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INTRODUCTION 
 

Lung cancer (LC) is one of the most common 

malignant tumors worldwide [1]. In 2018, there were 

more than 2 million new cases, accounting for the 

incidence of about 11.6% of total diagnosed cancer 

cases [2]. Especially in countries or regions with larger 

tobacco production and consumption, the incidence of 

LC has been increasing rapidly [3]. For example, the 

annual growth percentage of LC cases is 2%-3% in 

recent years in China [3]. In the UK, the overall LC 

incidence rate has increased by 4%, and increased 

rapidly by 18% in females between 2003-2005 and 

2012-2014 [4]. However, the overall survival (OS) rate 

of LC is very poor, and the 5-year OS rate is not more 

than 20% [1]. 
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ABSTRACT 
 

Accumulated evidence shows that tumor microenvironment plays crucial roles in predicting clinical outcomes 
of lung adenocarcinoma (LUAD). The current study aimed to identify some potentially prognostic signatures by 
systematically revealing the transcriptome characteristics in LUADs with differing immune phenotypes. LUAD 
gene expression data were retrieved from the public TCGA and GEO databases, and the transcriptome 
characteristics were systematically revealed using a comprehensive bioinformatics method including single-
sample gene set enrichment analysis, differentially expressed gene (DEG) analysis, protein and protein 
interaction (PPI) network construction, competitive endogenous RNA (ceRNA) network construction, weighted 
gene coexpression network analysis and prognostic model establishment. Finally, 1169 key DEGs associated 
with LUAD immune phenotype, including 88 immune DEGs, were excavated. Five essential and eight immune 
essential DEGs were separately identified by constructing two PPI networks based on the above DEGs. Totals of 
1085 key DElncRNAs and 45 key DEmiRNAs were excavated and one ceRNA network consisting of 26 DEmRNAs, 
3 DEmiRNAs and 57 DElncRNAs were established. The most significant gene coexpression module (cor=0.63 and 
p=3e-55) associated with LUAD immune phenotypes and three genes (FGR, BTK, SPI1) related to the immune 
cell infiltration were identified. Three robust prognostic signatures including a 9-lncRNA, an 8-lncRNA and an 8-
mRNA were established. The areas under the curves of 5-year correlated with overall survival rate were 
separately 0.7319, 0.7228 and 0.713 in the receiver operating characteristic curve. The findings provide novel 
insights into the immunological mechanism in LUAD biology and in predicting the prognosis of LUAD patients. 
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Non-small cell lung cancer (NSCLC) is the most 

common LC histological type, constituting about 90% of 

all LC cases [5]. Lung adenocarcinoma (LUAD) is the 

major NSCLC subtype, representing more than 50% of 

all NSCLC cases in recent years and causing more than 

six hundred thousand deaths worldwide each year [5, 6]. 

Currently, the prognosis and treatment of LUAD patients 

are assessed mainly based on the tumor node metastasis 

(TNM) staging system [4]. However, the clinical 

outcomes vary greatly among patients within the same 

TNM stage on account of the high heterogeneity in 

LUADs, and the predictive values obtained from the 

pathological characteristics are clinically limited in 

predicting the survival [7]. Recently, some molecular 

features implicated in LUAD have been uncovered, and 

a few genes have been also used to evaluate the 

prognosis as potential predictors and combat LUAD as 

drug targets, such as epidermal growth factor receptor 

(EGFR) gene and tumor protein 53 (TP53) gene [8, 9]. 

In recent years, the accumulated evidence indicates that 

the tumor microenvironment (TME) play a key role in 

tumor initiation and progression, and can better predict 

the clinical outcome and assess the therapeutic efficacy 

than the TNM system [5, 10]. Especially, the distinct 

immune landscape of tumor-infiltrating immune cells in 

the tumoural niche can lead to the different prognoses 

and treatment responses [11], which demonstrates that 

the immunophenotype can be used to estimate the 

prognosis as an independent component in the 

classification system [12]. Presently, the comprehensive 

studies on the immunological characteristics of LUAD 

are still lacking based on the large-scale gene expression 

profiles. 

 

In the current study, a large number of LUAD-related 

gene expression profiles were retrieved from the 

public TCGA database, and the molecular features in 

LUAD with differing immunity were systematically 

analyzed using a comprehensive bioinformatics 

method, including the evaluation for the abundance of 

immune cells by single sample gene set enrichment 

analysis (ssGSEA), the screening of key differentially 

expressed gene (DEG) via differentially expressed 

gene analysis (DEGA), the investigation of key  

gene function by functional enrichment analysis,  

the identification of gene coexpression module  

by weighted gene coexpression network analysis 

(WGCNA), the elucidation of interactive relationships 

among genes via protein and protein interaction (PPI) 

network, the revelation of regulatory relationships 

among ceRNAs through competitive endogenous RNA 

network (ceRNA) and the prediction of prognostic 

model on the basis of univariate and multivariate Cox 
regression models. Finally, we systematically revealed 

the transcriptome characteristics of LUADs with 

differing immune phenotypes and built three robust 

prognostic signatures to predict the prognoses of 

LUAD patients. 

 

RESULTS 
 

The flow chart of systematic bioinformatics analysis is 

displayed in Figure 1 in the current study. The basic 

steps are outlined as follows. (1) LUAD gene 

expression datasets including mRNA, lncRNA and 

miRNA and normal lung tissue samples were retrieved 

from the TCGA database. (2) LUAD patients were 

clustered into two subgroups or three subgroups 

according to the infiltration levels of immune cells 

using the ssGSEA method and the rationality of 

grouping patients was evaluated. (3) Two subgroups 

were separately the high and low immune infiltration 

subgroups and DEGs were identified between two 

immune infiltration subgroups. Further, DEGs were 

identified between the LUAD and normal lung tissues. 

The key DEGs were identified by an overlap analysis. 

(4) Three subgroups were separately the high, 

intermediate and low immune infiltration subgroups, 

and gene coexpression modules associated with immune 

phenotype were identified. (5) Three PPI networks were 

separately constructed on the basis of key DEGs, 

immune DEGs and genes in the most significant 

correlation module with immune phenotype. The 

essential genes were respectively identified using the 

molecular complex detection algorithm and centrality 

method in three PPI networks. (6) On the basis of  

the ceRNA hypothesis, one ceRNA network was 

constructed, and key ceRNAs were identified according 

to the degrees of all nodes in the ceRNA network. (7) 

The pivotal genes identified in each step were 

performed the survival analysis on the basis of 

univariate and multivariate Cox regression models. (8) 

The predictive performances of two prognostic 

signatures were evaluated using two independent 

datasets, respectively. 
 

Immune phenotype landscape in the TME of LUAD 
 

To assess the diverse immune responses in LUAD, the 

infiltration levels of 29 immune-related terms were 

assessed using the ssGSEA approach. The LUAD 

samples were divided into 2 immune infiltration 

subgroups (high immune infiltration: 418; low immune 

infiltration: 79) according to the immune infiltration 

(Figure 2A). The immune score, estimate score and 

stromal score in the high immune infiltration subgroup 

were significantly higher than those in the low immune 

infiltration subgroup (Kruskal-Wallis test, all p<0.001) 

(Figure 2B). Oppositely, the tumor purity score in the 
high immune infiltration subgroup was significantly 

lower than that in the low immune infiltration subgroup 

(Kruskal-Wallis test, p<0.001) (Figure 2B). This result 
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Figure 1. The flow chart of systematic bioinformatics analysis. In this study, a comprehensive bioinformatics method was used to 

reveal the transcriptome characteristics related to the LUADs with differing immune phenotypes and identify the prognostic signatures 
predicting the OS of LUAD patients, including ssGSEA, PPI network, WGCNA, ceRNA network, and survival analysis on the basis of univariate 
and multivariate Cox models. The predictive performances of two prognostic signatures were evaluated using two independent datasets. 
LUAD, lung adenocarcinoma; TCGA, the cancer genome atlas; ssGSEA, single-sample gene set enrichment analysis; PPI, protein and protein 
interaction; WGCNA, weighted gene coexpression network analysis; ceRNA, competitive endogenous RNA; GO, gene ontology; DO, disease 
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene; LASSO, least absolute shrinkage and 
selection operator; OS, overall survival; ROC, receiver operating characteristic. 
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Figure 2. Immune landscape of LUAD and the TME characteristics. (A) Unsupervised clustering of LUAD patients from the TCGA 

cohort using ssGSEA scores from immune cell types. The “StromalScore” is the stromal signature that was designed to capture the presence 
of stroma in the tumor tissue. The “ImmuneScore” is the immune signature that aimed to represent the infiltration of immune cells in the 
tumor tissue. The “ESTIMATEScore” is the score combined by the stromal and immune scores. The “TumorPurity” is the tumor purity 
calculated by the nonlinear least squares method based on the ESTIMATEScore. The “Subtype” is the two clusters that were divided in the 
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terms of the immune infiltration. The Immunity_H and Immunity_L subtypes showed the high and low immune infiltration, separately.  
(B) The ssGSEA scores in the differing TME immune phenotypes. The high immune infiltration group (Immunity_H) means the high 
StromalScore, ImmuneScore, ESTIMATEScore and low TumorPurity (all p<0.001). (C) Interaction of the TME immune cell types. The immune-
related terms were clustered into 4 clusters according to the correlations among different immune-related terms. (D) The expressions of HLA 
genes in differing TME immune phenotypes. All HLA genes had significant differences in expression level between the high and low immune 
infiltration groups. (E) The expressions of CD274 gene in differing TME immune phenotypes. The expression of CD274 gene in the high 
immune infiltration group was significantly higher than that in the low immune infiltration group. (F) The fractions of the TME immune cells. 
The fractions of 8 immune cells had significant differences in two immune infiltration subgroups. (G) The associations of four immune cell 
types with overall survival. The high infiltration of aDCs, HLA, Mast_cells and T_cell_co.inhibition resulted in a higher OS of LUAD patients, 
respectively. (H) The relationships of immune infiltration status and survival status. The LUAD patients in the high immune infiltration group 
had a higher survival rate. (I) Responses of LUAD patients with differing TME immune phenotypes to immune therapy. The LUAD patients in 
the high immune infiltration group had significant response to anti-PD1-R. LUAD, lung adenocarcinoma; TME, tumor microenvironment; 
TCGA, the cancer genome atlas; ssGSEA, single-sample gene set enrichment analysis; OS, overall survival. 
 

indicates that the high infiltration subgroup has a higher 

proportion of immune and stromal cells, while the low 

infiltration subgroup has a higher proportion of tumor 

cells. Using the K-means cluster and hierarchical cluster 

methods, a 29-immune-related term network was 

constructed, depicting a comprehensive landscape of 

immune-related term interactions. The immune-related 

terms were clustered into 4 clusters in the immune-

related term network, and the correlations were showed 

in Figure 2C among different immune-related terms. 

Notably, all HLA genes were significantly highly 

expressed in the high immune infiltration subgroup 

(unpaired t-test, all p<0.001) (Figure 2D). Moreover, 

the common immunotherapeutic target gene CD274 

(PD-L1) was also found to significantly highly 

expressed in the high infiltration subgroup (unpaired t-

test, p<0.001) (Figure 2E). The comparison of immune 

cell subsets showed that dendritic cells resting 

(p<0.001), macrophages M1 (p<0.001), mast cells 

activated (p<0.01), mast cells resting (p<0.01), T cells 

CD4 memory activated (p<0.001) and T cells CD8 

(p<0.001) had higher proportions in the high immune 

infiltration subgroup, while B cells naive (p<0.001) and 

dendritic cells activated (p<0.05) had lower proportions 

(Figure 2F). Survival analysis showed that aDCs 

(p=0.04099), HLA (p=0.02187), Mast_cell (p=0.01491) 

and T_cell_co.inhibition (p=0.02161) were significantly 

related to the overall survival (OS) of LUAD patients, 

and the higher immune score resulted in a higher OS 

rate (Figure 2G). Survival status showed that the alive 

patients in the high immune infiltration subgroup had a 

higher percentage than those in the low immune 

infiltration subgroup (67.67% vs 58.97%, Figure 2H). 

 

To predict the clinical responses of LUAD patients with 

differing immune phenotypes to immune checkpoint 

blockade, we compared the expression profiles of 

LUAD patients that responded to immunotherapies 

between two immune infiltration subgroups. The result 
was observed that the patients in the high immune 

infiltration subgroup were more promising to respond to 

anti–PD-1 therapy (high immune infiltration subgroup: 

Bonferroni corrected p=0.008; low immune infiltration 

subgroup: Bonferroni corrected p=1.000) (Figure 2I), 

while the responds of patients to anti-CTLA4 therapy in 

two immune infiltration subgroups had no significant 

difference (both immune infiltration subgroups: 

Bonferroni corrected p=1.000). 

 

Gene alteration landscape of LUADs with differing 

TME immune phenotypes 
 

To investigate the gene alteration between the high and 

low immune infiltration subgroups, a gene alteration 

landscape was analyzed. The alteration landscapes of top 

20 genes with higher alterations were showed in Figure 

3A, 3B in two immune infiltration subgroups. Top 5 

genes with the high alteration rate were TP53, TTN, 

CSMD3, MUC16 and RYR2 in two immune infiltration 

subgroups, and the missense mutation was the most 

important alteration type (Figure 3A, 3B). TP53 and TTN 

ranked separately first in the high and low immune 

infiltration subgroups, constituting 48% and 55% of 

alteration rates. The 4 (TP53, TTN, MUC16, CSMD3) 

and 1 (RYR2) of 5 genes were significantly upregulated 

and downregulated in LUAD tissues (p<0.001 or 0.01, 

Figure 3C). There were lower correlations in expression 

among five genes between LUAD and normal lung 

tissues (Figure 3D). Except the significant high 

expression of RYR2 gene (p<0.001), the expressions of 

the remaining four genes had no significant differences 

between two immune infiltration subgroups (Figure 3E). 

The expressions of five genes had lower correlations 

between two immune infiltration subgroups (Figure 3F). 

The expressions of five genes were significantly related 

to the age (p<0.05) and T stage (p<0.01) (Figure 3G). 

 

Key differentially expressed gene screening in  

LUADs with differing TME immune phenotypes and 

functional analysis 
 

To identify key genes between the high and low immune 

infiltration subgroups, a DEGA was implemented. 

According to the statistical significance thresholds of 
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Figure 3. Mutation landscape of the TME immune phenotype. (A) Main mutant genes in the high immune infiltration group. TP53, 
TTN, MUC16, CSMD3 and RYR2 are the main mutant genes. (B) Main mutant genes in the low immune infiltration group. TTN, TP53, 
CSMD3, MUC16 and RYR2 are the main mutant genes. (C) The expressions of the top five mutant genes between LUAD and normal tissues. 
The expressions of five genes had significant differences between LUAD and normal tissues. (D) The expression correlations among the  
top five mutant genes. The correlations among the top five mutant genes were low in expressions. (E) The expressions of the top five 
mutant genes between the high and low immune infiltration groups. The expression of RYR2 gene had significant difference between two 
groups. (F) The expression correlations of the top five mutant genes in two immune infiltration groups. The correlations among the top five 
mutant genes were low in expressions. (G) The associations of the top five mutant genes with clinical features in the TME immune 
phenotype. The expressions of these genes were significantly associated with T stage and age. TME, tumor microenvironment; LUAD, lung 
adenocarcinoma. 
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|LogFC|>1 and p<0.05, totals of 1791 DEmRNAs 

including 845 upregulated and 946 downregulated 

were identified between the high and low immune 

infiltration subgroups (Figure 4A). Further, 5587 

DEmRNAs consisting of 3724 upregulated and 1863 

downregulated were identified between the LUAD 

tissues and normal lung tissues (Figure 4B). An 

overlap analysis showed that totals of 1169 DEmRNAs 

were common and were identified as key genes related 

to the immunophenotype of LUAD (Figure 4C and 

Supplementary Table 1). Among these common 

DEmRNAs, 190 DEmRNAs were significantly 

upregulated in the high infiltration subgroup and in the 

LUAD tissue. 653 DEmRNAs were significantly 

downregulated in the high infiltration subgroup and 

upregulated in the LUAD tissue. 285 DEmRNAs were 

significantly upregulated in the high infiltration 

subgroup and downregulated in the LUAD tissue, and 

41 DEmRNAs were significantly downregulated in the 

high infiltration subgroup and in the LUAD tissue 

(Figure 4C). These genes were mainly associated with 

some immune KEGG pathways, such as cytokine-

cytokine receptor interaction (Term ID: hsa04060), IL-

17 signaling pathway (Term ID: hsa04657) and 

chemokine signaling pathway (Term ID: hsa04062) 

(Figure 4C). 

 

To further understand the functions of the 1169 DEGs, 

a comprehensive functional analysis was performed. 

GO analysis showed that the 475 upregulated DEGs in 

the high immune infiltration group were significantly 

enriched within 112 GO BP terms (adjusted p<0.0001), 

and the top 5 BPs were separately neutrophil activation 

involved in immune response (GO:0002283, adjusted 

p=1.49E-17), neutrophil activation (GO:0042119, 

adjusted p=1.49E-17), neutrophil mediated immunity 

(GO:0002446, adjusted p=1.49E-17), neutrophil 

degranulation (GO:0043312, adjusted p=1.82E-17) and 

regulation of inflammatory response (GO:0050727, 

adjusted p=3.90E-11) (Table 1). Five KEGG pathways 

were significantly enriched, and the 5 KEGG pathways 

were separately staphylococcus aureus infection  

(Term ID: hsa05150, adjusted p=3.97E-06), viral 

protein interaction with cytokine and cytokine  

receptor (Term ID: hsa04061, adjusted p=3.97E-06), 

cytokine-cytokine receptor interaction (Term ID: 

hsa04060, adjusted p=3.97E-06), chemokine signaling 

pathway (Term ID: hsa04062, adjusted p=5.98E-05) 

and osteoclast differentiation (Term ID: hsa04380, 

adjusted p=5.98E-05) (Table 1). Twenty-one DO  

terms were significantly enriched, and the top 5 DO 

terms were separately skin disease (DO ID:37, 

adjusted p=6.01E-10), integumentary system disease 
(DO ID:16, adjusted p=3.30E-09), lung disease  

(DO ID:850, adjusted p=6.39E-09), dermatitis (DO 

ID:2723, adjusted p=6.39E-09) and chronic obstructive 

pulmonary disease (DO ID:3083, adjusted p=3.51E-

08) (Table 1). 
 

The 694 downregulated DEGs in the high immune 

infiltration group were significantly enriched within 5 

BPs and 2 KEGG pathways (Table 1). The 5 BPs were 

separately detection of chemical stimulus involved in 

sensory perception of bitter taste (GO:0001580, 

adjusted p=2.76E-08), sensory perception of bitter taste 

(GO:0050913, adjusted p=5.85E-08), detection of 

chemical stimulus involved in sensory perception of 

taste (GO:0050912, adjusted p=7.55E-08), sensory 

perception of taste (GO:0050909, adjusted p=9.95E-07) 

and neuron fate commitment (GO:0048663, adjusted 

p=4.89E-06). The 2 KEGG pathways were separately 

neuroactive ligand-receptor interaction (Term ID: 

hsa04080, adjusted p=4.95E-11) and taste transduction 

(Term ID: hsa04742, adjusted p=4.98E-09). No DO 

terms were significantly enriched. 

 

PPI network construction and key gene identification 

in LUADs with differing immune phenotypes 
 

To reveal the interactive relationships and identify key 

genes among the 1169 DEGs encoding proteins, a PPI 

network was constructed. At the highest confidence 

(0.900), 465 of 1169 DEGs had 2152 gene-gene 

interactions and a PPI network consisting of 465 nodes 

and 2152 edges was established (Figure 4D). One 

highly correlated module (score: 25.787) with 123 

nodes and 1573 edges was extracted from the whole 

PPI network according to the topological features 

(Figure 4E). Seven types of centrality scores for each 

gene in the module were calculated, and in terms of 

the scores for all genes obtained by each centrality 

method the top 10 genes with the highest score  

were identified (Table 2). The intersections of the  

top 10 genes from 7 centrality methods were 

separately FPR2, KNG1, GNGT2, ADCY8 and  

PPBP, and were identified as the essential genes 

associated with the LUAD immune phenotype.  

The five essential genes were primarily related to  

the G protein-coupled receptor signaling pathway 

(GO:0007186, strength:1.19, FDR:0.0192). Four genes 

including FPR2, GNGT2, ADCY8 and PPBP were 

significantly downregulated in the LUAD tissues (all 

p<0.001) (Figure 4F), and had lower correlations in 

expression (Figure 4G). An expression analysis based 

on RNA-seq data from 20 transcriptomes of 10 LUAD 

patients showed that the 4 genes were significantly 

downregulated in the LUAD tissues (paired t-test 

p<0.05 or 0.01 or 0.001, Figure 4H), which verified 

the expression results of four genes obtained from 

TCGA RNA-seq data. The expressions of four genes 

were not significantly related to the OS of the LUAD 

patients. 
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Figure 4. Differentially expressed gene identification and analysis. (A) The distribution of differentially expressed mRNAs between 

the high and low infiltration groups. Totals of 1791 DEmRNAs (845 upregulated and 946 downregulated) were identified according to the 
|LogFC|>1 and p<0.05. (B) The distribution of differentially expressed mRNAs between the LUAD and normal tissues. Totals of 5587 
DEmRNAs (3724 upregulated and 1863 downregulated) were identified according to the |LogFC|>1 and p<0.05. (C) Key DEmRNAs 
identification and KEGG enrichment analysis. 1169 DEmRNAs were common in two types of DEmRNA sets from the comparison between the 
high and low infiltration groups and between the LUAD and normal lung tissues. These gene mainly involved in some immune KEGG 
pathways including cytokine-cytokine receptor interaction and IL-17 signaling pathway. (D) PPI network construction of key genes encoding 
proteins. A PPI network with 465 nodes and 2152 edges was established. (E) Identification of highly corelated module with the highest score. 
One module with 123 nodes and 1573 edges was identified. (F) The expression analysis of five genes between the LUAD and normal lung 
tissues. The expressions of four genes including FPR2, GNGT2, ADCY8 and PPBP were significantly different between the LUAD and normal 
tissues. (G) The expression correlations among four essential genes. There were lower correlations in expression among four genes. (H) The 
expression analysis of four genes based on real transcriptome data. The expressions of four genes had significant differences between the 
LUAD and normal tissues. LUAD, lung adenocarcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed 
gene; PPI, protein and protein interaction; FPKM, fragments per kilobase of exon model per million mapped fragments. 
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Table 1. Functional analysis of DEmRNAs encoding proteins. 

ID Description GeneRatio pvalue p.adjust 

Upregulated GO BP terms 

GO:0002283 neutrophil activation involved in immune response 52/416 4.39E-21 1.49E-17 

GO:0042119 neutrophil activation 52/416 1.10E-20 1.49E-17 

GO:0002446 neutrophil mediated immunity 52/416 1.20E-20 1.49E-17 

GO:0043312 neutrophil degranulation 51/416 1.95E-20 1.82E-17 

GO:0050727 regulation of inflammatory response 42/416 5.23E-14 3.90E-11 

Upregulated KEGG pathways 

hsa05150 staphylococcus aureus infection 16/242 2.06E-08 3.97E-06 

hsa04061 viral protein interaction with cytokine and cytokine receptor 16/242 3.76E-08 3.97E-06 

hsa04060 cytokine-cytokine receptor interaction 28/242 4.90E-08 3.97E-06 

hsa04062 chemokine signaling pathway 20/242 1.11E-06 5.98E-05 

hsa04380 osteoclast differentiation 16/242 1.23E-06 5.98E-05 

Upregulated DO terms 

DOID:37 skin disease 40/255 9.02E-13 6.01E-10 

DOID:16 integumentary system disease 41/255 9.91E-12 3.30E-09 

DOID:850 lung disease 46/255 3.24E-11 6.39E-09 

DOID:2723 dermatitis 27/255 3.84E-11 6.39E-09 

DOID:3083 chronic obstructive pulmonary disease 28/255 2.64E-10 3.51E-08 

Downregulated GO BP terms 

GO:0001580 detection of chemical stimulus involved in sensory perception of bitter taste 14/567 8.02E-12 2.76E-08 

GO:0050913 sensory perception of bitter taste 14/567 3.40E-11 5.85E-08 

GO:0050912 detection of chemical stimulus involved in sensory perception of taste 14/567 6.58E-11 7.55E-08 

GO:0050909 sensory perception of taste 15/567 1.15E-09 9.95E-07 

GO:0048663 neuron fate commitment 14/567 7.10E-09 4.89E-06 

Downregulated KEGG pathways 

hsa04080 neuroactive ligand-receptor interaction 39/242 2.56E-13 4.95E-11 

hsa04742 taste transduction 18/242 5.16E-11 4.98E-09 

DEmRNA, differentially expressed mRNA; GO, gene ontology; BP, biological processes; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; DO, disease ontology. 

 

Table 2. Top genes with high centrality scores by seven centrality methods 

Rank 
Subgragh Eigenvector Information Betweenness Closeness Network Degree 

Gene Score Gene Score Gene Score Gene Score Gene Score Gene Score Gene Score 

Differentially expressed genes 

1 FPR2 4.07E15 FPR2 0.1721 KNG1 16.8330 KNG1 3560.7246 KNG1 0.7349 KNG1 75.5865 KNG1 79 

2 KNG1 4.05E15 KNG1 0.1716 FPR2 16.7879 FPR2 3009.4500 FPR2 0.7134 FPR2 74.9214 FPR2 77 

3 GNGT2 3.99E15 GNGT2 0.1704 GNGT2 16.2239 PPBP 2487.2605 GNGT2 0.6703 GNGT2 64.7296 GNGT2 69 

4 ADCY8 3.53E15 ADCY8 0.1603 PPBP 15.6456 GNGT2 1062.7612 PPBP 0.6524 PPBP 51.4998 PPBP 57 

5 AGTR2 3.47E15 AGTR2 0.1590 ADCY8 15.1808 ORM2 670.4247 ADCY8 0.6193 ADCY8 48.3857 ADCY8 51 

6 PPBP 3.44E15 PPBP 0.1582 AGTR2 14.6327 ADCY8 609.8803 AGTR2 0.6010 AGTR2 41.0793 AGTR2 45 

7 SST 3.37E15 SST 0.1566 SST 14.2092 GPR84 460.3634 SST 0.5894 SST 39.2799 FPR1 43 

8 PPY 3.33E15 PPY 0.1558 FPR1 14.2092 FGA 402.2432 FPR1 0.5894 PPY 39.0839 SST 42 

9 GNAT3 3.33E15 GNAT3 0.1558 PPY 14.0947 ITGAX 304.3922 PPY 0.5865 GNAT3 39.0839 GNAT3 42 

10 PYY 3.33E15 PYY 0.1558 GNAT3 14.0947 CYBB 279.9222 GNAT3 0.5865 PYY 39.0839 NPY 41 

Differentially expressed immune genes 

1 IL17A 1.64E08 IL17A 0.2518 IL17A 12.4557 IL17A 94.7455 IL17A 0.9487 IL17A 33.8295 IL17A 35 

2 FOXP3 1.45E08 FOXP3 0.2373 FOXP3 12.0953 FOXP3 67.1044 FOXP3 0.8810 FOXP3 29.4223 FOXP3 32 

3 CTLA4 1.33E08 CTLA4 0.2273 CTLA4 11.8302 CTLA4 49.8940 CTLA4 0.8410 CTLA4 26.9259 CTLA4 30 

4 TLR4 1.31E08 TLR4 0.2251 TLR4 11.6894 TLR4 38.2315 TLR4 0.8222 TLR4 25.5208 TLR4 29 

5 IFNG 1.26E08 IFNG 0.2206 IFNG 11.5425 IFNG 32.8076 IFNG 0.8044 IFNG 24.2196 IFNG 28 

6 CCL2 1.18E08 CCL2 0.2134 CCL2 11.5425 CCL2 40.9951 CCL2 0.8044 CCL2 24.2021 CCL2 28 

7 CD19 1.16E08 CD19 0.2120 CD19 11.3891 CD19 26.8774 CD19 0.7872 CD19 23.2694 CD19 27 

8 CXCL9 1.09E08 CXCL9 0.2056 CXCL9 11.3891 CXCL9 40.0456 CXCL9 0.7872 CXCL9 22.6396 CXCL9 27 
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Relationship between DEGs and the overall survival 

of LUAD patients 

 

To identify the relationships between the 1169 DEGs 

and the survival of LUAD patients, the survival analysis 

and prognostic model were performed. According to the 

p<0.001, 21 of the 1169 DEGs had significantly 

prognostic values by a univariate regression analysis 

(Supplementary Table 2). A lasso regression analysis 

showed that 15 of the 21 DEGs had the most important 

features in predicting the survival of LUAD patients 

(Figure 5A, 5B). Furthermore, 8 of the 15 DEGs 

(KCNJ18, RPE65, GRIA1, LCN15, C11orf21, ANXA13, 

FSIP2 and KRT76) had significantly prognostic values 

by a multivariate Cox regression analysis. The risk 

scores for all LUAD patients were calculated, and 

according to the median risk score the patients were 

divided into the high- and low-risk groups (Figure 5C, 

5D). The Kaplan-Meier curve showed that the LUAD 

patients in the high-risk group had a poorer OS rate (LR 

p=0, HR=2.4416, 95%CI=1.7711-3.4384) (Figure 5E). 

The AUCs of 1-, 3-, and 5-year associated with the OS 

were separately 0.741, 0.733 and 0.713 in the ROC 

curve (Figure 5F), which indicates a higher reliability of 

the 8-mRNA signature in predicting the survival. In the 

8-mRNA prognostic signature, 6 DEGs (KCNJ18, 

RPE65, LCN15, ANXA13, FSIP2 and KRT76) were 

significantly upregulated and 2 DEGs (GRIA1, 

C11orf21) were significantly downregulated in the high-

risk group (Figure 5G). The expression correlations 

among the 8 DEGs were very low (Figure 5H). An 

independent prognostic analysis showed that the risk 

score of 8-mRNA prognostic signature had a significant 

association with the survival of LUAD patients by a 

univariate (p<0.001, HR=1.429, 95%CI=1.324-1.541) 

and a multivariate (p<0.001, HR=1.436, 95%CI=1.321-

1.562) Cox regression analyses (Figure 5I, 5J). 

 

Immune DEGs identification and interactive 

relationship network construction 

 

Among the identified 1169 DEGs, 88 DEGs (80 

upregulated and 8 downregulated) are the genes related 

to the immunity (Supplementary Table 3). Eighty 

upregulated immune DEGs were mainly associated  

with immune response and immune regulation 

(Supplementary Table 4), and mainly have the 

molecular functions of chemokine, cytokine, chemokine 

receptor, cytokine receptor binding and activity. Eight 

downregulated immune DEGs mainly have molecular 

functions of hormone and receptor ligand activity. 

 

The interactive relationships showed that 79 of the 88 
immune DEGs had 538 gene-gene interaction pairs at the 

highest confidence 0.900, and an immune PPI network 

consisting of 79 nodes and 538 edges was established 

(Figure 6A). In accordance with the topological 

properties of whole immune PPI network, two highly 

correlated modules were identified using the MCODE 

algorithm, and the module with the higher score included 

38 nodes and 372 edges (score=20.108, Figure 6B). A 

centrality analysis showed that 8 genes (IL17A, FOXP3, 

CTLA4, TLR4, IFNG, CCL2, CD19, CXCL9) had higher 

comprehensive centrality scores (Table 2), and were 

identified as essential immune genes in LUADs with 

differing TME immune phenotypes. 

 

Immune prognostic signature construction 

 

According to the p<0.05, 20 immune DEGs had 

significantly prognostic values by a univariate regression 

analysis (Figure 6C). Among, 9 immune DEGs had  

the most important features in predicting the survival  

of LUAD patients by the Lasso regression analysis 

(Figure 6D, 6E). The multivariate Cox regression 

analysis showed that 3 (HLA-DRB5, CX3CR1and INHA) 

of the 9 immune DEGs had significant prognostic 

values. In the light of the median risk score, the patients 

were divided into the high- and low-risk groups  

(Figure 6F, 6G). In the low-risk group, LUAD patients 

had a higher OS rate in the Kaplan-Meier curve (LR 

p=6.017e-04) (Figure 6H). In the immune prognostic 

signature, HLA-DRB5 and CX3CR1 had lower expression 

and INHA had higher expression in the low-risk group 

(Figure 6I). An independently prognostic analysis 

showed that the risk score of 3-gene signature was 

significantly related to the survival of LUAD patients by 

a univariate (p<0.001, HR=1.619, 95%CI=1.336-1.962) 

and a multivariate (p<0.001, HR=1.540, 95%CI=1.266-

1.874) Cox regression analyses (Figure 6J, 6K).  

The AUC of risk score was 0.627 in the ROC curve 

(Figure 6L). 

 

Identification of key DElncRNAs and DEmiRNAs 

related to LUAD immune phenotype and prognostic 

signature construction 
 

According to the |LogFC|>1 and p<0.05, 1726 

DElncRNAs (453 upregulated and 1273 downregulated) 

and 78 DEmiRNAs (15 upregulated and 63 down-

regulated) were respectively identified between the high 

and low infiltration subgroups (Figure 7A, 7B). Further, 

3888 DElncRNAs (3123 upregulated and 765 

downregulated) and 293 DEmiRNAs (226 upregulated 

and 67 downregulated) were separately identified 

between the LUAD tissues and normal lung tissues 

(Figure 7C, 7D). An overlap analysis showed that totals 

of 1085 DElncRNAs and 45 DEmiRNAs were common 

(Figure 7E, 7F and Supplementary Table 1). 
 

According to the p<0.001, 26 of the 1085 DElncRNAs 

had significantly prognostic values by a univariate 
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Figure 5. Prognostic signature analysis of key differentially expressed genes. (A, B) LASSO Cox analysis. Fifteen DEGs most 

correlated with the overall survival were identified, and 10-round cross validation was performed to prevent overfitting. (C) Risk score 
distribution. The LUAD patients were divided into the high- and low-risk groups according to the median risk score. (D) Survival overview. The 
distribution of survival times of the LUAD patients in the high- and low-risk groups. (E) Survival curve. The patients in the low-risk group 
exhibited a better overall survival rate than those in the high-risk group (p=0, HR=2.44159, 95% CI=1.7711-3.4384). (F) ROC curve. The ROC 
curve showed that the AUCs of 1-, 3- and 5-year of the 8-mRNA prognostic signature were separately 0.741, 0.733 and 0.713. (G) The 
heatmap of gene expression. Six DEGs (KCNJ18, RPE65, LCN15, ANXA13, FSIP2 and KRT76) and two DEGs (GRIA1, C11orf21) were highly and 
lowly expressed in the high-risk group, respectively. (H) Expression correlation among genes. The expressions among 8 DEGs had no 
significant correlations. (I, J) Independent prognostic analysis. The 8-mRNA prognostic signature was significantly correlated with the OS of 
LUAD patients by a univariate Cox regression analysis and a multivariate Cox regression analysis. LASSO, least absolute shrinkage and 
selection operator; LUAD, lung adenocarcinoma; ROC, receiver operating characteristic; AUC, area under curve; OS, overall survival, DEG, 
differentially expressed gene. 
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Figure 6. Key immune gene identification and prognostic immune signature construction. (A) PPI network of immune DEGs. An 

immune PPI network with 79 nodes and 538 edges was established. (B) Highly correlated PPI network. An immune PPI subnetwork with 38 
nodes and 372 edges was constructed in the whole immune PPI network. (C) Univariate regression analysis. Twenty immune genes had 
significantly prognostic values. (D, E) LASSO Cox analysis. Nine immune genes most correlated with the overall survival were identified, and 
10-round cross validation was performed to prevent overfitting. (F) Risk score distribution. LUAD patients were divided into the high- and 
low-risk groups according to the median risk score. (G) Survival overview. The distribution of survival times of LUAD patients in the high- and 
low-risk groups. (H) Survival curve. A better overall survival of patients in the low-risk group was exhibited than that in the high-risk group. (I) 
Heatmap of gene expression. HLA-DRB5 and CX3CR1 were highly expressed and INHA was lowly expressed in the high-risk group. (J, K) 
Independent prognostic analysis. The 3-mRNA risk signature was significantly correlated with the OS of LUAD patients by a univariate and a 
multivariate Cox regression analysis. (L) ROC curve. The AUC of 3-year survival was 0.627. PPI, protein and protein interaction; LASSO, least 
absolute shrinkage and selection operator; LUAD, lung adenocarcinoma; ROC, receiver operating characteristic; AUC, area under the curve; 
OS, overall survival. 
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regression analysis (Supplementary Table 2). A 

multivariate Cox regression analysis based on the 26 

DElncRNAs showed that 9 DElncRNAs (AP003555.2, 

LINC02310, AC026462.3, AL162293.1, AC078860.1, 

AC034223.1, HSPC324, AC105999.2 and AP005137.2) 

had significantly prognostic values. In accordance with 

the median risk score, the patients were divided into the 

high- and low-risk groups. The Kaplan-Meier curve 

showed that LUAD patients appeared a higher OS  

rate in the low-risk group (LR p=0, HR=0.3894, 

95%CI=0.2711-0.5296) (Figure 7G). The AUCs of 1-, 3-, 

5- and 10-year related to the OS were separately 0.7626, 

0.7469, 0.7379 and 0.7342, which showed a higher 

effectiveness to predict the survival of LUAD patients 

(Figure 7H). In the 9-lncRNA prognostic signature, 8 

DElncRNAs (AP003555.2, LINC02310, AC026462.3, 

AL162293.1, AC078860.1, AC034223.1, AC105999.2 

and AP005137.2) were lowly expressed and 1 lncRNA 

(HSPC324) was highly expressed in the low-risk group 

(Figure 7I). An independent prognostic analysis showed 

that the risk score of 9-lncRNA prognostic signature was 

significantly correlated with the survival of LUAD 

 

 
 

Figure 7. Differentially expressed lncRNAs and miRNA identification and prognostic signature construction. (A, B) Distribution 
of differentially expressed lncRNA and miRNA between the high and low immune infiltration groups. Totals of 1726 DElncRNAs and 78 
DEmiRNAs were separately identified. (C, D) Distribution of differentially expressed lncRNA and miRNA between the LUAD and normal 
tissues. Totals of 3888 DElncRNAs and 293 DEmiRNAs were separately identified. (E, F) Key DElncRNA and DEmiRNA identification. Totals of 
1085 key DElncRNAs and 45 key DEmiRNAs were respectively identified by an overlap analysis. (G) Survival curve. LUAD patients had a higher 
OS rate in the low-risk group (p=0, HR=0.38941, 95% CI=0.2711-0.5296). (H) ROC curve. The AUCs of 1-, 3, 5- and 10-years of 9-lncRNA 
signature were separately 0.7626, 0.7469, 0.7379 and 0.7342. (I) Heatmap of gene expression. Eight lncRNAs and one lncRNA were lowly and 
highly expressed in the low-risk group, respectively. (J) Independent prognostic analysis. The 9-lncRNA prognostic signature was significantly 
correlated with the OS of LUAD patients. (K) Expression correlation among 9 lncRNAs. The 9 lncRNAs had no significant correlations in 
expression. LUAD, lung adenocarcinoma; DElncRNA, differentially expressed lncRNA; DEmiRNA, differentially expressed miRNA; ROC, receiver 
operating characteristic; AUC, area under the curve; OS, overall survival, CI, confidence interval. 
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patients (p<0.001, HR=1.332, 95% CI=1.260-1.407, 

Figure 7J). The expression analysis showed the low 

expression correlations among the 9 DElncRNAs 

(Figure 7K). 

 

Five (mir-6850, mir-196b, mir-142, mir-548f-1, mir-
5571) of the 45 DEmiRNAs had significantly 

prognostic values according to the p<0.05 by a 

univariate regression analysis (Supplementary Table 2). 

A multivariate Cox regression analysis based on the 5 

DEmiRNAs showed that 4 DEmiRNAs (mir-196b, mir-
142, mir-548f-1, mir-5571) had significantly prognostic 

values, and the 3-year AUC of the 4-miRNA signature 

was 0.634 in the ROC curve (Supplementary Figure 

1A). According to the median risk score, the patients 

were divided into the high- and low-risk groups 

(Supplementary Figure 1B, 1C). The Kaplan-Meier 

curve showed that LUAD patients had a higher HR and 

a lower OS in the high-risk group (LR p=0.00149, 

HR=1.6643, 95%CI=1.2147-2.3129) (Supplementary 

Figure 1D). The heatmap showed that 2 miRNAs (mir-

196b and mir-548f-1) were highly expressed and 2 

miRNAs (mir-142 and mir-5571) were lowly expressed 

in the high-risk group (Supplementary Figure 1E). The 

expression correlations between the 4 miRNAs were 

low (Supplementary Figure 1F). An independently 

prognostic analysis showed that the 4-miRNA risk 

signature was significantly correlated with the survival 

of LUAD patients by a univariate (p<0.001, HR=1.531, 

95%CI=1.344-1.744) and a multivariate (p<0.001, 

HR=1.439, 95%CI=1.237-1.674) Cox regression 

analyses (Supplementary Figure 1G, 1H). 

 

CeRNA network construction and prognostic 

ceRNA signature analysis 

 

To investigate the interactive pattern among differentially 

expressed ceRNAs, a ceRNA network was established 

according to the ceRNA hypothesis. The interactive 

relationships among DElncRNAs, DEmiRNAs and 

DEmRNAs were predicted using the online miRcode, 

miRDB, TargetScan and miRTarBase tools. Finally, 

totals of 26 DEmRNAs (11 upregulated and 15 

downregulated), 3 DEmiRNAs (all upregulated) and 57 

DElncRNAs (9 upregulated and 48 downregulated)  

were filtered into the ceRNA network (Figure 8A).  

In the ceRNA regulatory network, three upregulated 

DEmiRNAs were separately mir-122, mir-206 and mir-
184. Among, mir-122 and mir-206 had the most of target 

DEmRNAs and DElncRNAs (separately 46 and 39 

nodes). Among the 26 DEmRNAs, 5 upregulated genes 

including IL2RA, CCL2, DCSTAMP, CD83 and HLA-E 

were immune-related genes. 
 

The survival analysis showed that 11 of the 57 

DElncRNAs (AC110921.1, ATP11A-AS1, C10orf126, 

H19, HOTAIR, LINC00460, LINC00488, MALAT1, 

MUC2, NLGN1-AS1 and SFTA1P) and 3 of the 26 

DEmRNAs (CD83, GALNT13 and PI15) were 

significantly associated with the OS of LUAD patients 

(Supplementary Figure 2). No DEmiRNAs were found 

the significant association with the survival. A univariate 

regression analysis showed that 12 of the 57 DElncRNAs 

(IGF2-AS, LINC00319, LINC00460, LINC00211, 

C10orf126, EMX2OS, SFTA1P, C5orf64, AL109754.1, 

LINC00494, MUC2 and FAM41C) and 3 of the 26 

DEmRNAs (ALPI, CD83 and INMT) had significantly 

prognostic values (Figure 8B, 8C). A multivariate Cox 

regression analysis showed that a group of 8 DElncRNAs 

(IGF2-AS, LINC00319, LINC00460, LINC00211, 

C10orf126, EMX2OS, AL109754.1 and FAM41C) had 

significantly prognostic value for the survival of LUAD 

patients. An 8-lncRNA prognostic signature model was 

established, and 5 DElncRNAs (IGF2-AS, LINC00319, 

LINC00460, C10orf126 and EMX2OS) and 3 

DElncRNAs (LINC00211, AL109754.1 and FAM41C) 

were separately highly and lowly expressed in the high-

risk group (Figure 8D). The mortality rate of LUAD 

patients was significantly lower in the low-risk group 

(p=5e-05, HR=0.51875, 95% CI=0.3732-0.7145, Figure 

8E). The AUCs of 1-, 3-, 5- and 10-year correlated with 

the survival of the 8-lncRNA signature were separately 

0.7288, 0.6607, 0.7228 and 0.6656 (Figure 8F). No 

DEmRNA signature was found to have significantly 

prognostic value for the OS of LUAD patients. 

 

The independently prognostic power of the 8-lncRNA 

signature was evaluated. A univariate regression analysis 

showed that the risk score and some clinical features 

including pathological stage, T stage and M stage were 

significantly correlated with the survival of LUAD 

patients (all p <0.001, Figure 8G). A multivariate Cox 

regression analysis showed that age (p=0.021), 

pathological stage and risk score (both p <0.001) were 

significantly related to the survival of LUAD patients 

(Figure 8H). The AUCs of the risk score and clinical 

features were showed in Figure 8I, which showed a 

higher statistical power of risk score and pathological 

stage in predicting the survival of LUAD patients (risk 

score AUC=0.743, pathological stage AUC=0.711). 

 

Key gene coexpression module and gene identification 

in LUADs with differing immune phenotypes 

 

To elucidate the gene coexpression characteristic 

associated with the immune phenotype in LUAD and 

identify key genes, a WGCNA was performed. The 

LUAD patients were first divided into 3 immune 

infiltration subgroups (high immune infiltration: 201; 
intermediate immune infiltration: 195; and low immune 

infiltration: 101) according to the immune infiltration 

(Figure 9A). The tumor purity score, immune score, 



www.aging-us.com 4800 AGING 

stromal score and ESTIMATE score showed a better 

grouping (Kruskal-Wallis test, all p<0.001, Figure 9B). 

In the light of the scale-free topology criterion  

R2>0.9, the power β=3 was selected to construct a 

strengthened adjacency matrix (Figure 9C). In accordance  

with the calculated TOM-based dissimilarity, 18 gene 

coexpression modules were identified (Figure 9D). 

Among these modules, the blue module was the  

most significant module correlated with the immune 

phenotype (cor=0.63, p=3e-55, Figure 9E), and the 

 

 
 

Figure 8. CeRNA network and prognostic signature construction. (A) CeRNA network. A ceRNA network with 26 DEmRNAs, 3 
DEmiRNAs and 57 DElncRNAs was established. (B) Univariate Cox regression analysis based on 57 DElncRNAs. Twelve DElncRNAs were 
identified to have significant associations with the OS of LUAD patients. (C) Univariate Cox regression analysis based on 26 DEmRNAs. Three 
DEmRNAs were identified to have significant associations with the OS of LUAD patients. (D) Gene expression profiles of 8 DElncRNAs. Five 
DElncRNAs and 3 DElncRNAs were separately highly and lowly expressed in the high-risk group. (E) Survival curve. The patients in the low-risk 
group exhibited a better overall survival rate than those in the high-risk group (p=5e-05, HR=0.51875, 95% CI=0.3732-0.7145). (F) ROC curve 
correlated with survival. The AUCs of 1-, 3-, 5- and 10-years of the 8-lncRNA prognostic model were separately 0.7288, 0.6607, 0.7228 and 
0.6656. (G, H) Independent prognostic analysis. The 8-lncRNA risk signature was significantly correlated with the OS of LUAD patients by a 
univariate and a multivariate Cox regression analysis. (I) ROC curve correlated with independent prognostic signature. The AUCs of risk score 
independently predicting survival was 0.743. CeRNA, competitive endogenous RNA; DElncRNA, differentially expressed lncRNA; DEmRNA, 
differentially expressed mRNA; DEmiRNA, differentially expressed miRNA; LUAD, lung adenocarcinoma; ROC, receiver operating 
characteristic; AUC, area under the curve; OS, overall survival. 
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Figure 9. Gene coexpression analysis based on LUAD with differing immune phenotype. (A) Unsupervised clustering of LUAD 
patients from the TCGA cohort using ssGSEA scores from immune cell types. The group with higher immune infiltration had a higher immune 
score. (B) ssGSEA scores in differing TME immune phenotypes. The group with higher immune infiltration had higher immune score, stromal 
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score and ESTIMATE score and lower tumor purity. (C) Analysis of network topology for various soft-threshold powers. The power parameter 
β=3 was selected to strengthen the correlation adjacency matrix on the basis of a scale-free topology criterion R2>0.9. (D) Identification of 
gene coexpression modules associated with immune phenotype. Eighteen gene coexpression modules were identified according to the TOM-
based dissimilarity measure. (E) Associations of identified modules and immune phenotype. The blue module was the most significant 
association with the immune phenotype. (F) Correlations of module memberships and gene significance in blue module. The Pearson 
correlation coefficient was 0.85 and the p value was 3.4e-179. (G) Relationship network of the most significant module genes and top 5 GO 
enrichment terms. (H) The KEGG pathways enriched by genes in the most significant module. (I) Correlations of immune-related terms and 16 
genes associated with survival. There were very strong positive correlations between them. (J) Interaction relationship network of 13 genes 
among 16 genes associated with survival. Bigger nodes represented more links. Thicker edges represented more combined score. The genes 
within the red line were highly correlated module genes in the whole network. (K) Correlations of 3 key genes and immune infiltration of 
some types of cells. The expressions of 3 genes were significant positively correlated with the immune infiltration levels of some types of 
cells. LUAD, lung adenocarcinoma; TCGA, the cancer genome atlas; ssGSEA, single-sample gene set enrichment analysis; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; GO, gene ontology, TOM, topological overlap measure. 

 

correlation between the gene significance (GS) and the 

module membership (MM) in the blue module was the 

highest across all modules (cor=0.85, p=3.4e-179, 

Figure 9F). The blue module included 638 genes 

(Supplementary Table 5) and these genes were 

significantly enriched in 101 GO terms according to a 

adjust p<0.0001 (including 93 BPs, 7 CCs and 1 MF). 

The first 5 GO terms were separately neutrophil 

activation (BP, adjust p=1.08E-13), neutrophil mediated 

immunity (BP, adjust p=1.08E-13), neutrophil 

activation involved in immune response (BP, adjust 

p=1.18E-13), secretory granule membrane (CC, adjust 

p=1.84E-13) and neutrophil degranulation (BP,  

adjust p=2.98E-13). The relationships between genes 

and GO terms were showed in Figure 9G. These genes 

were mainly enriched in 12 KEGG pathways including 

some immune pathways, such as chemokine and IL-17 

signaling pathways (Figure 9H). According to the MM 

score>0.8, 39 genes were selected as hub genes and 

used to explore the relationships between these genes 

and the OS of LUAD patients. The results showed that 

16 genes (BTK, SCIMP, GIMAP4, CD300C, CD33, 

LPXN, GIMAP6, IRF8, DOK2, ARHGAP30, C1orf162, 

SLCO2B1, EVI2B, FGR, NCKAP1L, SPI1) had 

significant associations with the OS of LUAD patients 

(all p< 0.05, Supplementary Figure 3). The expressions 

of 16 genes had very strong positive correlations with 

the immune scores of 29 immune-related terms (Figure 

9I). The interaction relationship analysis showed that 13 

of the 16 genes (BTK, GIMAP4, CD300C, CD33, 

GIMAP6, IRF8, DOK2, ARHGAP30, C1orf162, EVI2B, 

FGR, NCKAP1L, SPI1) had 20 gene-gene interaction 

pairs and a PPI network with 13 genes and 20 edges 

was established (Figure 9J). A highly correlated module 

containing 4 genes (FGR, BTK, SPI1, IRF8) was 

identified from the whole PPI network (Figure 9J). 

Among the 4 genes, the expressions of 3 genes (FGR, 

BTK, SPI1) had significant positive correlations with 

the immune infiltration of some types of immune cells 

such as dendritic cell (FGR: cor=0.708 and p=1.78e-75, 

SPI1: cor=0.744 and p=5.01e-87, BTK: cor=0.752 and 

p=3.74e-90, Figure 9K). 

Evaluation of predictive performance of prognostic 

signature 

 

To evaluate the predictive performance of the identified 

prognostic signatures, the LUAD-related microarray 

dataset GSE31210 and the 8-mRNA prognostic 

signature (KCNJ18, RPE65, GRIA1, LCN15, C11orf21, 

ANXA13, FSIP2 and KRT76) were employed. Since the 

KCNJ18 gene was not included in the GSE31210 gene 

expression profiles, it was removed from the 8-mRNA 

signature during evaluation. The result showed that the 

LUAD patients had a lower HR and a higher OS rate in 

the low risk group (HR=0.30307, 95% CI=0.1409-

0.6441, p=0.00103, Figure 10A). The AUCs of 2-, 3-, 4- 

and 5-year correlated with the survival were separately 

0.7368, 0.6661, 0.7121 and 0.6971 (Figure 10B), which 

demonstrated the effectiveness as a prognosticator in 

predicting the OS of LUAD patients. 

 

Through WGCNA, three genes including FGR, BTK 

and SPI1 were identified to have associations with the 

OS and with the immune infiltration level in LUAD 

patients. The predictive performance of three genes 

were further evaluated using the gene expression dataset 

GSE50081. The result showed that the LUAD patients 

had a lower HR and a higher OS rate in the low risk 

group (HR=0.63122, 95% CI=0.3969-1.0009, 

p=0.04858, Figure 10C). The AUCs of 2-, 3-, 4- and 5-

year correlated with the survival were separately 0.599, 

0.584, 0.5561 and 0.5858 (Figure 10D). 

 

DISCUSSION 
 

Accumulated evidence has shown the important roles of 

TME in modulating the cancer progression, guiding  

the therapy and predicting the prognosis of patients  

with LUAD. It is crucial to reveal the transcriptome 

characteristics in LUADs with differing TME immune 

phenotypes for better understanding the role of TME in 

LUAD biology. In the current study, we depicted the 

immune landscape of LUAD, analyzed the gene mutation 

profile using a large cohort, mined the key DEGs related 
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to the LUAD immunophenotype, constructed the PPI and 

immune PPI networks, established the ceRNA regulatory 

network, identified essential genes associated with  

the LUAD immunophenotype, and predicted some 

prognostic signatures. Finally, we systematically revealed 

the transcriptome characteristics in LUADs with differing 

TME immune phenotypes and identified some key genes 

and built three robust prognostic signatures including a 9-

lncRNA, an 8-lncRNA and an 8-mRNA. 

 

Among identified key genes, five genes including FPR2, 

KNG1, GNGT2, ADCY8 and PPBP were identified to 

have association with LUAD immune phenotype by a 

PPI network based on 1169 key DEGs. FPR2 belongs to 

the formyl peptide receptor family and is a G-protein 

coupled receptor. FPR2 has been identified to promote 

the invasion and metastasis in various tumors including 

colorectal cancer and gastric cancer [13, 14], and serves 

as a prognosticator in gastric cancer [14]. KNG1 is a 

protein coding gene, and has association with some 

diseases including angioedema and high molecular 

weight kininogen deficiency. GNGT2 belongs to the G 

protein gamma family and is thought to play a vital role 

in cone phototransduction. A recent study showed that 

GNGT2 was closely associated with the survival of 

esophageal cancer, and serve as a potentially prognostic 

marker of patients with esophageal cancer [15]. ADCY8 

is an adenylate cyclase and catalyzes the formation of 

cyclic AMP from ATP. PPBP gene encodes a protein of 

platelet-derived growth factor, and plays the key roles in 

various cellular processes including glycolysis, mitosis 

and DNA synthesis. Five key immune genes including 

IL2RA, CCL2, DCSTAMP, CD83 and HLA-E were 

identified by constructing a ceRNA network. Some 

published results showed that IL2RA was abnormally 

expressed in a few types of cancers including head and

 

 
 

Figure 10. Evaluation of prognostic signature. (A) Survival curve based on GSE31210 dataset. LUAD patients in the low-risk group had a 

higher OS rate than that in the high-risk group (p=0.00103, HR=0.30307, 95% CI=0.1409-0.6441). (B) ROC curve based on GSE31210 dataset. 
The AUCs of 2-, 3-, 4- and 5-year associated with the survival were separately 0.7386, 0.6661, 0.7121 and 0.6971. (C) Survival curve based on 
GSE50081 dataset. LUAD patients in the low-risk group had a higher OS rate than that in the high-risk group (p=0.04858, HR=0.63122, 95% 
CI=0.3969-1.0009). (D) ROC curve based on GSE50081 dataset. The AUCs of 2-, 3-, 4- and 5-year associated with the survival were separately 
0.599, 0.584, 0.5561 and 0.5858. LUAD, lung adenocarcinoma; OS, overall survival; HR, hazard rate; ROC, receiver operating characteristic; 
AUC, area under the curve; CI, confidence interval. 
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neck, leukemia, breast, lymphoma, lung and prostate 

[16]. The high expression of IL2RA results in a lower 

survival rate for the patients [16]. CCL2 is a cytokine 

gene and play the roles in the immunoregulatory and 

inflammatory processes. A study showed that the 

epigenetic silencing of CCL2 potentiates tumor 

development by repressing the macrophage infiltration 

in small cell lung cancer [17]. Another study showed 

that the immunotherapeutic effect of anti-PD1 was 

enhanced by blocking the expression of CCL2 in LC 

[18]. DCSTAMP is a seven-pass transmembrane protein 

expressed by dendritic cells and associates with some 

diseases such as Paget's disease of bone [19, 20]. CD83 

is the dendritic cell maturation marker and have 

immunosuppressive properties [21]. The CD83 

expression in cancer cells facilitates the tumor growth 

[21]. HLA-E is a major histocompatibility complex gene, 

and is expressed in many types of cancers and served as 

a potential prognosticator of some cancers such as 

melanoma and colorectal cancer [22, 23]. A group of 8 

immune genes (IL17A, FOXP3, CTLA4, TLR4, IFNG, 

CCL2, CD19 and CXCL9) were identified as key 

immune genes associated with LUAD immune 

phenotype by constructing an immune PPI network. 

Presently, some studies have showed that some genes 

had the associations with several types of cancers. For 

example, the high expression of CTLA4 showed a poor 

survival and serves as an independent risk factor to 

evaluate the prognosis of breast cancer [24]. TLR4 

promotes the immune escape of NSCLC by upregulating 

PD-L1 [25]. CXCL9 promotes the progression of 

prostate cancer by inhibiting the cytokines from T cells 

[26]. In summary, some key genes were identified by a 

variety of bioinformatics methods in this study and the 

roles of a few genes have been deeply studied in tumor 

biology, such as FPR2 and TLR4. Nevertheless, we have 

little understanding of the roles of some genes such as 

KNG1 and DCSTAMP. Next, the roles of these genes in 

tumor biology should be focused, especially clarified 

that how the genes play the roles through the immune 

pathways. 

 

In the identified three robust prognostic signatures, the 

9-lncRNA (AP003555.2, LINC02310, AC026462.3, 

AL162293.1, AC078860.1, AC034223.1, HSPC324, 

AC105999.2 and AP005137.2) signature was identified 

to significantly associate with the OS of LUAD patients 

based on 1085 key DElncRNAs. The lncRNA HSPC324 

has been identified to play a regulatory role in lung 

development and tumorigenesis [27]. Other eight 

lncRNAs were first identified to have the associations 

with the OS of LUAD patients. Furthermore, the 9-

lncRNA signature was identified to serve as an 
independent prognostic marker to predict the survival  

of LUAD patients, which provides some new insights 

for evaluating the clinical outcomes of LUAD patients. 

The 8-lncRNA (IGF2-AS, LINC00319, LINC00460, 

LINC00211, C10orf126, EMX2OS, AL109754.1 and 

FAM41C) prognostic signature was identified on the 

basis of the ceRNA network analysis. Some published 

results showed that some lncRNAs play an important 

regulatory role in the tumorigenesis of some cancers such 

as breast cancer, ovarian cancer, cervical cancer and so 

on. For example, the lncRNA IGF2-AS, as an antisense 

gene of IGF2, inhibits the tumorigenesis of breast cancer 

by epigenetically regulating IGF2 and affects the 

metastasis and prognosis of gastric adenocarcinoma by 

sponging miR-503 to regulate SHOX2 [28, 29]. The 

lncRNA EMX2OS has been reported to affect the 

proliferation and invasion of ovarian cancer cells by 

sponging miR-654-3p to regulate AKT3 and the 

downregulation of EMX2OS results in a poor prognosis 

of patients with kidney renal clear cell carcinoma [30, 

31]. The lncRNA LINC00319 separately promotes the 

progression of cervical cancer via regulating the miR-

147a/IGF1R axis and the osteosarcoma progression via 

sponging miR-455-3p to regulate NFIB [32, 33]. The 

lncRNA FAM41C has been shown to have the 

association with the recurrence of papillary thyroid 

cancer [34]. Furthermore, two lncRNAs LINC00319 and 

LINC00460 have been reported to have associations with 

lung cancer [35, 36]. Despite this, few published studies 

showed the regulatory roles of these lncRNAs in LUAD. 

Our results showed that these lncRNAs were 

significantly dysregulated in LUAD tissue and had 

significant associations with the survival of patients with 

LUAD. In the 8-mRNA signature (KCNJ18, RPE65, 

GRIA1, LCN15, C11orf21, ANXA13, FSIP2 and KRT76), 

the expressions of some mRNAs have been reported to 

have significant associations with the survival in some 

cancers. For example, GRIA1 serves as a prognosticators 

for basal-like bladder cancer [37]. KRT76 was 

downregulated expressed in human oral squamous cell 

carcinomas and correlated with a poor prognosis [38]. 

From the expression profiles, we predicted the prognosis 

of LUAD patients based on the 8-mRNA signature. 

 

In the established immune prognostic signature based 

on the 88 immune DEGs, three immune genes including 

HLA-DRB5, CX3CR1 and INHA were found to 

significantly associate with the OS of LUAD patients. 

HLA-DRB5 is a major histocompatibility complex gene. 

CX3CR1 gene encodes a receptor for the chemokine 

fractalkine. INHA gene encodes a protein belonging to 

the transforming growth factor-beta (TGF-beta) 

superfamily. Three genes have been mainly implicated 

in regulating immune response. A few not many studies 

have shown the associations of the three genes with 

tumors [39, 40]. 
 

Four key genes including FGR, BTK, SPI1 and IRF8 

were identified using WGCNA method. Among, FGR 
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and BTK are tyrosine kinase genes and SPI1 and IRF8 

are transcription factor genes. FGR encodes a Src 

family tyrosine kinase and has been reported to have 

association with the tumor progression as a proto-

oncogene in some cancers such as colorectal cancer 

[41]. In addition, a few studies have also showed the 

associations between FGR and lung diseases [42]. 

However, few published reported that FGR had an 

association with lung cancer. The current results 

identified that FGR plays a potential role in LUAD and 

was as a prognostic factor. BTK is a gene encoding 

bruton tyrosine kinase and plays a vital role during the 

B-cell development. Some studies showed that BTK 

played a potential role in LUAD and was as a potential 

prognostic factor and an indicator for TME remodeling 

in LUAD [43]. SPI1, an ETS-domain transcription 

factor, plays the roles by activating the gene expression 

of target genes during the myeloid and B-lymphoid cell 

development. A recent study demonstrated that SPI1 

promoted NSCLC by a ceRNA regulatory mechanism 

[44]. IRF8, a transcription factor gene, belongs to the 

interferon regulatory factor family. A study has shown 

that IRF8 inhibits the tumor by inducing the senescence 

of lung cancer cells [45]. IRF8 was aberrantly expressed 

by a higher methylation level in NSCLC tissues 

compared with non-malignant lung tissues [46]. Despite 

some valuable researches, there is still a lack of 

available information about the roles of the 4 genes in 

LUAD. Our results demonstrated that two kinase genes 

and two transcription factor genes played the key roles 

and were as predictors to predict the prognosis of 

LUAD patients. 

 

To summarize, although the transcriptome characteristics 

of LUADs with differing immune phenotypes were 

systematically analyzed and some potentially prognostic 

signatures were identified, some limitations must  

be noted. First, some identified key genes are obtained 

by bioinformatics methods and the expressions of  

some genes have been validated by analyzing 20 

transcriptome sequencing data. Nevertheless, these 

genes must be verified using some more accurate 

quantitative methods such as qPCR. Second, although 

some prognostic signatures were identified by various 

methods and the predictive performances of two 

signatures were well evaluated using two independent 

datasets, the robustness of prognostic signatures need be 

verified using large-scale follow-up data. Last, the 

clinical application of each prognostic signature must be 

considered. In theory, the signature with the lowest p 

value in the survival curve and with the highest AUC 

value in the ROC curve should be first selected to use. 

If two values are inconsistent, the signature with higher 

AUC value should be considered because the AUC 

value represents the reliability of the prognostic model. 

As a result, the 9-lncRNA prognostic signature 

(AP003555.2, LINC02310, AC026462.3, AL162293.1, 

AC078860.1, AC034223.1, HSPC324, AC105999.2 and 

AP005137.2) should be fist selected to use in clinic. 

 

CONCLUSIONS 
 

The current study systematically revealed the 

transcriptome characteristics in LUADs with differing 

immunity by a comprehensive bioinformatics method 

and identified some key genes related to differing TME 

immune phenotype and three robust prognostic 

signatures associated with the survival of LUAD 

patients. The findings provide novel insights into the 

immunological mechanism in LUAD biology and in 

predicting the prognosis of LUAD patients. 

 

MATERIALS AND METHODS 
 

Gene expression data related to LUAD and clinical 

information collection 

 

LUAD related gene expression profiles were retrieved 

from The Cancer Genome Atlas (TCGA) database 

(2020, https://portal.gdc.cancer.gov/), and the inclusion 

criteria of gene expression profiles were as follows:  

(1) histological diagnosis for LUAD; (2) no other 

malignancy or malignancies besides LUAD; (3) 

complete clinical data. Finally, the gene expression 

profiles including 497 LUAD tissues and 54 non-LUAD 

normal lung tissues were collected in the current study. 

Furthermore, the clinical data of the 497 LUAD patients 

were retrieved from the TCGA database. 

 

The miRNA dataset including 483 LUAD and 45 non-

LUAD normal lung tissues were retrieved from the 

TCGA database. The miRNA data were used to 

elucidate the regulatory relationships among lncRNAs, 

miRNAs and mRNAs by constructing a ceRNA 

network on the basis of the ceRNA hypothesis. 

 

GSE31210 and GSE50081 datasets were retrieved from 

the GEO database (https://www.ncbi.nlm.nih.gov/geo/), 

and were used to evaluate the predictive performance of 

two identified prognostic signatures. 

 

All data used in this study have been approved by the 

Institutional Review Board of the relevant participating 

institutions, and no additional approval was required 

from the ethics committee. The current study meets the 

requirements of using and publishing the public data 

from the TCGA and GEO databases. 

 

Single-sample gene set enrichment analysis 

 

The single-sample gene set enrichment analysis 

(ssGSEA) in the R gsva package was used to quantify 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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the infiltration levels of 29 immune cell types [47]. The 

29 immune cell types were obtained from the publication 

of Bindea et al. and Barbie et al. [48, 49], and included 

Cytolytic_activity, T cell co-inhibition, aDCs, B cells, 

APC co-inhibition, APC co-stimulation, CCR, Check-

point, DCs, T helper cells, HLA, iDCs, Inflammation-

promoting, Macrophages, Mast_cells, Neutrophils, 

CD8+ T cells, NK cells, pDCs, T cell co-stimulation, 

Tfh, Th1 cells, Th2 cells, MHC class I, TIL, Treg, Type 

I IFN Response, Parainflammation and Type II IFN 

Response. The relative abundances of each of the 29 

immune cell types were represented according to the 

enrichment scores from the ssGSEA method between 

differing immune infiltration groups. 

 

Evaluation of immune cell types 

 

CIBERSORT (https://cibersort.stanford.edu/), an 

analytical tool for characterizing cell composition in a 

complex tissue according to their gene expression 

profiles, was used to estimate the immune cell 

composition of LUAD tissues with mixed cell types 

[50]. The 22 immune cell types were distinguished using 

a gene signature matrix termed LM22 of 547 genes. The 

LM22 signature and 1000 permutations were performed 

by a deconvolution algorithm. The proportions of the 

immune cell subsets between the high and low immune 

infiltration subgroups were compared using the Mann-

Whitney U test. The significant criterion of the accuracy 

for distinguishing cell types was set as the CIBERSORT 

p<0.05. 

 

Data normalization and differentially expressed 

analysis 

 

The normalization of all raw RNA-seq data  

were implemented using the trimmed mean of  

M-values (TMM) method based on the edgeR  

package (version 3.28.0) in Bioconductor project 

(http://www.bioconductor.org/, version 3.10) [51]. The 

edgeR package was further used to screen three types 

of differentially expressed RNAs (DElncRNA, 

DEmRNA, DEmiRNA) between the LUAD tissues 

and non-LUAD lung tissues as well as between 

differing immune infiltration subgroups. A |Log fold 

change (logFC)| >1 and an adjusted p value <0.05 

(p<0.05) were set as the significant criteria of gene 

differential expression. 

 

PPI network construction and key gene identification 

 

PPI network was used to elucidate the interactive 

relationships among DEGs encoding proteins and was 
constructed on the basis of the interactive relationships 

between all gene pairs from the online STRING 

database (https://string-db.org/, version 11.0) [52]. A 

gene pair with a combined score ≥0.9 indicates a strong 

interaction and was filtered into the PPI network. The 

cytoscape software (http://www.cytoscape.org/, version 

3.7.2) was used to construct the PPI network [53]. The 

highly correlated module was the subnetwork with a 

stronger interactive relationship among genes in the 

whole PPI network, and was extracted from the PPI 

network using the molecular complex detection 

(MCODE) algorithm on the basis of the topological 

properties of the whole PPI network. The MCODE 

analysis was implemented using a plugin MCODE 

(version 1.5.1) in the cytoscape software [54]. The 

Node Score Cutoff=0.4, Max. Depth=100, K-Core=4 

and Degree Cutoff=4 were set as the threshold 

parameters. The module with the highest score was the 

most critical module, and was used to identify key 

genes using seven centrality methods based on a plugin 

CytoNCA (version 2.1.6) in the cytoscape software 

[55]. The genes with higher centrality scores obtained 

from each centrality method were identified as key 

genes, and the intersecting genes of key genes obtained 

from seven centrality methods were identified as 

essential genes associated with differing immune 

phenotypes. 

 

CeRNA network construction 

 

The lncRNAs-miRNAs-mRNAs interactive relationships 

were elucidated by constructing a lncRNA-miRNA-

mRNA regulatory network on the basis of the ceRNA 

hypothesis [56]. The ceRNA network was established 

as follows: (1) keeping three types of key DERNAs 

with the |logFC| >1 and p<0.05 and the key DERNAs 

were intersecting DERNAs between the high and low 

immune infiltration groups and between the LUAD 

and normal lung tissue groups; (2) predicting the 

potential interactive relationships between key 

miRNAs and lncRNAs using the online miRcode tool 

(miRcode 11) [57]; (3) predicting the potential 

interactive relationships between key mRNAs and 

miRNAs using three online tools including the 

TargetScan (http://www.targetscan.org/, release 7.2) 

[58], the miRDB (http://mirdb.org/, version 6.0) [59] 

and the miRTarBase (release 7.0) [60]; (4) on the basis 

of the ceRNA hypothesis, the intersecting miRNAs 

between the potential lncRNA-miRNA pairs and 

miRNA-mRNA pairs were chosen to construct the 

ceRNA network. The cytoscape software (version 

3.7.2) was used to build the lncRNA-miRNA-mRNA 

ceRNA network [53]. 

 

Survival analysis and prognostic model construction 

 
Survival analysis was implemented using a Kaplan-

Meier (KM) estimate method in the survival package 

(version 2.43-3), and the log-rank (LR) p value and the 

https://cibersort.stanford.edu/
http://www.bioconductor.org/
https://string-db.org/
http://www.cytoscape.org/
http://www.targetscan.org/
http://mirdb.org/
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hazard ratio (HR) with 95% confidence interval (CI) 

were computed. Subsequently, the associations between 

DERNAs and the OS of LUAD patients were evaluated 

by a univariate Cox proportional hazards regression 

model. Next, a prognostic model was constructed in line 

accordance with a multivariate Cox hazards regression 

model. The risk score formula was established as 

follows: 

 

Risk score (

( )

)=



 ii

i

Expression DERNA

Coefficient DERNA
 

 

where “Expression(DERNAi)” represents the expression 

of the ith DERNA, and “Coefficient(DERNAi)” denotes 

the regression coefficient of the ith DERNA from a 

multivariate Cox regression model. In the light of the 

median risk sore, the patients were separated into the 

high- and low-risk groups. The receiver operating 

characteristic (ROC) curve was used to measure the risk 

prediction rate of risk signature and the ROC curve was 

constructed by the survivalROC (version 1.0.3) 

package. The area under curve (AUC) in the ROC curve 

shows the prediction accuracy of risk signature. 

 

WGCNA 

 

The coexpression relationships among genes associated 

with immune phenotype were analyzed using the 

WGCNA method, and gene coexpression modules were 

identified using the WGCNA package (version 1.13) 

[61]. First, the Pearson correlation coefficients for all 

pair-wise genes were computed according to the 

expressions of all genes and a Pearson correlation matrix 

was constructed based on the Pearson correlation 

coefficients. Subsequently, an adjacency matrix was 

converted by the Pearson correlation matrix and the 

adjacency matrix was strengthen using a power 

adjacency parameter β (soft threshold). The power β=3 

was selected on the basis of the scale-free topology 

criterion R2=0.9. Next, a topological matrix was 

computed from the strengthened adjacency matrix using 

the topological overlap measure (TOM) that was defined 

as the correlation between each pair of genes. Based on 

the TOM-based dissimilarity (1-TOM), the genes with 

coherent expression profiles were classified into one gene 

module by an average linkage hierarchical clustering. A 

dynamic cutting algorithm was used to construct a system 

cluster tree of all genes, and gene coexpression modules 

associated with immune phenotype were identified from 

the system cluster tree. The gene coexpression modules 

with 95% similarity were integrated into one module. 

The first principal component was the representative of 

gene expression in a module, defining as the module 

eigengene (ME). The correlation between the gene 

module and the ME was calculated and was defined as 

the module membership (MM). The gene significance 

(GS) indicated the correlation between the gene 

expression and immune phenotype, and was calculated 

using the log10 transformation of the p value from t-test 

measuring gene differential expression. The average GS 

of all genes in one module showed the correlation 

between the module and immune phenotype, and was 

defined as the module significance (MS). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Prognostic signature analysis of key DEmiRNAs. (A) ROC curve. The 3-year AUC of the 4-miRNA signature 

(mir-196b, mir-142, mir-548f-1, mir-5571) was 0.634 in the ROC curve. (B) Risk score distribution. According to the median risk score, the 
patients were divided into the high- and low-risk groups. (C) Survival overview. The distribution of survival times of LUAD patients in the high- 
and low-risk subgroups. (D) Survival curve. LUAD patients had a higher HR and a lower OS in the high-risk group (p=0.00149, HR=1.6643, 
95%CI=1.2147-2.3129). (E) The expression heatmap of four miRNAs. Two miRNAs (mir-196b and mir-548f-1) were highly expressed and 2 
miRNAs (mir-142 and mir-5571) were lowly expressed in the high-risk group. (F) The expression correlations among 4 miRNAs. The 
correlations among 4 miRNAs were low in expression. (G, H) Independently prognostic analysis. The 4-miRNA risk signature was significantly 
correlated with the survival of LUAD patients by a univariate (p<0.001, HR=1.531, 95%CI=1.344-1.744) and a multivariate (p<0.001, HR=1.439, 
95%CI=1.237-1.674) Cox regression analyses. ROC, receiver operating characteristic; AUC, area under the curve; LUAD, lung adenocarcinoma; 
HR, hazard ratio; OS, overall survival; CI, confidence interval. 
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Supplementary Figure 2. Survival curves of DERNAs in the ceRNA network. 
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Supplementary Figure 3. Survival curves of 16 genes. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4, 5. 

 

Supplementary Table 1. Common DERNAs. 

 

Supplementary Table 2. DERNAs associated with the OS of LUAD patients. 

lncRNAs 

id HR HR.95L HR.95H pvalue 

AC022784.1 1.16472348399603 1.08738130821097 1.24756677710763 0.0000136425931594224 

PLUT 1.18317343563371 1.09120300736011 1.28289545515089 0.0000462110267742122 

AP003555.2 1.17285723888692 1.066619242653 1.28967681043137 0.000997356454309377 

LINC02310 1.40733240657435 1.24523155199544 1.59053510924979 4.43375078362903E-08 

LINC02448 1.2514134059327 1.10877498385066 1.41240155609337 0.000280950216307133 

AL365203.1 1.17789284486517 1.09691948570537 1.26484356606391 6.61663546039384E-06 

AC091133.2 1.24680303735831 1.10963673909535 1.40092496868233 0.000207725876635335 

AC092168.2 1.29800166283959 1.14631089643021 1.46976559498919 0.0000389762014836297 

LINC01468 1.13643666177252 1.06946903893755 1.20759763882803 0.00003669996824663 

AC026462.3 1.16507969308909 1.07264844909056 1.26547583450984 0.000291350603204754 

AL161668.1 1.40322946480174 1.18566150322529 1.6607209777255 0.0000810873903907402 

AL162293.1 1.3668839559206 1.16543159155924 1.60315866026376 0.000122104893615929 

AC078860.1 1.26460841206938 1.10637517687766 1.44547208695506 0.000577078162022361 

AC034223.1 1.35638496989582 1.20852837753302 1.52233097770931 2.26376942136393E-07 

AL078645.1 0.706591952925778 0.592746408803817 0.842303184842592 0.000106840752359197 

LINC02178 1.23236024911331 1.15055908083888 1.31997722575648 2.48988246005482E-09 

AP000679.1 1.24755964032529 1.101259373755 1.41329562613541 0.000509797325855036 

AC105243.1 1.19615135039499 1.09550025769094 1.30604994659473 0.0000650220255123192 

HSPC324 0.794536471076285 0.702507838128402 0.898620868846409 0.000250381641626801 

AF121898.1 1.21857536234778 1.10736134803875 1.34095877226614 0.0000515487289662321 

HOXA10-AS 1.15728628387467 1.06731859745349 1.25483763333638 0.000403493083551291 

AC105999.2 1.21966385571151 1.08861395723691 1.36648984797585 0.000617179551695052 

AP000924.1 1.18746303654532 1.09086513126322 1.29261484554794 0.0000721841736956064 

AP005137.2 1.28183223967341 1.17374333508091 1.39987494842974 3.30984194844202E-08 

AC139722.1 1.38094509002328 1.21922351755444 1.56411791127893 3.79354106211565E-07 

AC104984.3 0.686835618146608 0.551101904542505 0.855999883989601 0.000825600053680081 

mRNAs 

id HR HR.95L HR.95H pvalue 

DLX2 1.16952735712133 1.07060834148525 1.27758600979857 0.000514426041153686 

KCNJ18 1.14117877176951 1.06024314881763 1.22829276528659 0.000433923149560757 

RHOV 1.19313935255989 1.10102235023076 1.29296332116116 0.0000165076567542321 

RPE65 1.20470642228417 1.0909009234457 1.33038439394535 0.000234695890899623 

IGF2BP1 1.10242324206862 1.05488816064131 1.15210033631834 0.0000145036964461706 

GUCA2B 1.12214601161301 1.04939377223204 1.19994200909033 0.00075250016364406 

GRIA1 0.863734356844824 0.801226374681498 0.931118923151657 0.000132374723448509 

SFTPC 0.944720442695209 0.913545199496473 0.97695955858359 0.000895462193585035 

LCN15 1.13581935440546 1.06228136535799 1.214448118844 0.000192155904015075 
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C11orf21 0.795087689608751 0.705146616040704 0.896500698984976 0.000181290007184054 

ANXA13 1.12179649556213 1.05283943067546 1.19526999159608 0.00038414805431614 

FSIP2 1.15393167148808 1.06920874406336 1.24536795069867 0.000233289016522983 

KRT76 1.2639581368094 1.11351598949542 1.434725847386 0.000291284852147283 

TSPAN32 0.786154698035708 0.694343832544996 0.890105420794624 0.000146290467385089 

CASP14 1.09434484151395 1.04301037949847 1.1482058622696 0.000235190761741837 

SLC13A5 1.13013854508598 1.05077443827152 1.21549695593093 0.000990762277181068 

43894 1.14485372010087 1.05854609880675 1.23819835707323 0.00071776850366369 

KRT16 1.10307522475115 1.04171895703574 1.16804531898142 0.000780198110019921 

PAQR9 1.19623889829599 1.08319592195565 1.32107910747378 0.000403384647847666 

CREG2 1.16173457987512 1.08235180466985 1.24693951472581 0.0000330470050230293 

CDR1 1.20596997721884 1.08739303632101 1.33747737696922 0.000390331676046308 

miRNAs 

id HR HR.95L HR.95H pvalue 

hsa-mir-6850 1.22369494655568 1.01328374596145 1.47779862076549 0.0359895941569773 

hsa-mir-196b 1.08294261130757 1.01738752732888 1.15272171899405 0.0123833915312981 

hsa-mir-548f-1 1.27222024842001 1.10341351793822 1.46685203160661 0.000916867328631251 

hsa-mir-142 0.861346642636693 0.759325742488977 0.977074787889563 0.0203120234961398 

hsa-mir-5571 0.817872466198366 0.703149376285542 0.951313324771772 0.00912789948313501 
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Supplementary Table 3. 88 immune DEGs. 

Upregulated Downregulated 

IRF8 TENM1 

LAIR1 IFNK 

SIRPG TNFSF11 

MNDA CALCA 

PLA2G2D SCG2 

NFAM1 INHA 

HLA-E IL17C 

SPI1 RETNLB 

LY86  

CRTAM  

FOXP3  

FCGR3A  

CD27  

IL4I1  

HLA-DOA  

EVI2B  

TNFAIP8L2  

PTCRA  

HVCN1  

TLR8  

IL2RA  

CCL18  

CCL19  

TIGIT  

CYBB  

LST1  

CCL23  

CCR8  

RASGRP4  

CD244  

CXCL9  

CD83  

PRF1  

C5AR1  

FCN1  

TNFRSF9  

DCSTAMP  

CD79A  

GPR65  

HLA-DRB5  

CCRL2  

IL7R  

NCR1  

IL27  

CCL2  

TLR4  

CD19  

TPSAB1  
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TNFRSF17  

HAMP  

CD68  

CCL1  

CD70  

AIM2  

IL34  

IL21  

CXCL13  

CTLA4  

CTSG  

CX3CR1  

AQP9  

CCL7  

LAG3  

MMP9  

CCL14  

INS  

FCAR  

IL22RA2  

VTN  

IFNG  

SPACA3  

CCL25  

CCL26  

LTF  

MMP7  

CEACAM8  

IL17A  

EREG  

IL1RL1  

PYDC1  

 

Supplementary Table 4. KEGG pathways enriched by 80 upregulated immune DEGs. 

 

Supplementary Table 5. The genes included in the blue module. 


