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INTRODUCTION 
 

Prostate cancer (PRCA) is the most common cancer in 

men and is the secondary cause of cancer-related 

deaths in western countries according to the 2018 

GLOBOCAN project [1]. Treatment options for 

localized PRCA include radical prostatectomy, 

radiation therapy, and androgen deprivation therapy 
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ABSTRACT 
 

Background: Immunotherapy has a significant effect on the treatment of many tumor types. However, prostate 
cancers generally fail to show significant responses to immunotherapy owing to their immunosuppressive 
microenvironments. To sustain progress towards more effective immunotherapy for prostate cancer, 
comprehensive analyses of the genetic characteristics of the immune microenvironment and novel therapeutic 
strategies are required. 
Methods: The transcriptome profiles of patients with prostate cancer were obtained from GEO and processed 
with the TIDE algorithm to predict their responses to immunotherapy. Next, the significant differentially 
expressed genes (DEGs) between the responder and non-responder groups were identified and used to 
compute the co-expression modules by WGCNA. Then, co-expression networks were constructed and survival 
analysis was applied to hub genes. Finally, drug candidates to alleviate immunosuppression were filtered in 
prostate cancer using GSEA based on hub genes. 
Results: In total, we identified 2758 significant DEGs and constructed 16 co-expression modules, seven of which 
were significantly correlated with the immune response score. In total, 133 hub genes were identified, of which 
13 were significantly associated with prostate cancer prognosis. Co-expression networks of hub genes were 
constructed with KMT2B at the center. Finally, six candidate drugs for prostate cancer immunotherapy were 
identified in PC3 and LNCaP cell lines. 
Conclusions: We obtained datasets from multiple platforms, performed integrated bioinformatic analysis to 
identify 133 hub genes and 13 biomarkers of an immunotherapy response, and six candidate drugs were 
filtered to inhibit the immunosuppressive tumor microenvironment, to ultimately improve patient responses to 
immunotherapy in prostate cancer. 
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(ADT). However, most patients undergoing ADT 

eventually progress to metastatic castration-resistant 

prostate cancer (mCRPC) [2]. In recent years, 

immunotherapy that stimulates the patient immune 

system to target cancer has emerged as a next-

generation cancer treatment. Although immunotherapy 

has provided substantial benefits for many types of 

cancer, only a limited benefit was observed with 

mCRPC, owing to the dysfunctional immune system in 

PRCA, which promotes an immunosuppressive tumor 

microenvironment [3, 4]. 

 

Various therapeutic drugs have been used to enhance 

patient responses to immunotherapy. Targeting both 

CTLA-4 and PD-1 has been reported to result in a 

prostate-specific antigen response and objective 

response in some patients [5]. Moreover, to improve the 

efficacy of immunotherapy, researchers have focused on 

combination and sequential therapies [6]. For example, 

sipuleucel-T, an autologous cellular immunological 

agent, was the first immunotherapy approved by the 

FDA and has been shown to promote overall survival in 

patients with mCRPC [7]. Treatments using sipuleucel-

T with anti-CTLA4 and anti-PD-L1 antibodies and an 

interleukin-15 (IL-15) superagonist are currently in 

clinical trials as new immunotherapy combination 

treatments [8]. In this study, we aimed to explore the 

genetic characteristics of the immunosuppressive tumor 

microenvironment and propose candidate drugs to 

improve patient responses to immunotherapy (Figure 1). 

 

RESULTS 
 

Prediction of immune response status by tumor 

immune dysfunction and exclusion (TIDE) 

 

The mRNA expression profile of PRCA patients was 

obtained from the Gene Expression Omnibus (GEO) 

database (GSE183019). We predicted the responses of 

84 patients to immunotherapy and estimated the scores 

of 10 immune features with TIDE. Overall, 58 patients 

were predicted to be responsive to immunotherapy as 

 

 
 

Figure 1. Workflow to identify the biomarkers of an immunotherapy response and candidate drugs. 
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their TIDE score was <0, whereas the other 26 patients 

were considered non-responders (Figure 2A). All 58 

responder patients were CTL true (positive for five 

cytotoxic T lymphocyte markers, including CD8A, 

CD8B, GZMA, GZMB, and PRF1), indicating that the 

immune response to tumor T cell infiltration is highly 

consistent; that is, patients with high T cell infiltration 

have a high probability of responding to immuno-

therapy. Moreover, interferon gamma (IFNG) was a 

positive biomarker for the immune checkpoint blockade 

therapy response, and the score of IFNG in responder 

samples was significantly higher than that in non-

responders. Except for the cancer-associated fibroblast 

(CAF) score, all immune feature scores showed 

significant differences between the groups. In addition, 

Merck18 (T-cell-inflamed signature), IFNG, CD8, and 

dysfunction signatures showed the most significant 

differences between the immune response and non-

response groups (Figure 2B, 2C).  

 

Identification of immune response-related genes 

through differential expression analysis (DEA) 

 

By comparing the transcriptomes of 58 immune 

responder patients and 26 non-responder patients, 2758 

immune response-related genes (IRRGs) were identified, 

and 99.42% (2742/2758) were expressed at low levels in 

immune-responsive samples (Figure 3A). The three most 

significant differentially expressed genes were HBA2, 

LOC100131257, and CCDC168. Notably, it has been 

reported that mutations in CCDC168 are associated with 

adenosquamous carcinoma of the prostate [9]. The top 30 

differentially expressed genes included multiple non-

coding RNAs, such as LINC00907, LINC01105, 

LINC00276, SNORA57, and SNORA76C (Figure 3B); 

these non-coding RNAs can regulate gene expression 

through post-transcriptional modifications, thereby 

affecting the immune microenvironment of the prostate. 

 

Functional enrichment analysis of IRRGs 

 

To explore the potential functional implications of 

IRRGs, we performed Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses. As a result, the most significantly 

enriched pathways in KEGG were “olfactory 

transduction,” “cAMP signaling pathway,” and 

“calcium signaling pathway.” Moreover, “nicotine 

addiction” and “cytokine-cytokine receptor interaction” 

were also enriched in the KEGG pathways (Figure 3C). 

Similarly, GO enrichment analysis suggested that 

IRRGs were significantly enriched in material transport 

 

 
 

Figure 2. Immune-response prediction by Tumor Immune Dysfunction and Exclusion (TIDE). (A) Patients were predicted to be 
responders/non-responders to immunotherapy based on the TIDE score. (B) The score for immune features of TIDE score, Dysfunction, 
Exclusion, MDSC, CAF, and TAM predicted by TIDE. (C) The score for immune features of IFNG, MSI, Merck18, CD274, and CD8. Asterisks 
indicate the level of statistical significance: * < 0.05; ** < 0.01; *** < 0.001; and **** < 0.0001. 
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processes, such as “potassium ion transport,” 

“regulation of membrane transport,” and “anion 

transmembrane transport” (Figure 3D). Various 

signaling processes were also enriched, including 

“glutamate receptor signaling pathway” and “coupled 

receptor signaling pathway.” Functional annotation of 

IRRGs revealed that ion transport and signaling 

pathways are implicated in patient response to 

immunotherapy, thus contributing to anti-tumor 

immunosuppression. 

 

IRRG co-expression module identification with 

weighted gene co-expression network analysis 

(WGCNA) 

 

In total, 2758 differentially expressed IRRGs were 

involved in the co-expression modules. First, the soft 

threshold was determined through the scale 

independence and mean connectivity analysis of 

modules with different power values ranging from 1 to 

20 (Supplementary Figure 1). In this study, the power 

value (β) was set to 6 to produce a hierarchical 

clustering tree with different colors representing 

different modules. As a result, 16 total modules with 

different IRRGs were identified and displayed with 

different colors. 

 

The hierarchical clustering dendrogram of the patients 

based on the WGCNA distance matrix is shown in Figure 

4A, and the immune responding patients were grouped 

together. IRRGs were grouped into 16 co-expression 

modules (Figure 4B), and the correlation between 

modules and immune features is displayed in Figure 4C, 

which suggested that turquoise module was significantly 

correlated with Merck18, IFNG, and myeloid-derived 

suppressor cells (MDSCs). Seven modules that were 

significantly associated with TIDE score, with p-value < 

0.05, were retained for further analysis. 

 

To provide insight into the biological functions of the 

IRRGs in seven immune response-related modules, we 

performed GO (Supplementary Table 1) and KEGG 

 

 
 

Figure 3. Identification of immune-response related genes (IRRGs). (A) Volcano plot of differentially expressed genes between 

responder and non-responder patient groups. In total, 2758 differentially expressed genes (DEGs) were considered as IRRGs. (B) Expression 
profiles of the top 30 significant IRRGs in responder and non-responder groups. The enriched KEGG pathways (C) and GO terms (D) of IRRGs 
were determined using ClusterProfiler. 
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 (Supplementary Table 2) enrichment analysis. Most 

modules included enriched GO terms related to voltage-

gated channels, such as “cation channel complex” (3/7), 

“ion transport” (5/7), and “sensory perception of smell” 

(4/7). Specifically, the IRRGs involved in the red 

module were significantly enriched in immune-related 

GO terms, such as “lymphocyte/T cell costimulation”, 

“immunological synapse”, “positive regulation of 

adaptive immune response”, and “cytokine metabolic 

process” (Figure 5A). IRRGs of turquoise module were 

enriched in the “regulation of uterine smooth muscle 

contraction” (Figure 5B). Further, IRRGs of green 

(Figure 5C), magenta (Figure 5D), and cyan (Figure 5E) 

modules were mostly enriched in pathways related to 

“ion transport” and those of magenta module were 

especially enriched in “epidermal cell differentiation”. 

 

 
 

Figure 4. Co-expression modules of immune-response related genes (IRRGs) identified by weighted gene co-expression 
network analysis (WGCNA). (A) Sample dendrogram of patients based on transcriptome correlation. (B) Cluster dendrogram of IRRGs 
and 16 co-expression modules were identified by WGCNA. (C) Correlation coefficients between co-expression modules and immune 
features (above) with p-values (below). 
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IRRGs of pink (Figure 5F) and salmon (Figure 5G) 

module were mostly enriched in “sensory perception of 

smell” and “olfactory receptor activity”, respectively. 

 

Identification of biomarkers of immunotherapy 

responses 

 

To investigate the role of IRRGs as potential marker 

genes in immunotherapy response, we first identified 

hub genes in seven modules of interest (see Methods). 

Ultimately, 133 genes were identified as hub genes, 

which were selected for survival analysis (Table 1), and 

13 of them were found to be significantly associated 

with PRCA prognosis. BICDL2, a protein-coding gene 

predicted to enable small GTPase binding activity, 

showed the most significant association with PRCA 

prognosis (p-value = 0.004). Moreover, the rest of the 

prognosis-related genes were as follows: ABHD17A 

(p-value = 0.0083), ARHGAP33 (p-value = 0.0093), 

AP5Z1 (p-value = 0.041), ARHGEF16 (p-value = 

0.026), ASMTL-AS1 (p-value = 0.029), ATAD3B 

(p-value = 0,029), ATG16L2 (p-value = 0.014), AXIN1 

(p-value = 0.042), LLCFC1 (p-value = 0.016), LENG8 

(p-value = 0.018), KMT2B (p-value = 0.05), and 

CACNA1H (p-value = 0.041) (Figure 6). The IRRGs 

described previously herein were considered biomarkers 

of immunotherapy response in PRCA, which might 

affect the immune microenvironment, thus playing an 

important role in patient responses to immunotherapy 

and determining clinical outcomes. 

 

Construction of co-expression network 

 

Using WGCNA, we constructed co-expression net-

works of the hub genes in the seven modules identified 

previously herein based on expression correlations to 

provide insights into the role of signature genes in 

PRCA pathogenesis. Excluding the red module, which 

had only one hub gene, we constructed networks for the 

other six modules. The results showed that in the 

 

 
 

Figure 5. The enriched GO terms of IRRGs in the red module (A), turquoise module (B), green module (C), magenta module (D), cyan 

module (E), pink module (F), salmon module (G). 
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Table 1. Number of immune-response related genes (IRRGs) included in seven modules that are significantly 
correlated with the tumor immune dysfunction and exclusion (TIDE) score and the hub genes in each module. 

Module color 
Number 
of IRRGs 

Most-related 
immune feature 

Hub genes (number of hub genes) 

Red 125 IFNG CDKN3 (1) 

Turquoise 549 MDSC PAGR1, SIX5, PCED1A, BAHCC1, ARMC5, ATN1, SNRNP70, 
LOC100133091, KMT2B, CHPF, ABHD17A, CAPN15, SGSH, 
TMEM250, SAFB2, AMIGO3, ANO8, SDF4, H1FX, ARRDC1, 
SNAPC4, INPP5E, SLC12A9, ABHD15, SLC43A2, PCNX3, 
LLCFC1, PIM3, PPP1R3F, CASZ1, H1FX-AS1, PALM, 
SLC39A3, AGRN, GPR137, ARFGAP1, LENG8, ARHGAP33, 
BCAR1, CACNA1H, AGPAT2, CAPN10, SHC2, GUSBP11, 
GPANK1, SLC4A3, KIFC3, SCRIB, AP5Z1, ADCK2, AXIN1, 
ARHGEF1, GLTSCR1, INTS1, RNPEPL1, SH3TC1, ARFRP1, 
C19orf25, PARP10, CFAP410, ATG16L2, SNORD17, HDAC10, 
BICDL2, RRN3P3, C15orf39, ASMTL-AS1, ALDH16A1, 
ATAD3B, SCARF2, ATG4D, ARHGEF16, CLASRP, PPP1R16A, 
ANAPC2, CCDC9, BORCS6, PPP2R3B (78) 

Cyan 45 Dysfunction LINC01360, SLC13A1, ALPG, LINC02881, OR7E5P, IGFBP1, 
CA9, OR1E2 (8) 

Salmon 60 Dysfunction LINC01104, OR4F17, LINC01304, OR6C1, PLSCR5, PDYN, 
OR5AC2 (7) 

Pink 114 Dysfunction KIF4B, CD1A, ANKRD18DP, PIH1D3, SATB2, AS1, ACOD1, 
GFY, GK2, LINC01180, C1orf185, HCRTR2, OR5AK2, OR1G1, 
C1orf141, LINC00297, LINC00433, OR2V1, ROPN1L-AS1 (18) 

Magenta 108 MSI POU4F2, LINC01159, SLC5A12, KRTAP5-8, CADM2-AS2, 
ACTR3BP2, CD5L, LOC100132735, CETN1 (9) 

Green 151 CD8 OR56B4, KRT38, KRT78, C14orf180, OR2B11, OR4D6, 
HMGA1P7, KRT39, KCNK18, OR5M9, C10orf120, PDHA2, 
KRT84 (13) 

Abbreviations: IFNG: interferon gamma; MDSC: myeloid-derived suppressor cell; MSI: microsatellite instability. 

 

turquoise module, INTS1 and KMT2B were at the center 

of the network. KMT2B was significantly related to 

survival and was related to multiple regulators of gene 

expression (Figure 7A), such as LOC100133091 and 

SNORD17, as well as the transcription factor (TF)-

encoding genes CAPN15, SNAPC4, and CASZ1; these 

regulators themselves act as modular hub genes and 

might have regulatory functions. There were four 

lncRNAs and one snoRNA involved in the network of 

cyan module (Figure 7B). In green module, the co-

expression relationship among 13 hub genes was 

presented (Figure 7C) and nine hub genes, including 

two lncRNAs and one TF-encoding gene were used in 

magenta module (Figure 7D). For hub genes in salmon 

and pink modules, the networks were constructed and 

presented in Figure 7E and 7F, respectively. 

 

Identification of small molecules targeting core IRRGs 

 

Having identified PRCA signature genes significantly 

associated with the immunotherapy response, most of 
which were downregulated in immune-responsive 

patients, we hypothesized that when signature genes are 

targeted with small molecules, the downregulated 

expression of these genes would sensitize cells to the 

drug. Such molecules could potentially reverse 

tolerance and facilitate therapy effectiveness when 

combined with traditional drugs. Data from the Library 

of Integrated Network-Based Cellular Signatures 

(LINCS) database were used to identify small 

molecules targeting PRCA signature genes, with their 

co-expressed genes were identified by WGCNA. 

 

Based on the signature genes and the co-expression 

pairs identified by WGCNA, from hundreds of small 

molecules, we identified nine and two candidate drugs, 

respectively, from the expression profiles of the PC3 

and LNCaP cell lines from the LINCS database (Figure 

8A, Supplementary Table 3). These drugs regulated the 

expression of signature genes of PRCA significantly. 

Among them, four and two compounds, respectively, 

were considered for immunotherapy based on PC3 and 

LNCaP cells, and these significantly inhibited the 

expression of signature genes, making them potential 

candidates for combination therapies. For PC3 cells, 

resveratrol most significantly inhibited the expression of 

signature genes (Figure 8B), whereas in the LNCaP cell 

line, radicicol (Figure 8C) and PHA-793887 had the 

most significant effects. No compound was observed to 

have significant effectiveness in both cell lines. 
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DISCUSSION 
 

In this study, PRCA patients were divided into immune-

responder and non-responder groups using a 

computational method. Between immune responders 

and non-responders, 2758 IRRGs were identified and 

clustered into 16 co-expression modules, seven of 

which were significantly correlated with the TIDE 

score. From seven modules of interest, 133 total hub 

genes were identified. The red module had only one hub 

gene that met the criteria, cyclin-dependent kinase 

inhibitor (CDKN3), which was upregulated in the 

immune responder sample group. As a tumor-promoting 

gene, CDKN3 encodes a protein that plays an important 

role in protein phosphorylation and cell cycle regulation 

[10]. Many studies have shown that alternative splicing 

and mutations in CDKN3 are related to the cellular 

immune microenvironment in liver cancer, and 

experiments conducted by Huang et al. showed that 

high expression of CDKN3 can be triggered by Tfh cell-

derived signals, an epigenetic mechanism regulating 

activated B cells [11]. It is possible that CDKN3 

promotes the proliferation of immune cells while 

promoting the proliferation of tumor cells, so that 

samples with high expression levels of CDKN3 are 

more likely to respond to immunotherapy. 

 

Survival analysis of 133 hub genes identified 13 genes 

significantly associated with PRCA prognosis, 

specifically CACNA1H, BICDL2, ABHD17A, 

ARHGAP33, AP5Z1, ARHGEF16, ASMTL-AS1, 

ATAD3B, ATG16L2, AXIN1, LLCFC1, LENG8, and 

KMT2B, which were considered biomarkers for the 

immunosuppressive microenvironment. Low expression 

of these genes was associated with better prognosis, 

with the exception of CACNA1H, which encodes a 

 

 
 

Figure 6. Survival analysis identified 13 immune-response related genes (IRRGs) significantly related to the prognosis of 
prostate cancer (PRCA). Patients were divided into a high expression group (H) and low expression group (L) according to the median 

expression of specific genes. 
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protein involved in the voltage-dependent calcium 

channel complex; high expression of CACNA1H was 

found to be significantly associated with better 

prognosis, suggesting that ion transport plays an 

important role in PRCA. It has been reported that 

Cav3.2 T-type Ca2+ channels exist in 100% of PRCA 

patients, and Cav3.2 voltage-dependent calcium 

channels are involved in cell growth in PRCA [12].

 

 
 

Figure 7. Co-expression network constructed with hub genes in the turquoise module (A), cyan module (B), green module (C), magenta 
module (D), salmon module (E), and pink module (F). Every node represents a hub gene or hub gene of co-expressed genes; genes 
significantly correlated with prognosis are colored red. LncRNAs, SnoRNAs, and transcription factors (TFs) are vital regulatory molecules and 
are colored with green, purple, and yellow, respectively. For the turquoise module, to obtain a clear picture, the edges weighted above 
0.25 are displayed, whereas in the other six modules, edges weighted above 0.1 are displayed. 
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Thus, CACNA1H might affect the response of patients 

to immunotherapy by affecting the function of ion 

channels. Further, researchers also found that somatic 

mutations in CACNA1H recur at the site of tumor 

metastasis, which could be related to immune escape in 

colorectal tumors [13]. ABHD17A (α/β-hydrolase 

domain-containing protein 17a) is another biomarker 

related to voltage channels. Previous research 

demonstrated that ABHD17A modulates ion channels at 

the post-transcriptional level by deacetylating the stress-

regulated exon domains of large conductance voltage- 

and calcium-activated potassium channels [14]. 

Moreover, low expression of ABHD17A is associated 

with improved overall survival of PRCA according to 

survival analysis.  

 

Previous studies have shown that some of the screened 

biomarkers affect the progression of various tumors 

through different molecular mechanisms. Regarding 

ARHGAP33, researchers have reported that it is a 

marker gene that can predict prognosis in prostate 

cancer [15], and ARHGAP family genes have been 

demonstrated to promote bladder cancer progression by 

establishing a tumor-promoting microenvironment [16]. 

ARHGEF16, encoding a nucleotide exchange factor that 

catalyzes the exchange of GDP nucleotides for GTP, is 

critical for cell proliferation, growth, and tumorigenesis 

in various cancers [17, 18]. Hiramoto-Yamaki et al. 

reported that ARHGEF16 could modulate the migration 

of breast cancer cells in a RhoG-dependent manner 

[19]. Further studies have shown that ARHGEF16 

activates RhoG and PI3K, contributing to apoptosis 

resistance in tumor cells [20], and interacts with CKAP5 

to promote the proliferation and migration of glioma 

cells [21]. Although the critical functions of 

ARHGEF16 have been reported in many cancer types, 

the underlying mechanism of its effect on PRCA 

prognosis remains to be elucidated. Moreover, ASMTL-

AS1, a noncoding transcript, inhibits β-catenin 

expression and inactivates carcinogenic Wnt/β-catenin 

signaling in breast cancer [22]. ATG16L2 plays an 

important role in T cell autophagy [23]. AXIN1 contains 

a G-protein signaling regulation domain and a 

dishevelled and axin domain, and many studies have 

reported its modulation of immune-related signaling 

pathways in liver cancer [24, 25]. In addition to the

 

 
 

Figure 8. Drug candidates were filtered from the LINCS database, which were predicted to contribute to immunotherapy. 
(A) Nine drugs in PC3 and two drugs in LNCaP cells were significantly regulated hub genes computed by Gene Set Enrichment Analysis 
(GSEA). The GSEA plots of resveratrol (B) and radicicol (C), the most significantly effective drugs for the PC3 and LNCaP cell lines, 
respectively, show their regulation of hub genes. 



www.aging-us.com 4849 AGING 

genes previously mentioned, BICDL2, LLCFC1, 

LENG8, KMT2B, AP5Z1, and ATAD3B were also found 

to be IRRGs significantly associated with PRCA 

prognosis in this study, which were proposed to have 

vital roles in the response to immunotherapy in PRCA 

and require further study. 

 

Based on the hub genes and co-expression pairs 

identified by WGCNA, we identified candidate drugs 

from hundreds of small molecules based on the mRNA 

expression profiles of the PC3 and LNCaP cell lines 

from the LINCS database. In PC3 cells, the most 

significantly effective drug, resveratrol, is a phyto-

estrogen with antioxidant, anti-inflammatory, cardio-

protective, and anti-cancer properties [26]. Previous 

studies revealed that resveratrol can reverse multidrug 

resistance in cancer cells, and when used in 

combination with clinically used drugs, it can sensitize 

cancer cells to standard chemotherapeutic agents [27]. 

There have been many reports that resveratrol can 

inhibit tumor processes by regulating multiple 

pathways, and the pathways affected by resveratrol, 

such as the PI3K pathway, Wnt signaling, and 

inflammation-related pathways, affect the PRCA 

immunosuppressive microenvironment [28]; thus, 

resveratrol could become an adjuvant drug for 

immunotherapy to help improve its effectiveness. I-

BET-762 is also well studied and was reported to 

reduce MYC expression in PRCA and subsequently 

inhibit cell growth and reduce the tumor burden [29]. 

Moreover, researchers have reported that bromodomain 

and extra-terminal (BET) bromodomain inhibition can 

mediate changes in expression at a genome-wide level 

in PRCA cells and increase the susceptibility of cancer 

cells to CD8 T cell targeting [30]. Thus, I-BET-762 acts 

as a BET inhibitor and could have clinical benefits for 

PRCXA patients in combination with immunotherapy. 

The other four proposed drugs—belinostat, OSI-027, 

radicicol, and PHA-793887—are less well-studied in 

relation to PRCA treatment. The FDA approved 

belinostat for the treatment of patients with relapsed or 

refractory peripheral T-cell lymphoma [31] and OSI-

027 (also known as ASP7486) is a dual 

mTORC1/mTORC2 ATP-competitive kinase inhibitor 

[32]. Compared with the properties of PC3 cells, 

LNCaP cells might represent a striking feature of early 

androgen-dependent PRCA, as the significantly 

enriched drug radicicol potentiates radiation-induced 

cell killing in a hormone-sensitive PRCA cell line 

through degradation of the androgen receptor [33]. 

PHA-793887 is an inhibitor of multiple cyclin-

dependent kinases (CDKs), with activity against CDK2, 

CDK1, and CDK4, and has been validated to enhance 
immunotherapy against melanoma [34]. However, few 

studies have investigated the effects of these four drugs 

on PRCA, and thus, further study is necessary. 

Although the biomarker genes and candidate drugs that 

affect immunotherapy were mostly proven by existing 

studies, there are certain limitations to this study. The 

mRNA expression profile obtained from the LICNS 

database only includes the expression of 30.08% 

(40/133) hub genes, which possibly prevents the 

accurate prediction of candidate drugs (Supplementary 

Table 4). Moreover, the mechanisms underlying the 

effects of biomarkers require further investigation and 

experimental validation, as information on the ability of 

the proposed drugs to improve immunotherapy in 

PRCA is, apart from reported cases, lacking. Further 

research will focus on the mechanism underlying the 

effects of the proposed biomarkers, and more 

experiments are needed at the protein level and in vivo. 
 

In conclusion, we integrated and analyzed datasets from 

multiple platforms to identify 133 hub genes in seven 

co-expression modules. Co-expression networks were 

constructed to reveal the regulatory relationships 

between them. Survival analysis identified 13 genes that 

were significantly associated with prognosis and 

considered biomarkers of the immunotherapy response 

for PRCA. Furthermore, we proposed six candidate 

drugs, two of which, resveratrol and I-BET-762, have 

been reported to be beneficial for PRCA treatment, 

whereas the other four, belinostat, OSI-027, radicicol, 

and PHA-793887, remain to be studied. 

 

METHODS 
 

Data source 
 

The mRNA expression profiles and dataset 

comprising clinical information of PRCA patients of 

GSE183019 were acquired from the GEO 

(https://www.ncbi.nlm.nih.gov/geo/) database [35, 36] 

and The Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov) database [37]. Excluding 

normal tissue samples, 84 PRCA samples with count 

profiles of 25498 expressed genes were retained for 

further analysis. The transcriptome profiles of the 

PC3 and LNCaP cell lines with different drug 

perturbations were obtained from the LINCS 

(https://lincsproject.org/LINCS/) database [38], and data 

of a total of 1121 compounds with the expression of 

7163 genes were collected. 

 

Prediction of immune response status 
 

TIDE [39] is an integrated web tool used to predict patient 

responses to immunotherapy. Based on tumor expression 

profiles, TIDE can score multiple transcriptomic 
biomarkers of several immune features, including immune 

system dysfunction, T cell exclusion, MDSCs, IFNG 

signature, CAFs, M2 subtype of tumor-associated 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://lincsproject.org/LINCS/
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macrophages (TAMs), microsatellite instability (MSI), 

Merck18, CD274, and CD8. These features were 

demonstrated to be related to patient responses to 

immunotherapy, and we calculated the estimated score of 

the immune features for each patient based on their 

mRNA expression profiles. Specifically, patients with a 

TIDE score < 0 were considered responders, whereas 

patients with a TIDE score > 0 were considered non-

responders. 

 

Identification of immune response-related genes  

 

Based on the immune response status predicted by 

TIDE, differentially expressed genes were calculated 

between responder and non-responder patient groups 

using DEA with the R package DESeq2 [40] in R 

software. The significantly differentially expressed 

genes were identified using the criteria of |log2 fold-

change| > 1 and adjusted p-value < 0.05. Genes meeting 

the criteria were considered IRRGs. 

 

Functional annotation of immune response-related 

genes 

 

To explore the potential biological functions and 

pathways associated with IRRGs, we performed GO 

(http://geneontology.org/) [41] and KEGG 

(https://www.genome.jp/kegg/) [42] pathway analysis 

using the R package “ClusterProfiler” [43]. GO terms 

and KEGG pathways with a p-value < 0.05 were 

considered significantly enriched. 

 

Identification of co-expression modules for immune-

related genes 

 

IRRGs were used to construct co-expression modules 

with the WGCNA [44] package in R software. 

Pearson’s correlation matrices were calculated between 

each pair of retained IRRGs from the corresponding 

expression levels. Clusters were obtained from the 

dendrogram by applying the dynamic tree-cutting 

technique [45]. Module-trait relationships were 

calculated according to the correlation between modules 

and the predicted score of each immune feature based 

on Pearson’s correlation tests, and TIDE scores were 

selected as core features to identify significant co-

expression modules related to the immune response. 

Ultimately, IRRGs in significant modules (p < 0.05) 

were exported for further analysis. 

 

Identification of biomarkers of immunotherapy 

response 

 
For co-expression modules constructed with WGCNA, 

hub genes of the modules of interest were identified 

first. For genes inside a given module, the within-

module connectivity, called the module membership 

(MM), and the correlation with the TIDE score, called 

the gene significance trait (GS), were calculated as 

previously described [46]. Genes with high connectivity 

in the modules of significant immune features were 

identified as hub genes based on the cut-off criteria 

|MM| > 0.8 and |GS| > 0.2. 

 

The expression profiles and related clinical information 

of PRCA samples were acquired from TCGA database. 

Survival analysis based on the Cox model was used to 

estimate the survival risk of patients under different 

conditions. For a specific hub gene, patients were 

divided into two groups according to median gene 

expression. Then, Kaplan–Meier curve analysis was 

performed with the R package “Survival” and the  

p-value between the two groups was also calculated. 

Hub genes (p-value < 0.05) that were significantly 

related to PRCA prognosis were considered biomarkers 

of the immunotherapy response. 

 

Construction of mRNA interaction network 

 

To better investigate the regulatory relationships 

between IRRGs, we constructed an IRRG co-

expression network for hub genes identified in each 

module of interest. Significantly correlated pairs were 

used to construct the network based on Pearson’s 

correlation coefficients. Finally, the co-expression 

network graphs were visualized and analyzed using 

Cytoscape software [47]. 

 

Identification of candidate drugs from LINCS 

 

To identify potential drugs to boost immunotherapy, we 

employed the method reported by Aissa et al. [48]. 

First, the mRNA expression profiles of hundreds of 

perturbations at various time points in PRCA cell lines 

were collected from LINCS. For each drug, different 

treatment groups, such as 6 h vs. 24 h, were compared 

to calculate the differentially expressed genes. 

According to the fold-change value associated with 

each gene, differentially expressed genes were ranked 

using Gene Set Enrichment Analysis (GSEA) [49]. 

Enrichment scores were calculated, and drugs with a 

p-value < 0.05 were considered significantly enriched. 

Specifically, a positive enrichment score shows that the 

drug has an upregulation effect on the target gene set, 

and a negative enrichment score indicates that the drug 

has a downregulation effect on the target gene set. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Threshold determination for weighted gene co-expression network analysis. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. GO enrichment analysis of immune-response related genes of seven modules. 
 

Supplementary Table 2. KEGG enrichment analysis of immune-response related genes of seven modules. 
 

Supplementary Table 3. The core genes regulated by 11 drugs from gene set enrichment analysis. 
 

Supplementary Table 4. List of 40 of 133 hub genes expressed in LINCS and used to perform gene set enrichment 
analysis. 

Symbol 

SIX5 

BAHCC1 

ATN1 

SNRNP70 

CHPF 

H1FX 

INPP5E 

PALM 

ARFGAP1 

ARHGAP33 

AGPAT2 

CAPN10 

KIFC3 

AP5Z1 

ADCK2 

ARHGEF1 

SH3TC1 

ARFRP1 

C15orf39 

ASMTL-AS1 

ARHGEF16 

CLASRP 

ANAPC2 

CCDC9 

PPP2R3B 

ALPPL2 

IGFBP1 

CA9 

CD1A 

GK2 

HCRTR2 

PDYN 

POU4F2 
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SLC5A12 

KRTAP5-8 

CD5L 

CETN1 

KRT38 

PDHA2 

KRT84 

 


