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ABSTRACT 
 

Background: Unlike apoptosis, necroptosis is a tightly regulated form of programmed cell death (PCD) that 
occurs in a caspase-independent manner and is mainly triggered by receptor-interacting serine/threonine-
protein kinases RIPK1 and RIPK3 and the RIPK3 substrate mixed-lineage kinase domain-like protein (MLKL). A 
growing body of evidence has documented that necroptosis, as a novel therapeutic strategy to overcome 
apoptosis resistance, has potential pro- or anti-tumoral effects in tumorigenesis, metastasis, and 
immunosurveillance. However, comprehensive multi-omics studies on regulators of necroptosis from a pan-
cancer perspective are lacking. 

Methods: In the present study, a pan-cancer multi-omics analysis of necroptosis-related regulators was 
performed by integrating over 10,000 multi-dimensional cancer genomic data across 33 cancer types from 
TCGA, 481 small-molecule drug response data from CTRP, and normal tissue data from GTEx. Pan-cancer 
pathway-level analyses of necroptosis were conducted by gene set variation analysis (GSVA), including 
differential expression, clinical relevance, immune cell infiltration, and regulation of cancer-related 
pathways. 

Results: Genomic alterations and abnormal epigenetic modifications were associated with dysregulated gene 
expression levels of necroptosis-related regulators. Changes in the gene expression levels of necroptosis-
related regulators significantly influenced cancer progression, intratumoral heterogeneity, alterations in the 
immunological condition, and regulation of cancer marker-related pathways. These changes, in turn, caused 
differences in potential drug sensitivity and the prognosis of patients. 

Conclusion: Necroptosis-related regulators are expected to become novel biomarkers of prognosis and provide 
a fresh perspective on cancer diagnosis and treatment. 
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INTRODUCTION 
 

Although evasion of cell death is a prominent hallmark 

of cancer, various cellular stress signals can lead to cell 

death in tumors, such as hypoxia, chemotherapy, 

immune response, and an environment devoid of 

essential nutrients [1]. Cell death processes are mainly 

involved in two mechanisms: caspase-dependent and 

caspase-independent. Necroptosis, a novel form of 

programmed cell death [2], is different from apoptosis 

in that it is often caused by acute cell damage [3]. In 

contrast to apoptosis, necrosis is characterized by rapid 

cytoplasmic swelling, increased cell volume, and 

plasma membrane rupture, resulting in the release of 

intracellular contents, triggering marked inflammatory 

responses, and activating the immune system [4, 5]. 

Necroptosis can be triggered by activation of upstream 

cell death receptors, the tumor necrosis factor (TNF) 

receptor superfamily, Toll-like receptors (TLRs), T-cell 

receptors, interferon receptors, FAS (CD95), virus 

infection sensor, and some drugs [6–9]. TNF-α-

triggered necroptosis is mediated by receptor-

interacting serine/threonine-protein kinase 1 (RIPK1), 

RIPK3, and downstream initiator pseudokinase mixed 

lineage kinase domain-like protein (MLKL) [3, 10–13]. 

Upon stimulation by TNFα, RIPK1 is recruited to the 

cytoplasmic membrane and forms a complex with Fas-

associated death domain protein (FADD) and RIPK3 

[14]. After that, RIPK3 activated by RIPK1 recruits and 

phosphorylates MLKL, resulting in the oligomerization 

and translocation of MLKL [15]. Then, trafficking of 

active MLKL from the cytoplasm to the cytomembrane, 

calcium influx-mediated channel formation, disruption 

of plasma membrane integrity, and necrosis-like cell 

death occur [16]. 

 

Necroptosis could function as a double-edged sword in 

the development and progression of cancer [17–20]. 

While necroptosis elicits robust adaptive immune 

responses and may trigger enhanced anti-tumor immune 

surveillance and immunotherapy, the consequent 

inflammatory responses could also promote tumor 

development and cancer progression directly or 

indirectly [21, 22]. Necroptosis can mediate resistance to 

sorafenib and promote tumor metastasis, and it may 

serve as an indicator of prognosis in hepatocellular 

carcinoma [23–25]. The induction of necroptosis is a 

promising alternative therapy for killing cancer cells. 

The antitumor effects mediated by the RIP1-HAT1-

SIRT complex have been reported [26]. Therefore, 

understanding the expression patterns, potential 

molecular mechanisms, functional roles, and prognostic 

impact of necroptosis-related regulators in tumor 

formation and progression is vital. However, only a few 

studies have comprehensively characterized necroptosis-

related regulators from a pan-cancer perspective. 

In the present study, we systematically and 

comprehensively explored necroptosis-related regulators 

by using pan-cancer multi-omics data from The Cancer 

Genome Atlas (TCGA). We found that genomic 

alterations and epigenetic modifications of necroptosis-

related regulators could lead to their abnormal 

expression and affect the prognosis of cancer patients. 

Furthermore, expression levels of necroptosis-related 

regulators were significantly correlated with molecular 

subtypes, clinicopathologic stage, immune subtypes, 

regulation of cancer-related pathways, sensitivity to 

anticancer drugs, and prognostic outcomes in various 

cancers. Necroptosis-related regulators may be potential 

therapeutic targets of multiple cancers and improve the 

landscape of current cancer treatment. 

 

RESULTS 
 

mRNA expression and prognostic value of 

necroptosis-related regulators 

 

To explore the gene expression of necroptosis-related 

regulators in normal tissues, we extracted mRNA data of 

necroptosis-related regulators from the GTEx dataset. In 

all normal tissues, the expression of TNF, TLR3, and 

FASLG was lower than that of FADD, FAS, MLKL, 

RIPK1, and RIPK3. The expression levels of TNF in the 

blood, MLKL in the blood, lung, and spleen, and FAS in 

the lung and ovary were relatively higher than their 

expression levels in the normal tissues (Figure 1A). 

Differential expression analysis between tumor-normal 

paired samples from 14 TCGA cancer types showed that 

the expression levels of most necroptosis-related 

regulators were dysregulated in various tumor types. The 

mRNA expression levels of FADD in lung squamous cell 

carcinoma (LUSC), breast invasive carcinoma (BRCA), 

head and neck squamous cell carcinoma (HNSC), 

stomach adenocarcinoma (STAD), and lung adeno-

carcinoma (LUAD); FASLG in kidney chromophobe 

(KICH), kidney renal clear cell carcinoma (KIRC), 

BRCA, and KIRP; MLKL in colon adenocarcinoma 

(COAD), KIRC, and KIRP; FAS in KIRC, KIRP, and 

thyroid carcinoma (THCA); and TLR3 in KIRC were 

significantly upregulated. However, the mRNA 

expression levels of FASLG in LUSC; MLKL in LUSC; 

RIPK1 in COAD; TNF in prostate adenocarcinoma 

(PRAD) and liver hepatocellular carcinoma (LIHC); FAS 

in LUSC, COAD, KICH, PRAD, and bladder urothelial 

carcinoma (BLCA); RIPK3 in LUSC, COAD, KICH, 

PRAD, and HNSC; and TLR3 in LUSC, COAD, KICH, 

PRAD, BRCA, HNSC, LIHC, STAD, and THCA were 

significantly downregulated (Figure 1B). The mRNA 

expression of the same necroptosis-related regulator was 

upregulated in one cancer type but downregulated in 

another cancer type, such as TLR3 in KIRC 

(Supplementary Figure 1A) and LUSC (Supplementary   
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Figure 1. mRNA expression and survival analysis of necroptosis-related regulators. (A) mRNA expression of necroptosis-related 
regulators in the GTEx normal tissues. (B) Differential mRNA expression of necroptosis-related regulators between paired tumor and 
normal tissue. The size of dots is positively correlated with the FDR significance. The color of the bubble represents the fold change 
between tumor vs. normal. The bubble was filtered by the fold change (FC>2) and significance (FDR ≤ 0.05). (C) Subtype-related changes in 
gene expression of necroptosis-related regulators. The bubble color from white to red represents the FDR significance, and the bubble size 
is positively correlated with the FDR significance. The black outline border of bubble indicates FDR ≤ 0.05. (D) The trend of the gene 
expression of necroptosis-related regulators from stage I to stage IV in different cancers. The blue trend line and red trend line represent 
fall and rise tendency, respectively. (E) Survival analysis of necroptosis-related regulators in different cancers. The bubble color from blue to 
red represents the hazard ratio from low to high, bubble size is positively correlated with the Cox P-value significance. 



www.aging-us.com 5037 AGING 

Figure 1B). Almost all necroptosis-related regulators 

displayed a subtype-specific expression pattern in BRCA, 

GBM, KIRC, LUAD, LUSC, and STAD (Figure 1C). 

For example, the expression of RIPK3 was higher in the 

luminal subtype, especially the luminal A subtype 

(Supplementary Figure 1C), while the expression of 

MLKL was higher in the her2 and basal subtypes, 

especially in the basal subtype (Supplementary Figure 

1D). Expression trend analysis in 21 TCGA cancer types 

with clinicopathologic information revealed that  

most necroptosis-related regulators are downregulated 

progressively with advancing stage in many tumor types. 

In contrast, only a few necroptosis-related regulators 

showed exactly the opposite trend, such as FASLG in 

KIRC and RIPK1 in PAAD (Figure 1D). In addition, 

overall survival analysis showed that the expression of 

many necroptosis-related regulators had different effects 

on the prognosis of cancer patients. The high expression 

of TLR3 in lower grade glioma (LGG) and LUSC; 

FASLG in LGG, UVM, KIRC, and THYM; RIPK3 in 

LGG, KIRC, and LUSC; RIPK1 in LGG and THCA; 

FAS in LGG, UVM, and THYM; MLKL in LGG, UVM, 

and LUAD; FADD in LGG and HNSC; and TNF in 

UVM and CESC was associated with poor survival. In 

contrast, the high expression of TLR3 in KIRC, ACC, 

MESO, esophageal carcinoma (ESCA), and uterine 

carcinosarcoma (UCS); FASLG in HNSC, BLCA, and 

STAD; RIPK3 in COAD; RIPK1 in MESO and KIRP; 

FAS in ACC; and FADD in THCA was associated with 

good survival (Figure 1E). The mRNA expression of the 

same necroptosis-related regulator had different effects 

on the prognosis of different cancer types. For example, 

the high expression of TLR3 was associated with good 

survival in KIRC (Supplementary Figure 1E) but poor 

survival in LUSC (Supplementary Figure 1F). These 

results indicated that the abnormal expression of 

necroptosis-related regulators contributes to tumori-

genesis, cancer progression, and intratumoral hetero-

geneity. 

 

Methylation analysis of necroptosis-related 

regulators 

 

Analysis of the methylation status of necroptosis-related 

regulators between tumor and normal samples from 14 

TCGA cancer types showed that RIPK3 and TLR3 

exhibited DNA hypermethylation in multiple tumors. 

Most necroptosis-related regulators exhibited DNA 

hypomethylation in KIRC while exhibiting DNA 

hypermethylation in PRAD (Figure 2A). Correlation 

 

 
 

Figure 2. Methylation analysis of necroptosis-related regulators. (A) Differential methylation status of necroptosis-related 

regulators between normal and tumor tissues in different cancers. The red bubble and blue bubble represent hypermethylation and 
hypomethylation in tumors, respectively. The bubble size is positively correlated with the FDR significance, and the bubble was filtered by 
FDR significance (FDR ≤ 0.05). (B) Correlation between methylation level and mRNA expression. The blue bubble and red bubble represent 
negative and positive correlations, respectively. The bubble size is positively correlated with the significance of FDR. (C) Methylation 
survival analysis of necroptosis-related regulators in different cancers. The bubble color from blue to red represents the hazard ratio from 
low to high, and the bubble size is positively correlated with the Cox P-value significance. (D) Kaplan-Meier curves between high and low 
methylation groups of MLKL in SKCM and LGG. 
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analysis indicated that the expression levels of almost 

all necroptosis-related regulators were associated 

negatively with the degree of DNA methylation in pan-

cancer samples (Figure 2B). Analysis of prognosis 

indicated that the hypermethylation of TLR3 in KIRC, 

STAD, and PCPG; MLKL in skin cutaneous melanoma 

(SKCM) and COAD, FASLG in BLCA, CESC, LUAD, 

and HNSC; FADD in LUAD; FAS in SARC, PCPG, 

and HNSC; RIPK3 in ACC; TNF in HNSC; RIPK1 in 

KIRC and KIRP was associated with poor prognosis, 

while the hypomethylation of MLKL in LGG and 

UVM; FASLG in LGG, UVM, THYM, and KIRP; 

FADD in ESCA; FAS in LGG, UVM, THYM, and 

KIRC; RIPK3 in LGG, LAML, and KIRC; TNF in 

LGG, UVM, THCA, and SARC; and RIPK1 in LGG, 

THYM, LUSC, ACC, and SKCM was associated with 

poor prognosis (Figure 2C). The hypermethylation of 

the same necroptosis-related regulator could have 

different effects on prognosis in different cancer types, 

such as MLKL in LGG and SKCM (Figure 2D). These 

results suggested that abnormal epigenetic modification 

patterns of necroptosis-related regulators existed in 

multiple tumors and could affect gene expression and 

prognosis of cancer patients. 

 

Mutational landscape of necroptosis-related 

regulators 

 

Somatic mutations in cancer genomes are related to the 

occurrence and development of cancer. Thus, we 

explored SNP data of necroptosis-related regulators in 

pan-cancer samples. A waterfall plot showed that the 

mutation frequencies of TLR3, RIPK1, FAS, FASLG, 

MLKL, RIPK3, FADD, and TNF were 29%, 20%, 16%, 

16%, 15%, 15%, 8%, and 7%, respectively (Figure 3A). 

In addition, a single nucleotide variation (SNV) 

summary plot showed that the most abundant SNV class 

(base substitution) was C>T, and the variant 

classification and type were mainly missense mutation 

and SNP, respectively (Supplementary Figure 2). In the 

SNV percentage analysis, we found that the number of 

samples in which the necroptosis-related regulators had 

deleterious mutations was greater in uterine corpus 

endometrial carcinoma (UCEC) and SKCM, especially 

TLR3, with the highest mutation frequency among all 

cancer types (Figure 3B–3D). Survival analysis found 

that the mutations of multiple necroptosis-related 

regulators could cause different effects on the overall 

prognosis of cancer patients (data not shown). For 

example, TLR3 mutation was associated with poor 

survival in UCEC (Figure 3E), while MLKL mutation 

was associated with better survival in SKCM (Figure 

3F). These results indicated that necroptosis-related 
regulators were particularly prone to undergo mutation 

in tumors, and their mutations could also impact the 

clinical outcomes of cancer patients. 

Copy number variation (CNV) of necroptosis-

related regulators 

 

CNV is a prevalent and important hallmark of many 

cancers. For this reason, we investigated the CNV 

changes of necroptosis-related regulators. The CNV pie 

plot shows that most necroptosis-related regulators had 

many copy number amplifications and deletions in most 

cancer types except for THCA and LAML (Figure 4A). 

FASLG in LIHC had the highest relative percentage of 

total amplification, while FAS in GBM had the highest 

relative percentage of total deletions (Supplementary 

Figure 3A). In addition, heterozygous CNV analysis 

showed that almost all necroptosis-related regulators 

had heterozygous amplification and deletion among all 

cancer types (Figure 4B). Meanwhile, homozygous 

CNV analysis showed that FADD in 22 cancer types, 

FASLG in 25 cancer types, RIPK1 in 22 cancer types, 

TLR3 in 15 cancer types, TNF in 23 cancer types, FAS 

in 15 cancer types, MLKL in 12 cancer types, and 

RIPK3 in 17 cancer types had homozygous 

amplifications. In comparison, FADD in 12 cancer 

types, FASLG in 3 cancer types, RIPK1 in 19 cancer 

types, TLR3 in 25 cancer types, TNF in 11 cancer 

types, FAS in 22 cancer types, MLKL in 15 cancer 

types, and RIPK3 in 12 cancer types had homozygous 

deletions (Supplementary Figure 3B). Correlation 

analysis indicated that the mRNA expression levels of 

necroptosis-related regulators were positively correlated 

with their copy number levels in most cancers, such as 

TLR3 in LIHC (Figure 4C and 4D). However, the 

mRNA expression levels of FASLG were negatively 

correlated with its copy number levels in multiple 

tumors, such as in HCSC (Supplementary Figure 3C). 

Survival analysis showed that CNVs of TNF in 22 

cancer types, TLR3 in 10 cancer types, RIPK1 in 9 

cancer types, FAS in 8 cancer types, FADD in 8 cancer 

types, RIPK3 in 7 cancer types, MLKL in 6 cancer 

types, and FASLG in 5 cancer types were significantly 

associated with overall prognosis (Figure 4E). For 

example, the copy number deletions of TLR3 in LIHC 

(Figure 4F) and FASLG in HNSC (Supplementary 

Figure 3D) were associated with poor prognosis 

compared with normal copy number and copy number 

amplifications. The CNV of all necroptosis-related 

regulators could affect the prognosis of KIRC and 

UCEC patients (Figure 4E). These results indicated that 

the different types of CNVs of necroptosis-related 

regulators were widespread in many cancer types and 

could affect mRNA expression and the prognosis of 

cancer patients. 
 

miRNA regulation of necroptosis-related regulators 
 

To clarify which miRNA could regulate the mRNA 

expression of necroptosis-related regulators, we used 
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Figure 3. Single nucleotide variation (SNV) analysis of necroptosis-related regulators. (A) Oncoplot showing the SNV frequency 
distribution of necroptosis-related regulators in pan-cancer. Side barplot and top barplot show the number of variants in each gene and 
each sample, respectively. (B) The percentage heatmap showed the SNV frequency of necroptosis-related regulators in specific cancer type. 
The color depth is positively correlated with mutate frequency. The number in each cell represents the number of mutated samples in 
specific cancer. The 0 and blank in the cell indicate there is no mutation in specific gene coding region and all regions of a specific gene, 
respectively. (C) Lollipop plot showing the mutation site, type and frequency of TLR3 in UCEC. (D) Lollipop plot showing the mutation site, 
type and frequency of TLR3 in SKCM. (E) Kaplan-Meier curve between WT and Mutant groups of TLR3 in UCEC. (F) Kaplan-Meier curve 
between WT and Mutant groups of MLKL in SKCM. 
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Figure 4. Copy number variation (CNV) analysis of necroptosis-related regulators. (A) CNV pie plot showing the constitute of 
Heterozygous/Homozygous CNV of necroptosis-related regulators in different cancers. Hete Amp, heterozygous amplification; Homo Amp, 
homozygous amplification; Hete Del, heterozygous deletion; Homo Del, homozygous deletion; None, no CNV. (B) Heterozygous CNV plot 
showing the percentage of heterozygous amplification (red bubble) and deletion (blue bubble) of necroptosis-related regulators in different 
cancers. The bubble size is positively correlated with percentage. (C) The association between CNV level and mRNA expression of 
necroptosis-related regulators in different cancers. Blue bubble and red bubble represent negative and positive correlations, respectively. 
The deeper the color, the stronger the correlation. Bubble size is positively correlated with the FDR significance. (D) Scatter plot showing 
the correlation between TLR3 CNV and its mRNA expression in LIHC. (E) CNV survival analysis of necroptosis-related regulators in different 
cancers. (F) Kaplan-Meier curve showing the survival difference between different CNV types and wild type of TLR3 in LIHC. 
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the R package visNetwork to construct the miRNA-

gene regulation network (Figure 5). In this network, the 

node size of genes and edge width positively correlated 

with the number of related miRNAs and correlation 

coefficient, respectively. TNF and FAS were negatively 

regulated by more miRNAs. Each necroptosis-related 

regulator could be regulated by multiple miRNAs. For 

example, both RIPK1 and FAS could be negatively 

regulated by hsa-miR-554a, while hsa-miR-181b-5p 

could negatively regulate both FAS and TNF. These 

results indicated that complex miRNA regulatory 

networks regulated the mRNA expression levels of 

necroptosis-related regulators. 

Pathway activity analysis 

 

The global regulation network showed that the mRNA 

expression of necroptosis-related regulators had close 

associations with the activity of cancer-related pathways 

in pan-cancer samples (Figure 6A). The same 

necroptosis-related regulator could produce different 

regulatory effects on the same pathway in different 

cancer types. For example, high expression of FAS 

could activate the apoptosis pathway in PAAD while 

inhibiting the activation of the apoptosis pathway in 

KIRP (Supplementary Figure 4A and 4B). The pathway 

heatmap and pie chart show the percentage of 

 

 
 

Figure 5. The miRNA regulation network of necroptosis-related regulators. The connection between miRNA and gene suggests 

the miRNA can regulate the gene. The node size is positively correlated with the node's degree, and the width of the line is decided by the 
absolute value of the correlation coefficient. 
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cancer types (cancer types/32 *100%) in which 

necroptosis-related regulators affected the specific 

pathway (Figure 6B and Supplementary Figure 4C). 

The apoptosis pathway was mainly activated by TNF 

(16% activation vs. 0% inhibition), RIPK3 (19% 

activation vs. 9% inhibition), MLKL (41% activation 

vs. 0% inhibition), FASLG (38% activation vs. 0% 

inhibition), FAS (22% activation vs. 6% inhibition), and 

FADD (9% activation vs. 0% inhibition) and inhibited 

by TLR3 (3% activation vs. 12% inhibition) and RIPK1 

(3% activation vs. 6% inhibition). Similarly, the cell 

cycle pathway was mainly activated by FADD and 

 

 
 

Figure 6. Pathway activity analysis of necroptosis-related regulators. (A) Gene-pathway network showed the regulatory 

relationship between necroptosis-related regulators and cancer pathways in pan-cancer. Different colors represent different cancer types. 
(B) The heatmap showed the percentage of cancer types in which the specific necroptosis-related regulator has an effect (FDR ≤ 0.05) on 
the specific pathway in pan-cancer. 
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inhibited by TNF, TLR3, RIPK3, RIPK1, MLKL, 

FASLG, and FAS. Except for FASLG, all other 

necroptosis-related regulators could inhibit the DNA 

damage pathway. All necroptosis-related regulators 

could activate the EMT pathway. The hormone AR 

pathway was mainly activated by RIPK3 and inhibited 

by TNF, RIPK1, MLKL, FAS, and FADD. The 

hormone ER pathway was mainly activated by TNF, 

RIPK3, TLR3, FASLG, and FAS and inhibited by 

RIPK1 and FADD. The PI3K/AKT pathway was 

mainly activated by TNF, RIPK1, and FASLG and 

inhibited by TLR3 and MLKL. Except for being 

inhibited by FADD, the RAS/MAPK pathway could be 

activated by all other necroptosis-related regulators. The 

RTK pathway was mainly activated by TNF, TLR3, 

RIPK3, RIPK1, and MLKL and inhibited by FASLG. 

The TSC/mTOR pathway could be activated by TNF, 

RIPK3, RIPK1, MLKL, and FASLG (Figure 6B). These 

results indicated that necroptosis-related regulators 

contribute to the activation or inhibition of cancer-

related pathways. 

 

Immune subtype and drug sensitivity analysis 

 

The accumulation of extensive genomic alterations 

might affect the immune response of cancer patients 

and sensitivity to anticancer drugs [27, 28]. Immune 

subtype analysis to determine whether the necroptosis-

related regulators would affect cancer patients’ 

immune status showed that all necroptosis-related 

regulators were differentially expressed in different 

immune subtypes (Figure 7A). Except for TNF, all 

other necroptosis-related regulators were lowly 

expressed in the C5 subtype and highly expressed in 

the C6 subtype. Drug sensitivity analysis showed that 

the mRNA expression levels of TLR3, FADD, FAS, 

MLKL, and RIPK1 were mainly negatively correlated 

with drug sensitivity. In contrast, FASLG, RIPK3, and 

TNF mRNA expression levels were mainly positively 

correlated with drug sensitivity (Figure 7B). The 

mRNA expression levels of TLR3 and FADD were 

negatively correlated with the sensitivity of all top 30 

ranked drugs (positive correlation with IC50). Except 

for doxorubicin, the mRNA expression of FAS was 

negatively correlated with sensitivity to all other 29 

anticancer drugs (positive correlation with IC50). The 

mRNA expression of MLKL was negatively correlated 

with sensitivity to 21 anticancer drugs except for KX2-

391, necrosulfonamide, CR-1-31B, panobinostat, piper-

longumine, CHM-1, Compound 23 citrate, SR-II-138A, 

ciclopirox, and narciclasine (positive correlation with 

IC50). The mRNA expression of RIPK1 was negatively 

correlated with sensitivity to ISOX, isoevodiamine, 
tacedinaline, belinostat, and CR-1-31B. The mRNA 

expression of FASLG was positively correlated with 

sensitivity to tacedinaline, LY-2183240, belinostat, 

triazolothiadiazine, BIX-01294, CR-1-31B, LRRK2-IN-

1, PX-12, doxorubicin, panobinostat, parbendazole, 

piperlongumine, CHM-1, Compound 23 citrate, SR-II-

138A, ciclopirox, and narciclasine (negative correlation 

with IC50). The mRNA expression of RIPK3 was 

positively correlated with sensitivity to 20 anticancer 

drugs except for ISOX, BRD-K34222889, NSC95397, 

cerulenin, isoevodiamine, KX2-391, LY-2183240, 

triazolothiadiazine, vincristine, and piperlongumine 

(negative correlation with IC50). The mRNA 

expression of TNF was positively correlated with 

sensitivity to all top 30 ranked drugs (negative 

correlation with IC50). The mRNA expression levels  

of all necroptosis-related regulators were associated 

with sensitivity to belinostat. These results indicated 

that the dysregulated expression of necroptosis-related 

regulators is closely associated with the tumor immune 

microenvironment and affects the response to anticancer 

therapy. 

 

GSVA 

 

Differential expression analysis showed that the 

necroptosis score was dysregulated in multiple tumor 

types. In COAD, KICH, LIHC, LUAD, LUSC, PRAD, 

and rectum adenocarcinoma (READ), the necroptosis 

score of tumor tissue was lower than that of the normal 

tissue. However, the necroptosis score was higher in 

tumor tissues in ESCA, KIRC, KIRP, and THCA 

(Figure 8A). Pathologic stage trend analysis showed 

that the necroptosis score was downregulated 

progressively with advancing stage in many tumor 

types, including ACC, BLCA, BRCA, COAD, HNSC, 

KIRP, LIHC, READ, and STAD (Figure 8B). Subtype 

analysis showed that the necroptosis scores significantly 

differed with the tumor subtype, including GBM, KIRC, 

LUAD, LUSC, and STAD (Figure 8C). Survival 

analysis showed that the necroptosis score could affect 

the OS of SKCM, MESO, LIHC, KIRC, COAD, ACC, 

and LGG; the PFS of SKCM, MESO, LIHC, KIRC, 

COAD, ACC, GBM, CHOL, THYM, and LGG; the 

DSS of SKCM, MESO, LIHC, KIRC, ACC, KIRP, and 

LGG; and the DFI of LIHC and ACC (Figure 8D). The 

necroptosis score could affect more than one type of 

survival in some cancer types. For example, patients 

with higher necroptosis scores had longer OS, PFS, 

DSS, and PFI in LIHC (Supplementary Figure 5). The 

results of immune infiltration analysis were generally 

consistent across the different cancer types (Figure 8E). 

The necroptosis score was positively correlated with the 

abundance of Tr1, central memory, gamma delta, NK, 

Th2, CD4_T, DC, nTreg, Tfh, MAIT, macrophage, 

cytotoxic, effector memory, iTreg, CD8_T, exhausted 
and Th1 cells. On the contrary, the necroptosis score 

was negatively correlated with the abundance of B cell, 

neutrophil, NKT, CD4_naive, Th17, monocyte, and 
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CD8_naive cells. The necroptosis score of almost all 

types of cancer was positively correlated with the 

infiltration score. The pathway activity analysis results 

to explore the intrinsic interactions between the 

necroptosis score and canonical cancer-related pathways 

were also generally consistent across the different 

cancer types (Figure 8F). In most tumors, the 

necroptosis score was positively correlated with 

apoptosis, EMT, hormone ER, RAS/MAPK, RTK, and 

TSC/mTOR pathway activation. However, the 

 

 
 

Figure 7. Immune subtype and drug sensitivity analysis of necroptosis-related regulators. (A) Expression differences of 

necroptosis-related regulators between six pan-cancer immune subtypes. (B) Bubble plot showing the correlation between drug sensitivity 
(IC50) and gene expression level of necroptosis-related regulators in CTRP database. Positive correlation (red bubble) indicates one gene 
with high expression was resistant to a drug, while negative correlation (blue bubble) indicates one gene with high expression was sensitive 
to a drug. The color depth and size of bubble are positively correlated with the correlation coefficient and the FDR significance, 
respectively. Black outline border indicates FDR ≤ 0.05. 
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necroptosis score was negatively correlated with the 

pathway activation of cell cycle, DNA damage, hormone 

AR, and PI3K/AKT. These results indicated that 

necroptosis affects tumor progression, subtype 

heterogeneity, recruitment of immune cells, regulation of 

oncogenic pathways, and prognosis of cancer patients. 

 

 
 

Figure 8. Gene Set Enrichment Analysis (GSVA) analysis of necroptosis-related regulators. (A) The differences of necroptosis 

score between tumor and normal samples in pan-cancer. The necroptosis score represents the integrated level of the expression of 
necroptosis-related regulators, which is positively correlated with gene expression. (B) The trend of the necroptosis score from stage I to 
stage IV in different cancers. The blue trend line and red trend line represent fall and rise tendency, respectively. (C) Box plot showing the 
differences of necroptosis score between different cancer subtypes. (D) Survival analysis of necroptosis score in different cancer types, 
including overall survival (OS), progression-free survival (PFS), disease-specific survival (DSS), and disease-free survival (DFI). (E) Heatmap 
showing the correlation between the necroptosis score and immune cell infiltration in different cancer types. *P ≤ 0.05; #FDR ≤ 0.05. (F) 
Heatmap showing the correlation between the necroptosis score and pathway activity in different cancer types. *P ≤ 0.05; #FDR ≤ 0.05. 
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DISCUSSION 
 

Most tumors are characterized by sustained proliferative 

signaling and resistance to apoptosis. Therefore, 

triggering cell death by other mechanisms, such as 

necroptosis, has become a promising anticancer strategy 

[29]. Necroptosis is closely related to more aggressive 

phenotypes and poor prognosis in many cancer types, 

including lung cancer, colorectal cancer, and breast 

cancer [30–37]. Thus, studying the role of necroptosis-

related regulators in tumorigenesis and cancer 

progression would facilitate the discovery of clinically 

relevant therapeutic targets. In this study, we performed 

a systematic integrative investigation of eight 

necroptosis-related regulators across 33 cancer types by 

using pan-cancer multi-omics data. Our results revealed 

that genomic alterations, abnormal epigenetic 

modifications, and complex regulation of miRNAs of 

necroptosis-related regulators led to dysregulated gene 

expression, which correlated significantly with changes 

in the immune microenvironment and disruption of 

hallmark cancer-related pathways. To our knowledge, 

this is the first report of necroptosis-related regulators 

from a pan-cancer perspective. 

 

In gene expression and survival analysis, we found  

that the necroptosis-related regulators exhibited 

varying degrees of expression dysregulation in multiple 

cancers, which could affect the progression of clinical 

stage, subtype heterogeneity, and final outcomes of 

cancer patients. As a significant differentially expressed 

gene in 10 cancer types, the low expression of TLR has 

been demonstrated in breast cancer [38]. In addition, the 

stable overexpression of TLR3 could inhibit cell 

proliferation in vitro and in vivo and correlate with less 

invasive phenotypes of breast cancer cells [38]. TLR3 

was found to be overexpressed in 139 of 189 (73.5%) 

cases of clear cell renal cell carcinoma and in 6 of 8 

lung metastatic clear cell renal cell carcinoma compared 

to the very low expression in the normal kidney tissue 

[39]. Kim et al. reported that the high expression of 

TLR3 was closely related to a high level of neutrophil 

infiltration and poor survival of patients with lung 

cancer [40]. Our findings were consistent with the 

findings of these studies. However, there was also non-

conformity between aberrant gene expression and 

clinical prognosis. For example, the mRNA expression 

of TLR3 was not different in ESCA; however, the high 

expression of TLR3 was associated with good survival 

in ESCA. Thus, we speculated that necroptosis-related 

regulators might undergo altered genetic modifications 

in tumor progression. 

 

Epigenetic and genome analysis showed that 

necroptosis-related regulators had extremely complex 

genomes with abnormal epigenetic modification 

patterns, high mutation frequency, and extensive CNVs 

in pan-cancer samples. These changes mediated the 

transcriptional dysregulation of necroptosis-related 

regulators and dramatically altered cancer prognosis. 

Pre-treatment with 5-AD (a demethylating agent) 

increases the expression of MLKL and the activation of 

necroptosis in melanoma cell lines [41]. In addition, 

FAS carries the third-highest gene mutational frequency 

in pan-cancer samples, and FAS mutations have been 

proven to correlate with cancer development and 

progression in various tumor types, including malignant 

glioma [42], breast cancer [43], pulmonary adeno-

carcinomas [44], and cholangiocarcinoma [45]. Copy 

number loss of the “death receptor” FAS was found in 

35% (13/38) of gliomas, which could affect the 

gliomagenesis and response to therapy [46]. The 

miRNA-mRNA interaction network analysis showed 

that the miRNAs could negatively regulate the 

necroptosis-related regulators, suggesting that they can 

be used to control cancer progression and metastasis 

[47–50]. These results indicated that miRNAs can be 

used to inhibit tumor progression and improve survival 

in patients with various cancers. 

 

Pathway analysis showed that the necroptosis-related 

regulators target various cancer-related signaling 

pathways. Overall, necroptosis-related regulators could 

activate apoptosis, EMT, hormone ER, RAS/MAPK, 

RTK, and TSC/mTOR and inhibit cell cycle, DNA 

damage, and hormone AR pathways, which have been 

implicated in several cancers [51–56]. Necroptosis is 

closely associated with immune response and drug 

sensitivity [57, 58]. Immune subtype analysis showed 

that the mRNA expression of necroptosis-related 

regulators differed greatly from the immune subtype. 

Drug sensitivity analysis allowed screening of potential 

anticancer drugs specifically targeting the necroptosis-

related regulators. Hong et al. reported that the 

overexpression of miR-204-5p can be involved in  

tumor immune microenvironment remodeling or 

reprogramming through the TNF signaling pathway 

[59]. In addition, as a key necroptosis-associated 

molecule, TNF is reported to increase the sensitivity of 

many cancer types to doxorubicin [60–62]. However, 

the correlation between sensitivity to belinostat and the 

expression of all eight necroptosis-related regulators has 

not been reported. Thus, further research into this 

finding is needed. Finally, we again confirmed that 

necroptosis is closely related to tumorigenesis, cancer 

progression, intratumoral heterogeneity, immune-active 

microenvironment, regulation of cancer-related 

pathways, and final clinical outcomes through GSVA. 

 
Taken together, our comprehensive pan-cancer analysis 

of necroptosis-related regulators will help uncover their 

potential roles in cancer progression and provide new 
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clues for the accurate diagnosis and treatment of various 

cancers. 

 

MATERIALS AND METHODS 
 

Data sources 

 

The necroptosis gene list was obtained from the 

MSigDB gene set “GOBP_NECROPTOTIC_ 

SIGNALING_PATHWAY” (http://www.gsea-msigdb. 

org/). TPM (Transcripts per Million) normalized 

RNAseq data (data release version 7.0) were 

downloaded from the Genotype-Tissue Expression 

(GTEx) web portal (https://commonfund.nih. 

gov/GTEx/) to explore the gene expression of 

necroptosis-related regulators in different normal tissues 

obtained from healthy individuals. The dataset was 

composed of 11,688 samples containing the expression 

profiles of 56,202 genes from 30 organs (53 tissues), 

which were donated by 714 healthy individuals.  

Multi-omics pan-cancer datasets were acquired from 

TCGA (The Cancer Genome Atlas) database 

(https://portal.gdc.cancer.gov/), including mRNA seq 

level 3 data (n = 10,995), clinical data (n = 11,160), 

Illumina HumanMethylation 450k level 3 data (n = 

10,129), SNV data (n = 10234), CNV data (n = 11,495), 

and miRNA transcript expression data (n = 9105). 

Reverse-phase protein array (RPPA) data (n = 7876) 

were obtained from the cancer proteome atlas (TCPA) 

database (https://tcpaportal.org/tcpa/index.html). TCPA 

RPPA data are all from TCGA samples across 32 

cancer types. IC50 drug data of 481 small molecules in 

1001 cell lines from the Therapeutics Response  

Portal (CTRP) (https://portals.broadinstitute.org/ctrp/) 

database were collected to investigate the correlation 

between gene expression of necroptosis-related 

regulators and drug sensitivity. 

 

Totally, 30 GTEx normal tissues and 33 TCGA cancer 

types were included in the study. Normal tissue: adipose 

tissue, adrenal gland, bladder, blood, blood vessel, 

brain, breast, cervix uteri, colon, esophagus, fallopian 

tube, heart, kidney, liver, lung, muscle, nerve, ovary, 

pancreas, pituitary, prostate, salivary gland, skin, small 

intestine, spleen, stomach, testis, thyroid, uterus, vagina. 

Cancer type: Acute myeloid leukemia (LAML), 

adrenocortical carcinoma (ACC), bladder urothelial 

carcinoma (BLCA), breast invasive carcinoma (BRCA), 

cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC), cholangiocarcinoma (CHOL), 

colon adenocarcinoma (COAD), esophageal carcinoma 

(ESCA), glioblastoma multiforme (GBM), head and 

neck squamous cell carcinoma (HNSC), kidney 

chromophobe (KICH), kidney renal clear cell 

carcinoma (KIRC), kidney renal papillary cell 

carcinoma (KIRP), lower grade glioma (LGG), liver 

hepatocellular carcinoma (LIHC), lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), 

lymphoid neoplasm diffuse large B-cell lymphoma 

(DLBC), mesothelioma (MESO), ovarian serous 

cystadenocarcinoma (OV), pancreatic adenocarcinoma 

(PAAD), pheochromocytoma and paraganglioma 

(PCPG), prostate adenocarcinoma (PRAD), rectum 

adenocarcinoma (READ), sarcoma (SARC), skin 

cutaneous melanoma (SKCM), stomach adeno-

carcinoma (STAD), testicular germ cell tumors 

(TGCT), thymoma (THYM), thyroid carcinoma 

(THCA), uterine carcinosarcoma (UCS), uterine corpus 

endometrial carcinoma (UCEC), and uveal melanoma 

(UVM). 

 

Differential expression analysis in TCGA datasets 

 

We used paired tumor and normal samples in the 

mRNA differential expression analysis to obtain more 

accurate results. A total of 14 cancer types (BLCA, 

BRCA, COAD, ESCA, HNSC, KICH, KIRC, KIRP, 

LIHC, LUAD, LUSC, PRAD, STAD, and THCA) were 

included in the final analysis, which had over 10 paired 

tumor and normal samples. RNAseq by Expectation-

Maximization (RSEM) values were used to quantify 

the mRNA expression levels. The fold change (FC) was 

calculated by mean (Tumor)/mean (Normal), the P-

value was estimated by t-test and was further adjusted 

by the FDR. Genes with the threshold of FC>2 and 

FDR ≤ 0.05 were considered as significantly 

differentially expressed. 

 

Subtype expression analysis and pathologic stage 

correlation 

 

A great degree of intratumoral heterogeneity exists 

between tumors of different subtypes (molecular 

subtypes and clustering subtypes) in the same tumor 

type, which could be caused by different gene 

expression levels in different subtypes of tumors. We 

performed expression subtype analysis to identify 

subtype-relevant changes in gene expression. Nine 

cancer types (HNSC, LUSC, COAD, STAD, LUAD, 

GBM, BRCA, KIRC, and BLCA), which have at least 

10 samples of each subgroup in a subtype, were 

included in the final analysis. The mRNA expression 

and clinical subtype data were merged by sample 

barcode. We compared the gene expression of 

necroptosis-related regulators among different 

subgroups in each subtype through the Wilcoxon test 

(number of subtype groups = 2) and ANOVA test 

(number of subtype groups > 2). Results were 

considered statistically significant at FDR ≤ 0.05. 
Furthermore, we performed trend analysis to explore 

the gene expression changes of necroptosis-related 

regulators with the progression of the clinico-

http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
https://commonfund.nih.gov/GTEx/
https://commonfund.nih.gov/GTEx/
https://portal.gdc.cancer.gov/
https://tcpaportal.org/tcpa/index.html
https://portals.broadinstitute.org/ctrp/
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pathologic stage. Twenty-one cancer types with at 

least five samples in each stage subgroup were 

incorporated into the final analysis. The pathologic 

stage classified samples into main stages I, II, III, and 

IV. 

 

Survival analysis based on gene expression levels 

 

We combined the mRNA expression data of 

necroptosis-related regulators and corresponding 

clinical survival data by sample barcode for expression 

survival analysis, and some uncensored data were left 

out. Based on the median RSEM value, we divided the 

tumor samples into high and low expression groups. 

Then, we used the R package “survival” to fit the 

survival status and survival time within the two groups. 

The Cox Proportional-Hazards model and log-rank test 

were used for every gene in every cancer. Genes with P 

≤ 0.05 in Kaplan-Meier log-rank test were considered 

statistically significant. 

 

Methylation analysis 

 

The 14 cancer types (THCA, KIRP, BLCA, LIHC, 

HNSC, BRCA, LUAD, PRAD, ESCA, KICH, LUSC, 

KIRC, STAD, COAD) having more than 10 samples 

both in tumor and adjacent non-tumor tissues were used 

to perform differential methylation analysis. The P-

value was estimated by t-test and was further adjusted 

by FDR. Genes with FDR ≤ 0.05 were considered to 

have significant methylation differences. 

 

Methylation can influence gene expression in theory. 

We combined the methylation and mRNA expression 

data via the TCGA barcode for correlation analysis 

between methylation levels and mRNA expression 

levels. Spearman correlation analysis was performed to 

identify the correlation between matched mRNA 

expression and methylation levels. The P-value was 

adjusted by FDR, and genes with FDR ≤ 0.05 were 

considered to be influenced significantly by genome 

methylation. 

 

Methylation data and clinical overall survival data were 

merged by sample barcode. Similar to expression 

survival analysis, the tumor samples were divided into 

high and low methylation groups according to the 

median methylation level. The R package “survival” 

was used to fit survival time and survival status within 

the two groups. A Cox Proportional-Hazards model was 

constructed to determine the risk ratio (Hazard ratio) of 

the high methylation group compared with that of the 

low methylation group. The log-rank test was 
performed to test whether the survival difference 

between the two groups was statistically significant, and 

P ≤ 0.05 was considered significant. 

SNV analysis 

 

Seven types of deleterious mutations were included in 

the SNV analysis: Missense_Mutation, Nonsense_ 

Mutation, Frame_Shift_Ins, Splice_Site, Frame_ 

Shift_Del, In_Frame_Del, and In_Frame_Ins. SNV 

summary and oncoplot waterfall plot were generated 

using maftools. The SNV percentage (frequency of 

deleterious mutations) of the coding region of each gene 

was calculated by the formula: Number of mutated 

samples/Number of cancer samples. 

 

The SNV data and clinical survival data were merged 

by sample barcode. Tumor samples were divided into 

the mutant group when the specific gene was mutated 

(deleterious mutants). The log-rank test was performed 

to test the survival difference between wild-type (WT) 

and mutant groups. 

 

CNV analysis 

 

In the CNV analysis, we calculated the percentage of 

CNV of each gene in each cancer type. The CNV could 

be divided into heterozygous CNV and homozygous 

CNV, including amplification and deletion. 

Heterozygous CNV represents the occurrence of CNV 

only on one chromosome, while homozygous CNV 

represents the occurrence of CNV on both 

chromosomes. The percentage statistic of CNV sub-

types was based on CNV data processed 

through GISTICS 2.0. 

 

We combined mRNA expression data and CNV raw 

data via TCGA barcode for correlation analysis. We 

calculated the association between matched mRNA 

expression and CNV percent samples based on Person’s 

product-moment correlation coefficient and t-

distribution. P-value was adjusted by FDR. 

 

The CNV data and clinical overall survival data were 

merged by sample barcode for survival analysis. The 

tumor samples were divided into WT, amplification, 

and deletion groups. The R package survival was used 

to fit survival time and survival status within groups. 

The log-rank test was performed to test the survival 

difference between the three groups, and P ≤ 0.05 was 

considered significant. 

 

MicroRNA (miRNA) regulation network analysis 
 

mRNA expression data and miRNA expression data 

were combined by TCGA barcode. The miRNA 

regulation data were collected from experimentally 

verified data (TarBase, miRTarBase, and mir2disease) 

and predicted data (targetscan and miRanda), and only 

the miRNA-gene pairs that have been recorded in 
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regulation data were used to calculate the expression 

correlation in all paired samples (33 cancers) based on 

Person’s product-moment correlation coefficient and t-

distribution. In the presence of positive regulators like 

transcription factors, the miRNA-gene pair with 

negative correlation was considered a potential 

negatively regulation pair. P-value was adjusted by 

FDR, and genes with FDR ≤ 0.05 and R < 0 were used 

to generate the network via visNetwork R packages. 

 

Pathway activity analysis 

 

The relative protein levels were obtained after TCPA 

RPPA data were median-centered and normalized by 

standard deviation across all samples for each 

component. The pathway score was then the sum of the 

relative protein levels of all positive regulatory 

components minus that of negative regulatory 

components in a particular pathway. We calculated the 

pathway activity score (PAS) of 10 famous cancer-

related pathways (TSC/mTOR, RTK, RAS/MAPK, 

PI3K/AKT, Hormone ER, Hormone AR, EMT, DNA 

Damage Response, Cell Cycle, and Apoptosis 

pathways). Tumor samples were divided into two 

groups (high and low) by median mRNA expression, 

and the PAS difference between the two groups was 

determined by the Student t-test. When PAS (gene X 

high group) > (gene X low group), gene X was 

considered to activate the pathway; otherwise, it would 

inhibit the pathway. PAS with FDR ≤ 0.05 indicated a 

significant effect on the pathway. 

 

Immune subtype and drug sensitivity analysis 

 

Immune subtype data were obtained from the UCSC 

Xena Browser (http://xena.ucsc.edu/). The correlation 

between mRNA expression and drug sensitivity was 

analyzed by merging all cancer cell lines’ mRNA 

expression and drug sensitivity data. Pearson correlation 

analysis was performed to determine the correlation 

between mRNA expression and drug IC50. P-value was 

adjusted by FDR. Only the top 30 ranked drugs were 

used to construct the plot after integrating the level of 

correlation coefficient and FDR of necroptosis-related 

regulators. 

 

GSVA 

 

For GSVA, we estimated variation in gene set activity 

(represented as necroptosis score) over the cancer 

sample population in an unsupervised manner. The 

necroptosis score was calculated using the R package 

GSVA. It represented the integrated level of gene set 

expression, which was positively correlated with the 

expression of the gene set. The infiltrates of immune 

cells were evaluated using an ImmuCellAI web tool 

(http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/). By 

integrating corresponding data and the necroptosis 

score, we further explored the crucial roles of 

necroptosis in the clinicopathologic stage, tumor 

subtype, prognosis, immune infiltration, and pathway 

regulation. 

 

Statistical analysis 

 

All statistical analyses were performed using the R 

software v3.6 (http://www.r-project.org) and SPSS 

version 23.0 (SPSS Inc, Chicago, IL, USA). 
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The datasets presented in this study can be found in 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. (A) The differential expression of TLR3 between normal and tumor tissue in KIRC. (B) The differential 

expression of TLR3 between normal and tumor tissue in LUSC. (C) The expression of RIPK3 in different BRCA subtypes. (D) The expression of 
MLKL in different BRCA subtypes. (E) Kaplan-Meier curve between high and low expression of TLR3 in KIRC. (F) Kaplan-Meier curve between 
high and low expression of TLR3 in LUSC. 
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Supplementary Figure 2. SNV summary plot showing the number and types of mutations. 
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Supplementary Figure 3. (A) CNV type distribution of FAS in GBM and FASLG in LIHC. (B) Homozygous CNV plot showing the percentage 

of homozygous amplification and deletion of necroptosis-related regulators in different cancers. (C) Scatter plot showing the correlation 
between FASLG CNV and its mRNA expression in HNSC. (D) Kaplan-Meier curve showing the survival difference between different CNV 
types and wild type of FASLG in HNSC. 
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Supplementary Figure 4. (A) Box plot showing the difference of apoptosis pathway activity score between high and low FAS expression 
groups in KIRP. (B) Box plot showing the difference of apoptosis pathway activity score between high and low FAS expression groups in 
PAAD. (C) Pathway pie plot showing the global percentage of cancer types in which the specific necroptosis-related regulator has an effect 
on the specific pathway in pan-cancer. 
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Supplementary Figure 5. Kaplan-Meier curve showing the survival difference between high and low necroptosis score in LIHC, including 

OS (A), PFS (B), DSS (C) and DFI (D). 

 

 


