordings obtained by the 

voltage stimulation. NYT significantly shifted the I-V 

relationship downward between -50 and -40 mV voltage 

stimulation compared to the baseline (Figure 2J). The 

subtraction of the currents between baseline and after 

NYT application revealed the I-V relationship of NYT-

sensitive outward currents (Supplementary Figure 2E). 

The effects of NYT on first spike latency and input 

resistance (-800 and -200 pA) were not detected after a  

5-minute washout, but the other factors were not 

completely abolished after a 5-minute washout. 

 

Effects of ninjin’yoeito on the electrophysiological 

properties of MSNs in the NAc shell subregion 

 

Figure 3 shows the results of MSNs of the NAc shell. 

Figure 3A shows representative recordings obtained by 

200 pA current injection. NYT significantly increased 

firing frequency in 200 pA current stimulation 

compared to the baseline (Figure 3B), and significantly 

shortened first spike latency and ISI in 150 and 200 pA 

current injections compared to the baseline (Figure 3C, 

3D). In contrast, ISI in 100 pA current stimulation  

was significantly lengthened by NYT. We obtained 

representative recordings by the negative current 

injection in the examination for inward rectification 

(Figure 3E). NYT significantly shifted the I-V 

relationship downward between -800 and -450 pA 

current injections compared to the baseline (Figure 3F). 

The representative recording and the I-V relationship of 

NYT-sensitive membrane potential are shown in 

Supplementary Figure 3A. In a voltage-clamp mode 

experiment, NYT significantly inhibited inward currents 

between -110 and -100 mV voltage stimulation 

compared to the baseline (Supplementary Figure 3B, 

3C). The inhibition is similar to the effect of CsCl 

(Supplementary Figure 3D). In addition, NYT 

significantly raised the input resistance to -800 and -200 

pA compared to the baseline (Figure 3G). In contrast, 

NYT tended to increase RMP compared to the baseline, 

unlike MSNs in the NAc core (Figure 3H). Figure 3I 

shows representative recordings by the voltage 

stimulation. NYT significantly shifted the I-V 

relationship downward between -50 and -40 mV voltage 

stimulation compared to the baseline (Figure 3J). The 

subtraction of the currents between baseline and after 

NYT application revealed the I-V relationship of NYT-

sensitive outward currents (Supplementary Figure 3E). 

All of the effects of NYT were not completely 

disappeared by a 5-minute washout. 

 

DISCUSSION 
 

In the present study, we demonstrated that NYT 

decreased the excitability of DAergic neurons in the 

VTA and SNpc, and enhanced the responsiveness to the 

current stimulation of MSNs in the NAc (core and 

shell). These results suggest that NYT may directly 

influence VTA and SNpc DAergic neurons and NAc 

MSNs. 
 

Approximately 95% of the NAc neurons are composed  

of MSNs, which receive DAergic neuronal projections 

from the VTA [13, 15, 16], and are activated by DA 

neurotransmission [17, 18]. The NAc is morphologically, 
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Figure 3. The effects of NYT on the electrophysiological properties of MSNs in the NAc shell subregion. (A) The representative 

membrane potential recordings obtained by 200 pA current injection. The relationship of (B) firing frequency, (C) first spike latency and  
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(D) interspike interval obtained by positive current injections (n = 11 from nine mice). (E) The representative membrane potential recordings 
obtained by negative current injections. (F) The I-V relationship obtained by negative current injections (n = 11 from nine mice). (G) The input 
resistance in -800 pA (left) and -200 pA (right) current injections (n = 11 from nine mice). (H) The resting membrane potential (n = 9 from six 
mice). (I) The representative current recordings obtained by voltage pulses. (J) The I-V relationship obtained by voltage pulses (n = 6 from 
four mice). Error bars are expressed as mean ± SEM. Statistical analyses were performed by one-way or two-way RM ANOVA followed by 
Dunnett’s multiple comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001; Baseline vs. NYT, #p < 0.05, ##p < 0.01, ###p < 0.001; NYT vs. 
Washout. The arrows indicate the time points of analysis. 

 

anatomically and functionally distinguished into core and 

shell subregions [13–15]. It is reported that core subregion 

mediates goal-directed behaviors such as spatial learning, 

reinforcement learning, responses to conditioned and 

motivational stimulation, and effortful decision-making, 

whereas shell subregion mediates encoding the value of 

stimulations such as processing hedonic or reward value, 

responding to novelty, and feeding [13, 15]. Since 

previous studies have indicated that NYT has positive 

effects on anorexia, decreased goal-directed behaviors 

and anhedonia-like traits [8, 10, 12], we investigated the 

effects of NYT on neuronal excitability in both the NAc 

core and shell. 

 

NYT increased the frequency of firings induced by the 

current injections in NAc (core and shell) MSNs 

(Figures 2B, 3B). In addition, we show that sustained 

outward currents of NAc MSNs (core and shell) were 

suppressed by NYT (Figures 2I, 2J, 3I, 3J). Although 

there are few reports regarding the sustained outward 

currents, previous studies suggested that inhibition of 

delayed rectifiers and BK channels, both of which 

mediate sustained outward currents, is responsible for 

the increase in firing frequency [18–20]. In particular, 

suppression of sustained outward currents mediated by 

delayed rectifiers has been reported to shorten the first 

spike latency [20], which is similar to our results 

(Figures 2C, 3C). The increase of input resistance by 

NYT application (Figures 2G, 3G) suggests the 

blockage of some channels including delayed rectifiers 

or BK channels. Some ingredients within NYT 

(paeonol, nobiletin, 18β-glycyrrhetinic acid) have been 

suggested to inhibit sustained outward currents 

(mediated by TEA-sensitive channels, BK channels, 

Kv1.3, and Kv2.1) [21–24]. Similarly, DA is known to 

decrease the sustained outward currents via activation 

of D1 receptors, resulting in depolarization of 

membrane potential and increasing the firing frequency 

of NAc MSNs [18, 20, 25]. Therefore, inhibition of 

sustained outward currents by NYT (or its ingredients) 

may enhance the response to DA signaling in NAc 

MSNs. 

 

NYT shifted the I-V curve downward for negative 
current injections (Figures 2F, 3F). In addition, inward 

currents in the voltage-clamp experiments were 

decreased by NYT (Supplementary Figures 2B, 2C, 3B, 

3C). These results indicate that NYT may attenuate the 

inward rectification, which is characteristic in NAc 

MSNs [26–30], suggesting that NYT may block the 

inward-rectifying potassium currents. Since classic 

inward rectifier potassium channels and G-protein-

activated inward rectifiers, both of which mediate 

inward-rectifying potassium currents, are expressed in 

the NAc [31, 32], NYT may block these potassium 

channels. Several previous studies have reported that 

DA reduces inward rectification via D1 and D2 receptor 

activation, which can increase the cellular excitability of 

NAc MSNs, resulting in increased firing frequency [19, 

33, 34]. Hence, inhibition of potassium channels 

mediating inward-rectifying currents by NYT may 

enhance DA signaling. 

 

The NAc (core and shell) MSNs project to the globus 

pallidus, VTA, SNpc, and lateral hypothalamus, whose 

projections regulate feeding behavior [7, 35, 36]. DA is 

released during various responses to rewards (in a 

moment predicting rewards by relying on cues, acting to 

obtain rewards, consuming rewards, and reacting to 

unexpected rewards) in the NAc [1, 5, 7, 13, 35, 36]. 

Specific ablation of dopamine in the NAc has been 

reported to attenuate goal-directed behavior regarding 

food [37, 38]. Moreover, the administration of D1 

antagonist in the NAc core impairs motivational 

behaviors for food rewards [39]. Mice lacking D2 

receptors show decreased food intake and impaired 

reward-related motivation [40, 41]. Conversely, 

optogenetic activation of the D2 receptor-expressing 

MSNs in the NAc increases motivation for food rewards 

[42–44]. Administration of indirect DA agonist 

amphetamine into the NAc shell induces palatable food 

motivation [45]. Thus, DA signaling in the NAc plays a 

critical role in the motivational regulation of food. 

Yamada et al. reported that NYT reverses decreased 

motivation for nest-building and reduction of food 

intake in mice with apathy-like behaviors induced by 

water immersion stress, whose effects may be exerted 

through D2 receptor activation [10]. The similarity of 

the effects on the potassium channels between DA and 

NYT found in the present study indicates the possibility 

that NYT may enhance the responsiveness of NAc 

MSNs to DA signaling, suggesting that NYT may 
increase motivation for food and goal-directed behavior. 
 

On the other hand, it should be noted whether activation 

of NAc MSNs and DA signaling leads to promotion  
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or inhibition of reward-related behaviors remains 

controversial [45–48]. These inconsistent reports may be 

due to the influence such as the heterogeneous spread of 

NAc neurons with distinct characters, the spatial gradient 

of expression of D1/D2 receptors in the NAc, and the 

environments in which the individual is placed [48–50]. 

Although NYT improves anorexia and decreased 

motivation in AD patients in the clinical study [8], the 

characteristics of the NAc MSNs in AD patients are 

required to be revealed to determine if the NAc and DA 

signaling can be involved in the underlying mechanism 

of the clinical improvement by NYT. 

 

The NAc interacts not only with the VTA and SNpc but 

also with the PFC and hippocampus. Therefore, the NAc 

has been reported to be implicated in numerous 

neurological and psychiatric disorders including AD [15]. 

Some reports have revealed that the interactions of the 

NAc to the PFC and/or hippocampus may be implicated 

in spatial cognitive function [51–53]. In addition, atrophy 

of the NAc is associated with cognitive impairment in 

AD patients [54]. Indeed, since it is reported that NYT 

ameliorates cognitive dysfunction in AD patients [8, 9], 

the increased neuronal excitability of NAc MSNs by 

NYT could contribute to the improvement of cognitive 

dysfunction. 

 

Considering the possibility that NYT improved anorexia 

and impaired motivation by directly affecting DAergic 

neurons, we investigated the effects of NYT on DAergic 

neurons in the VTA and SNpc. Our results showed that 

NYT reduced the RMP of DAergic neurons in the VTA 

and SNpc (Figure 1). Although we investigated the 

involvement of D2 autoreceptors of DAergic neurons 

(Supplementary Figure 4) and inhibitory postsynaptic 

currents (IPSCs) from GABAergic interneurons 

(Supplementary Figure 5), which are abundant in the 

VTA region, as the cause of the RMP reduction in the 

VTA, no effect was observed. This implies that there are 

other factors rather than D2 autoreceptors and IPSCs for 

the RMP lowering effect of NYT. Hesperetin, an 

ingredient of Citrus Unshiu Peel (one of the components 

of NYT), has been reported to activate opioid receptors 

[55, 56]. Activation of opioid receptors expressed in 

VTA and SNpc DAergic neurons can reduce the RMP 

and firing rate [57, 58]. Moreover, in a previous report, 

Oizumi et al. also suggested that the prevention of 

anhedonia-like traits by NYT could be induced by the 

participation of opioid signaling [12]. Therefore, 

activation of opioid receptors by hesperetin in NYT  

may contribute to the decreased RMP of DAergic 

neurons. Although other ingredients (formononetin, 

isoliquiritigenin, paeonol) are reported to activate BK 
channels or Kv1.2 [59, 60], there is no evidence that 

these channels of DAergic neurons are involved in 

regulating RMP. 

Psychostimulants such as cocaine and methamphetamine 

are widely known as drugs acting on DAergic neurons. 

Especially, methamphetamine not only blocks DAT 

but also promotes the firing frequency of DAergic 

neurons [61]. Although NYT has also been suggested 

to block DAT [10], the results of the present study 

(Figure 1) suggest that NYT may not excite DAergic 

neurons in the VTA and SNpc abnormally. Therefore, 

NYT is likely to have different characteristics from 

conventional psychotropic drugs acting on the 

DAergic pathway. Similar to the effects on DAergic 

neurons, NYT did not depolarize the RMP of NAc 

MSNs (Figures 2H, 3H). These results indicate that 

NYT may not induce abnormal excitation in NAc 

MSNs as well as DAergic neurons in a normal 

condition, suggesting that NYT may modulate 

signaling from presynaptic neurons (such as DA 

neurons) by altering the responsiveness of the 

postsynaptic neurons in the NAc. 

 

In conclusion, we reveal that NYT may directly 

influence the excitability of DAergic neurons in the 

VTA and SNpc, as well as MSNs in the NAc (core 

and shell) by investigating the effects of NYT on the 

electrophysiological properties of the neurons that 

comprise the reward system in this study. We show 

that NYT decreased the neuronal excitability of VTA 

and SNpc DAergic neurons. In contrast, we also 

demonstrate that NYT increased the frequency of 

firing induced by current stimulation of NAc MSNs 

(core and shell), which may be due to the inhibition of 

sustained outward potassium currents and inward-

rectifying potassium currents. Considering that DA 

also inhibits these currents via activation of D1 and 

D2 receptors, the inhibition of these currents by NYT 

may partly mimic a DA transmission. This indicates 

that NYT may work as a DA signaling modulator in 

the NAc. NYT may contain both excitatory and 

inhibitory ingredients for the neurons, suggesting  

that NYT could regulate the DAergic pathway 

according to physiological conditions. In this study, 

we conducted experiments only with NYT extract  

that include multi-ingredient. However, experiments 

using ingredients in NYT are also necessary to fully 

explain the action mechanism of NYT. Further  

single-ingredient studies may reveal the target 

molecules, which can clarify whether NYT influences 

neurons by acting directly on ion channels or 

indirectly through other receptors. Although this study 

is the first report to show that NYT has effects on 

VTA and SNpc DAergic neurons, as well as NAc 

MSNs, further studies of NYT ingredients are 

required to clarify its pharmacological action. Our 
findings provide us with an explanation of the action 

mechanism of NYT in improving anorexia and 

decreased motivation. 
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MATERIALS AND METHODS 
 

Animals 

 

Male C57BL/6J mice were purchased from The Jackson 

Laboratory Japan, Inc. (Yokohama, Japan). Male TH-

GFP-expressing transgenic mice were obtained from the 

Institute of Physical and Chemical Research (RIKEN 

BRC, Ibaraki, Japan) [62]. C57BL/6J mice (aged 4–8 

weeks old) and transgenic mice expressing TH-GFP 

(aged 7–34 weeks old) were used in experiments. 

C57BL/6J mice and TH-GFP-expressing transgenic 

mice were housed in a 12-hour light/dark cycle (07:00–

19:00) with conventional food (MF, Oriental Yeast Co., 

Ltd., Tokyo, Japan; CE-2, CLEA, Tokyo, Japan) and 

water ad libitum. Animal experiments with C57BL/6J 

mice were approved by the Experimental Animal  

Ethics Committees of Tsumura & Co. and animal 

experiments with TH-GFP-expressing transgenic mice 

were approved by the Institutional Animal Care and Use 

Committee of Fukushima Medical University. 

 

Preparation of brain slices 

 

C57BL/6J mice were used for the experiments targeting 

NAc MSNs and TH-GFP-expressing transgenic mice 

were used for the experiments targeting VTA and SNpc 

DAergic neurons. The mice were transcardially 

perfused with an ice-cold solution containing (in mM) 

230 sucrose, 2 KCl, 1 KH2PO4, 0.5 CaCl2, 1 MgCl2, 26 

NaHCO3, and 10 D-glucose under anesthesia, followed 

by isolation of the whole brain. In the ice-cold solution, 

coronal brain slices (200 μm thick) including the NAc 

(approximately 0.7 mm to 1.7 mm from the bregma) or 

VTA and SNpc (approximately -3.2 mm to -2.8 mm 

from the bregma) [63] were prepared using a microtome 

(Campden Instruments, Leics., UK). The slices were 

recovered for 1 h or more in room temperature artificial 

cerebrospinal fluid (aCSF) containing (in mM) 126 

NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 

21.4 NaHCO3, and 10 D-glucose, with a gas mixture of 

95% O2 and 5% CO2. 

 

Electrophysiology 

 

The brain slices were transferred to a recording chamber. 

The gassed aCSF containing 0.1% dimethyl sulfoxide 

(DMSO) was perfused continuously at 2–4 mL/min. 

Whole-cell recordings were performed using an EPC-

800 patch-clamp amplifier (HEKA Electronics, 

Lambrecht/Pfalz, Germany) filtered at 0.7 kHz for IPSC 

recordings or 1 kHz for the other recordings. The data 

were digitized with an analog-to-digital converter 
(Molecular Devices, CA, USA) and stored on a 

computer using Clampex 10 software (Molecular 

Devices). Patch electrodes (5–11 MΩ) were filled with 

an internal solution containing (in mM) 120 K-

gluconate, 10 KCl, 10 HEPES, 5 EGTA, 0.3 CaCl2, 1 

MgCl2, 2 Mg-ATP, and 1 Na-GTP at pH 7.3 adjusted 

with KOH. The electrophysiological experiments were 

performed at room temperature (21–27° C). Whole-cell 

patch recordings were performed for all recordings. 

Once the whole-cell configuration was acquired, all 

records were initiated after the stabilization period. Drugs 

were applied to each brain slice via bath perfusion. 

 

The core and shell subregion of the NAc were identified 

with the anterior commissure and lateral ventricle as 

landmarks based on the mouse brain atlas [63]. Before 

the evaluation of NYT, NAc MSNs were identified by 

the following characteristics: medium-sized soma, inward 

rectification, a slow-ramping subthreshold depolarization 

in response to low-magnitude positive current injection, 

prominent spike afterhyperpolarization and/or an RMP 

lower than -65 mV [26–29]. VTA and SNpc DAergic 

neurons of transgenic mice expressing TH-GFP were 

identified with GFP fluorescence under a fluorescence 

microscope. 

 

Data recordings and analysis for VTA and SNpc 

DAergic neurons 

 

All data were analyzed with clampfit software 10 

(Molecular Devices). The membrane potential was 

recorded in a current-clamp mode. 

 

In the RMP recordings, we compared the RMP at 

baseline (for 1 minute before NYT application), after  

2-minute NYT treatment, and after a 5-minute washout. 

We compared the RMP after sulpiride application (for  

1 minute before additional NYT application) and after 

1-minute treatment of NYT + sulpiride. The firing 

frequency was compared between baseline (for  

1 minute before NYT application) and after 1-minute 

treatment of NYT. 

 

The IPSCs with -60 mV holding voltage in a  

voltage-clamp mode were recorded in the presence of 

20 μM 6-cyano-7-nitroquinoxaline-2,3-dione disodium 

salt (CNQX) and 50 μM D-(−)-2-amino-5-

phosphonopentanoic acid (AP5). Only > 5 pA events 

were accepted for IPSC analysis. The frequency and 

amplitude of IPSCs were compared between baseline 

(for 1 minute before NYT application) and after 1-minute 

treatment of NYT. The IPSCs were identified by 

applying 100 μM picrotoxin after each recording. 

 

Data recordings and analysis for NAc MSNs 
 

All data were analyzed with clampfit software 10 

(Molecular Devices). The membrane potential was 

recorded in a current-clamp mode.   
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A frequency-current relationship was obtained by 

positive current stimulation from 0 pA to 400 pA in 

increments of 50 pA steps as described previously, but 

with a minor modification [19]. The first spike latency 

was measured as the time from the onset of current 

stimulation to the first action potential peak. The ISI 

was measured as the time between action potentials. In 

the case of recordings without action potentials, 250 

msec (duration of current stimulation) was assigned for 

the first spike latency and the ISI. The input resistance 

was measured by 250 msec negative currents from -800 

to 0 pA in increments of 50 pA, as described previously 

[19]. The I-V relationship was analyzed at 230 msec 

after the initial current injection. Input resistance in the 

non-rectified range was calculated from the membrane 

potential in response to -200 pA hyperpolarizing pulses 

and input resistance in the rectified range was calculated 

from the membrane potential in response to the most 

hyperpolarizing current pulse (-800 pA) injected into 

the MSNs [29]. The membrane potential was recorded 

before NYT treatment (baseline), after 5–15-minute 

NYT treatment, and after a 5-minute washout. NYT-

sensitive membrane potential was isolated by 

subtraction of the after-NYT membrane potential from 

the before-NYT membrane potential. 

 

For the measurement of currents in voltage-clamp 

mode, the cells were held at -70 mV. The inward 

currents were evoked by 100 msec voltage 

depolarization to voltage values between -110 and -

70 mV in 10 mV increments. The outward currents were 

evoked by 100 msec voltage depolarization to voltage 

values between -70 and -40 mV in 10 mV increments. 

The amplitude of the sustained outward currents was 

analyzed at 85 msec from initial voltage stimulation. 

Each current was calculated by subtracting the leak-

current of each voltage step. The currents were recorded 

before NYT treatment (baseline), after 5–15-minute 

NYT treatment, and after a 5-minute washout. Also, the 

currents were recorded before CsCl treatment 

(baseline), after 3–15-minute CsCl treatment. NYT-

sensitive currents were isolated by subtraction of the 

after-NYT current from the before-NYT current. These 

currents were also calculated by subtracting the leak-

current of each voltage step. 

 

Drugs 

 

NYT (Lot No. 362113100 and 372176700) was 

obtained from Tsumura & Co. (Tokyo, Japan), 

manufactured by spray-drying a hot water extract of a 

mixture of 12 crude drugs: The Japanese 

Pharmacopoeia (JP) Rehmannia Root (4.0 g), JP 
Japanese Angelica Root (4.0 g), JP Atractylodes 

Rhizome (4.0 g), JP Poria Sclerotium (4.0 g), JP 

Ginseng (3.0 g), JP Cinnamon Bark (2.5 g), JP Polygala 

Root (2.0 g), JP Peony Root (2.0 g), JP Citrus Unshiu 

Peel (2.0 g), JP Astragalus Root (1.5 g), JP Glycyrrhiza 

(1.0 g) and JP Schisandra Fruit (1.0 g). Plant materials 

were authenticated by identification of external 

morphology and marker compounds for plant specimens 

according to the methods of the Japanese Pharmacopeia 

and company standards. Extract quality was 

standardized based on the good manufacturing practice 

as defined by the Ministry of Health, Labour, and 

Welfare of Japan. NYT (0.1, 1, 100 μg/mL) was 

suspended in aCSF (including 0.1% DMSO) and used 

after filtering (0.22 μm) in the electrophysiological 

experiments. Sulpiride (D2 receptor antagonist, 1 μM), 

CNQX (20 μM), AP5 (50 μM) and CsCl (1 mM) were 

dissolved in aCSF (including 0.1% DMSO) in the 

electrophysiological experiments. 

 

Statistical analysis 

 

All data were expressed as mean ± SEM. All statistical 

analysis was performed using Prism 7 (GraphPad, San 

Diego, California, USA). The spike frequency, first 

spike latency, ISI, membrane potential in negative 

current injection and amplitude of inward/outward 

currents (in the experiments of NAc MSNs) were 

analyzed using two-way repeated-measures (RM) 

analysis of variance (ANOVA) followed by Dunnett’s 

multiple comparisons test. The input resistance (in the 

experiments of NAc) and RMP (in the experiments of 

NAc, VTA and SNpc) were analyzed using one-way 

RM ANOVA followed by Dunnett’s multiple 

comparisons test. The RMP (in the experiment using 

sulpiride), as well as frequency and amplitude of IPSCs 

were analyzed using paired t-test. The firing frequency 

of VTA and SNpc DAergic neurons was analyzed using 

one-way RM ANOVA followed by Dunnett’s multiple 

comparisons test or paired t-test. The inward currents 

(in the experiment using CsCl) were analyzed using 

two-way RM ANOVA followed by Bonferroni’s 

multiple comparisons test. A value of P < 0.05 was 

considered to be statistically significant. 

 

Abbreviations 
 

VTA: ventral tegmental area; SNpc: substantia nigra pars 

compacta; NAc: nucleus accumbens; PFC: prefrontal 

cortex; DA: dopamine; MSN: medium spiny neuron; 

NYT: ninjin’yoeito; AD: Alzheimer’s disease; DAT: 

dopamine transporter; TH-GFP: tyrosine hydroxylase 

green fluorescence protein; RMP: resting membrane 

potential; ISI: interspike interval; I-V: current-voltage; 

CsCl: cesium chloride; IPSC: inhibitory postsynaptic 

current; aCSF: artificial cerebrospinal fluid; DMSO: 
dimethyl sulfoxide; CNQX: 6-cyano-7-nitroquinoxaline-

2,3-dione disodium salt; AP5: D-(−)-2-amino-5-

phosphonopentanoic acid. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The effects of NYT on the firing DAergic neurons in the VTA and SNpc. (A) The representative 

membrane potential recordings of firing DAergic neuron in the VTA before and after NYT (100 μg/mL) application. (B) The effect of NYT (0.1, 
1, 100 μg/mL) on the firing frequency of VTA DAergic neurons (n = 3 from three mice). (C) The representative membrane potential recordings 
of the firing DAergic neuron in the SNpc before and after NYT (100 μg/mL) application. (D) The effect of NYT (100 μg/mL) on the firing 
frequency of SNpc DAergic neurons (n = 3 from three mice). Error bars are expressed as mean ± SEM. Statistical analyses were performed by 
(B (left)) one-way RM ANOVA followed by Dunnett’s multiple comparisons test and (B (right) and D) paired t-test. 
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Supplementary Figure 2. The effects of NYT on the electrophysiological properties of MSNs in the NAc core subregion. (A) The 

representative NYT-sensitive membrane potential recording and the I-V relationship of NYT-sensitive membrane potential (n = 11 from seven 
mice). (B) The protocol of voltage pulses (10 mV increments from -110 to -70 mV, 100 msec, holding potential = -70 mV) for inward currents 
and the representative current recordings obtained by voltage pulses. The I-V relationship obtained by the voltage pulses (n = 5 from two 
mice). (C) The representative NYT-sensitive inward current recording and the I-V relationship of NYT-sensitive currents by voltage pulses (n = 
5 from two mice). (D) The representative inward current recordings before and after CsCl application and the I-V relationship obtained by the 
voltage pulses (n = 4 from four mice). (E) The representative NYT-sensitive outward current recording and I-V relationship obtained by 
voltage pulses (n = 5 from two mice). The NYT-sensitive membrane potential and inward/outward currents were obtained by subtracting the 
trace after NYT application from the trace of baseline. Error bars are expressed as mean ± SEM. Statistical analyses were performed by (B) 
two-way RM ANOVA followed by Dunnett’s multiple comparisons test (**p < 0.01, ***p < 0.001; Baseline vs. NYT) or (D) two-way RM ANOVA 
followed by Bonferroni’s multiple comparisons test (*p < 0.05, **p < 0.01, ***p < 0.001; Baseline vs. CsCl). The arrows indicate the time 
points of analysis. 
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Supplementary Figure 3. The effects of NYT on the electrophysiological properties of MSNs in the NAc shell subregion.  
(A) The representative NYT-sensitive membrane potential recording and the I-V relationship of NYT-sensitive membrane potential (n = 11 
from nine mice). (B) The representative current recordings and the I-V relationship obtained by voltage pulses (n = 6 from four mice). (C) The 
representative NYT-sensitive inward current recording and the I-V relationship by voltage pulses (n = 6 from four mice). (D) The 
representative inward current recordings before and after CsCl application and the I-V relationship obtained by voltage pulses (n = 4 from 3 
mice). (E) The representative NYT-sensitive outward current recording and I-V relationship obtained by voltage pulses (n = 6 from four mice). 
The NYT-sensitive membrane potential and inward/outward currents were obtained by subtracting the trace after NYT application from the 
trace of baseline. Error bars are expressed as mean ± SEM. Statistical analyses were performed by (B) two-way RM ANOVA followed by 
Dunnett’s multiple comparisons test (**p < 0.01, ***p < 0.001; Baseline vs. NYT) or (D) two-way RM ANOVA followed by Bonferroni’s 
multiple comparisons test (*p < 0.05, ***p < 0.001; Baseline vs. CsCl). The arrows indicate the time points of analysis. 
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Supplementary Figure 4. The effects of NYT on dopamine D2 autoreceptor of VTA DAergic neurons. (A) The representative 

resting membrane potential recording of VTA DAergic neuron after sulpiride and NYT application. The bars indicate the duration of sulpiride 
or NYT application. (B) The resting membrane potential of VTA DAergic neurons after sulpiride and NYT application in TH-GFP mice. *p < 0.05; 
sulpiride vs. sulpiride + NYT (n = 4 from three mice, paired t-test). Error bars are expressed as mean ± SEM. 
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Supplementary Figure 5. The effects of NYT on IPSCs of VTA DAergic neurons. (A) The representative IPSC recording of  

VTA DAergic neuron after NYT application. The bars indicate the duration of CNQX, AP5 or NYT application. (B) Frequency and  
(C) amplitude of IPSC inputs into the VTA DAergic neurons after NYT application. (n = 7 from three mice, paired t-test). Error bars are 
expressed as mean ± SEM. 


