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INTRODUCTION 
 

Osteoporosis is a disease of the skeletal system, 

characterized by decreases in bone mass and density 

and structural deterioration, leading to bone fragility 

and increased fracture risk [1]. Globally, there are 
currently at least 200 million patients with osteoporosis. 

The prevalence of osteoporosis increases with aging in a 

population, particularly in female [2]. Data from the 

National Health Insurance Research Database in Taiwan 
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ABSTRACT 
 

Background: Identification of candidate SNPs from transcription factors (TFs) is a novel concept, while systematic 
large-scale studies on these SNPs are scarce. 
Purpose: This study aimed to identify the SNPs of six TF binding sites (TFBSs) and examine the association 
between candidate SNPs and osteoporosis. 
Methods: We used the Taiwan BioBank database; University of California, Santa Cruz, reference genome; and a 
chromatin immunoprecipitation sequencing database to detect 14 SNPs at the potential binding sites of six TFs. 
Moreover, we performed a case–control study and genotyped 109 patients with osteoporosis (T-score ≤ −2.5 
evaluated by dual-energy X-ray absorptiometry) and 262 healthy individuals (T-score ≥ −1) at Tri-Service 
General Hospital from 2015 to 2019. Furthermore, we used the expression quantitative trait loci (eQTL) from 
the Genotype-Tissue Expression database to identify downstream gene expression as a criterion for the 
function of candidate SNPs. 
Results: Bioinformatic analysis identified 14 SNPs of TFBSs influencing osteoporosis. Of these SNPs, the 
rs130347 CC + TC genotype had 0.57 times higher risk than the TT genotype (OR = 0.57, p = 0.031). Validation of 
eQTL analysis revealed that rs130347 T allele influences mRNA expression of downstream A4GALT in whole 
blood (p = 0.0041) and skeletal tissues (p = 0.011). 
Conclusions: We successfully identified the unique osteoporosis locus rs130347 in the Taiwanese and 
functionally validated this finding. In the future, this strategy can be expanded to other diseases to identify 
susceptible loci and achieve personalized precision medicine. 
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revealed that the overall prevalence of osteoporosis in 

people aged ≥50 years increased from 17.4% to 25% in 

the period of 2001-2011 [3]. The prevalence of 

osteoporosis in males increased from 6.9% to 13.3%—

and that of osteoporosis in females increased from 

28.1% to 36.2% [3]. 

 

Bone mineral density (BMD) is a complex characteristic 

influenced by individual, environmental, and genetic 

factors. Aging, gender differences, vitamin D and 

calcium intake, smoking, and alcohol consumption 

influence bone mass and BMD [4–7]. Approximately 

50%–80% of the decrease in BMD can be attributed to 

genetics and result in osteoporosis [8–11]. 

 

Genome-wide association study (GWAS) has become a 

widely used approach in genome research. This method 

is based on the use of linkage disequilibrium in 

chromosomes to map disease-causing alleles [12]. 

However, for several gene loci, despite repeated 

analyses by GWAS, their association with complex 

diseases has remained unclear [13]. An example has 

shown GWAS in osteoporosis-related study could only 

explain approximately 20% of the variation in BMD due 

to missing heritability and stringent statistical test value 

(p < 5 × 10−8) [14, 15]. The pathophysiological causes of 

osteoporosis are complex, with orchestration of various 

transcription factor (TF) and biological pathways, 

forming a complex regulatory network [16, 17]. A 

previous study used the GSE35958 database to analyze 

differentially expressed genes (DEGs) in patients with 

osteoporosis and a control group and identified the 

following osteoporosis-related TFs: E2F TF 4 (E2F4), 

early growth response 1 (EGR1), JUN proto-oncogene 

(JUN), trans-acting TF 1 (Sp1), TF 7-like 2 (TCF7L2), 

tumor protein p53 (TP53), and catenin (cadherin-

associated protein) beta 1 (CTNNB1) [18, 19]. To our 

knowledge, polymorphisms in TF binding sites (TFBSs) 

have been explored their association with disease [20]. 

As a result, we aligned Taiwan BioBank polymorphisms 

database to binding sites of 7 chosen TFs by conserved 

motifs to seek potential disease-related single-nucleotide 

polymorphisms (SNPs) in Taiwanese. We performed a 

case–control study to investigate the association between 

the candidate SNPs and osteoporosis. Finally, we used 

the Genotype-Tissue Expression (GTEx) database to 

validate the functionality of SNPs. 

 

MATERIALS AND METHODS 
 

Study participants 

 

This case–control study was conducted between  

March 2015 and October 2019. In this study, 371 

postmenopausal women (109 patients with osteoporosis 

and 262 healthy individuals) were enrolled from  

Tri-Service General Hospital (TSGH). None of the 

participants had any history of medication for treating 

osteoporosis. Data on the demographic and clinical 

characteristics of all participants were obtained from 

questionnaires and medical records. 

 

Bone mineral density measurements 

 

BMD (g/cm2), an indicator of osteoporosis, calculated 

by dividing the bone mineral content (g) by the bone 

area (cm2) [21], of all participants was measured using 

dual-energy X-ray absorptiometry (DXA) (GE Medical 

Systems Lunar, Madison, WI, USA) [22] at the lumbar 

spine 1–4, and the diagnosis of osteoporosis was based 

on the World Health Organization (WHO) standards. 

By osteoporosis is meant BMD measurements at or 

below the −2.5 standard deviation (SD) from the 

optimal peak bone density (T-score) of a healthy young 

adult of the same sex; by contrast, BMD measurement 

at or above −1 SD from T-score of a healthy young 

adult of the same sex was considered to reflect bone 

mass normal [23]. 

 

Bioinformatic analysis in gene screening 

 

Screening procedures for genetic variation in 

Taiwanese 

We referred to a previous study conducted by Xie et al. 

[19], which used microarray data to analyze DEGs and 

obtained seven osteoporosis-related TFs: E2F4, EGR1, 

JUN, Sp1, TCF7L2, TP53, and CTNNB1. Subsequently, 

we used the next-generation sequencing (NGS) data  

of 1,517 people; the data were available from the  

Taiwan BioBank database and included 74,861,556 

genetic variants. We excluded the structural variants 

(insertions/deletions) because it was not available to use 

a multifunctional mass spectrometer (mass array) for 

genotyping. Then, we excluded the SNPs with a call rate 

of <90%. Finally, we used the chosen SNPs for further 

alignment. 

 

Identifying the genetic variants that may influence TF 

binding 

First, we used a human reference genome sequence 

downloaded from the University of California, Santa 

Cruz (UCSC; GRCh37/hg19). We analyzed genetic 

variants that may influence TF binding by using 

bioinformatic sequence alignment techniques and 

identified the variants located in the TFBS. 

 

Alignment of the binding site of TF E2F4—5′-

TTTSSCGC-3′ (S  =  C or G)—in all 52,392,270 SNPs 

derived from the Taiwan BioBank database revealed 
12,124 SNPs that may influence the binding affinity: 

EGR1—5′-GCGGGGGCGG-3′— 689 SNPs; JUN—5′-

TGASTCA-3′— 81,754 SNPs; Sp1—5′-GGGCGG-3′— 
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97,654 SNPs; TCF7L2—5′-CTTTGA-3′— 169,619 

SNPs; TP53—5′-RRRCWWGYYY-3′ (R  = A or G; 

W = A or T; Y = C or T)— 169,319 SNPs; and 

CTNNB1, 5′—TGAYTCA-3′— 84,951 SNPs. We 

selected SNPs with a minor allele frequency (MAF) 

<5% as the SNP fragments that influence the TFBSs. 

The code used for bioinformatics sequence alignment in 

R is shown in Supplementary File 1. 

 

Confirming the TF binding affinity of the genetic 

variants through ChIP-Seq 

ChIP-Seq data from the JASPAR database were used to 

confirm whether the genetic variants had a combination 

of the following sites [24]: E2F4 (Matrix ID: 

MA0470.1) [25], EGR1 (Matrix ID: MA0162.2) [26], 

JUN (Matrix ID: MA0488.1) [27], Sp1 (Matrix ID: 

MA0079.3) [28], TCF7L2 (Matrix ID: MA0523.1) [29], 

and TP53 (Matrix ID: MA0106.2) [30]. As ChIP-Seq 

data were not available for CTNNB1, further 

examination of this TF did not perform in this study. 

Finally, a total of 14 SNPs were successfully selected: 

rs55785541, rs2295624, rs79436692, rs1243673, 

rs6108246, rs6688233, rs130347, rs6509294, rs3758354, 

rs117405516, rs3813600, rs3803353, rs77796751, and 

rs28481460 (Figure 1). 

 

Genomic DNA extraction and SNP genotyping 

 

Genomic DNA was isolated from the peripheral blood 

samples using the standard procedures for proteinase K 

(Invitrogen, Carlsbad, CA, USA) digestion and the 

phenol/chloroform method [31]. 14 SNPs, mentioned 

above, in the TFBSs were genotyped by iPLEX  

Gold SNP genotyping [32], a genotyping example, 

rs55785541, shown in Supplementary Figure 1. We 

used inter-replication validation to assess the quality of 

the genotyping experiment, which was performed with 

19 replicate samples (approximately 5%), and the 

concordance rate was 100%. 

 

Ethics 

 

This study was reviewed and approved by the 

institutional ethics committee of TSGH (B202105044). 

After a detailed explanation of the study objectives, 

written informed consent was obtained from all 

participants. All clinical and biological samples were 

collected and DNA was genotyped after obtaining 

patient consent. 

 

Statistical analysis 

 

Continuous variables were reported as the mean ± SD 
and were tested using t-tests and ANOVA. Genotype 

and allelic frequencies were compared between patients 

with osteoporosis and healthy individuals using chi-

squared or Fisher’s exact test. Logistic regression 

analysis was performed to estimate odds ratios  

(ORs) and 95% confidence intervals (CIs) [13] with 

adjustment for age and gender. The analysis was 

performed using allele type, genotype, dominant, and 

recessive models. Statistical analyses were performed 

using SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and R 

3.5.1 (R Project for Statistical Computing, Vienna, 

Austria). A p-value of <0.05 was considered statistically 

significant. 

 

RESULTS 
 

Candidate TFs and polymorphic TFBSs 

 

According to Xie et al. [19], upstream TFs, E2F4, EGR1, 

JUN, Sp1, TCF7L2, TP53 and CTNNB1, were identified 

from DEGs associated with osteoporosis. We then 

selected NGS data on 1,517 samples from the Taiwan 

BioBank and excluded 13,614,966 SNPs with structural 

mutations (insertions/deletions) and 8,854,320 SNPs with 

a sequencing quality control call rate of <90%. As a 

result, 52,392,270 SNPs were included in this study. 

 

The UCSC human genomic sequence hg19 and 

homologous or motif sequences were used for 

sequence alignment with the SNPs screened from the 

Taiwan BioBank. The TFs E2F4, EGR1, JUN, Sp1, 

TCF7L2, TP53, and CTNNB1 had 12,124, 689, 

81,754, 97,654, 169,619, 169,319, and 77,606 SNPs, 

respectively, on the binding sites. After excluding the 

sites with an MAF of <5%, 1,490, 73, 9,622, 11,567, 

17,539, 17,179, and 8,871 binding sites remained, 

respectively, for E2F4, EGR1, JUN, Sp1, TCF7L2, 

TP53, and CTNNB1. This was followed by repeated 

validation using ChIP-Seq data and the exclusion of 

noncoding regions. Finally, for E2F4, EGR1, JUN, 

Sp1, TCF7L2, and TP53, 1, 2, 8, 3, 1, and 0 SNPs, 

respectively, were successfully included in this study. 

For CTNNB1, as ChIP-Seq data were not available for 

validation, no SNP was included in this study. In 

summary, 14 sites in the abovementioned results were 

included in this study. The detailed candidate results 

are shown in Table 1. 

 

Basic demographic analysis 

 

Basic demographics are shown in Table 2. There were 

262 healthy individuals in the control group and 109 

patients in the osteoporosis group. The body mass index 

(BMI) of the osteoporosis group was lower than that of 

the control group (p < 0.001). The waist circumference of 

the osteoporosis group was lower than that of the control 

group (p < 0.001). Higher proportions of participants in 

the osteoporosis group took calcium tablets (p = 0.002) 

and suffered from knee osteoarthritis (p = 0.01). 
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Figure 1. Flowchart of the stepwise approach to screen for candidate transcription factors (TFs) and binding site SNPs. 
Upstream predictors of seven TFs, E2F4, EGR1, JUN, Sp1, TCF7L2, TP53, and CTNNB1, in osteoporosis [19]. Identification of genetic variants 
that may influence TFBS through bioinformatic sequence alignment. First, we used the data of a total of 74,861,556 variants (1,517 samples) 
obtained from the Taiwan BioBank database to screen for Taiwanese population-specific genetic variation. Then, through genetic alignment 
of GRCh37/hg19 obtained from the National Center for Biotechnology Information database, we found SNPs that may influence the binding 
affinity. SNPs with an MAF of <5% were excluded from the samples. Chromatin immunoprecipitation sequencing (ChIP-Seq) data obtained 
from the JASPAR database were used to confirm whether these genetic variants had a combination of the sites. No ChIP-Seq data were 
available for CTNNB1 validation, and this gene was thus excluded. Finally, we excluded results of the noncoding regions. The variation of 14 
SNPs may influence transcription factor binding activity. DEG, differentially expressed gene; NGS, next-generation sequencing; SNP, single-
nucleotide polymorphism; Ins/del, insertion/deletion; TFBS, TF binding site; MAF, minor allele frequency. 
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Table 1. Summary of three candidate SNPs obtained from bioinformatics analyses. 

SNPs Chromosome:Position TF MAF Gene DNA sequence near the SNP 

rs55785541 15:100890478 E2F4 0.20 (G/A)  SPATA41 CTTTCCC[G/A]CGTCAGC 

rs2295624 1:229644157 EGR1 0.17 (G/T)  ABCB10 GCGGGGGCG[G/T]GATCGTGAC 

rs79436692 15:41576159 EGR1& SP1 0.16 (G/A) OIP5-AS1 CAGCGGCGG[G/A]GGCGGGGCT 

rs12463673 2:43412531 JUN 0.23 (C/T) ZFP36L2 AATGAG[C/T]CAGAGA 

rs6108246 20:9032379 JUN 0.14 (T/G) PLCB4 GTTTAT[T/G]ACTCAT 

rs6688233 1:9335745 JUN 0.21(C/T) SPSB1 CTGACT[C/T]ATAGCT 

rs130347 22:43076809 JUN 0.27(C/T) A4GALT CTGCAC[C/T]GAGTCA 

rs6509294 19:47323384 JUN 0.10(G/A) SNAR-E TGAGTC[G/A]TGGTGA 

rs3758354 9:75764565 JUN 0.17 (A/C) ANXA1 CGATGA[A/C]TCATCA 

rs117405516 17:42983641 JUN 0.09(G/A) GFAP GGATGA[G/A]TCACTT 

rs3813600 1:85786166 JUN 0.23(G/A) LOC646626 TACGGT[G/A]AGTCAG 

rs3803353 15:40857240 SP1 0.10(G/A) C15orf57 GGGAG[G/A]GGCGG 

rs77796751 5:137878943 SP1 0.05(G/A) ETF1 GCCAG[G/A]GGCGG 

rs28481460 15:89610555 TCF7L2 0.33(A/C) ABHD2 CTTTG[A/C]AGCAT 

TF, transcription factor; MAF, minor allele frequency (major/minor). 

 

Table 2. Basic demographic variables. 

Variable Control group (N = 262) Osteoporosis group (N = 109) p-value 

Age (mean ± SD) 71.88 ± 6.48 72.03 ± 6.62 0.538 

BMI (mean ± SD) 25.03 ± 3.74 22.19 ± 3.17 <0.001* 

Waist circumference (mean ± SD) 81.85 ± 10.73 76.27 ± 8.85 <0.001* 

Alcohol consumption, n (%)   0.461 

No 254 (98.8) 105 (98.1)  

Yes 3 (1.2) 2 (1.9)  

Smoking status, n (%)   0.793 

No 243 (97.6) 102 (99.0)  

Yes 6 (2.4) 1 (1.0)  

Periodic use of calcium tablets, n (%)   0.002* 

No 181 (70.4) 58 (54.2)  

Yes 76 (29.6) 49 (45.8)  

Medical history, n (%)    

Hypertension 75 (28.6) 22 (20.2) 0.093 

Diabetes 38 (14.5) 11 (10.1) 0.521 

Knee osteoarthritis, n (%) 68 (26.0) 14 (12.8) 0.010* 

Healthy individuals (control group): T-score ≥ −1; osteoporosis: T-score ≤ −2.5; 
*:p-value < 0.05; BMI, body mass index. 

 

Association between binding site gene polymorphisms 

and osteoporosis susceptibility 

 

In total, 14 SNPs were included in this study. All loci 

conformed to Hardy–Weinberg equilibrium (p > 0.05), 

with the exception of rs3813600 (p = 0.002). 

Genotyping results were obtained for 14 SNPs. Our 

results based on the genotype model showed that 

rs130347 SNP had a significant association with 

osteoporosis (p = 0.022; Table 3). 

 
In Table 4, we present the logistic regression analysis 

data comparing the genotype and allele frequencies of 

patients with osteoporosis and healthy individuals. For 
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Table 3. Genotype distribution of TFBS SNPs in patients with osteoporosis and healthy individuals. 

SNPs 
Controls 

(N=262), n (%) 

Osteoporosis 

(N=109), n (%) 

Crude-OR  

(95% CI) 
p-value 

Adj-OR  

(95% CI)a 
p-value 

rs55785541    0.569  0.328 

GG 154 (59.5) 58 (54.2) 1.00  1.00  

GA 95 (36.7) 43 (40.2) 1.20 (0.75–1.92) 0.443 1.29 (0.76–2.19) 0.339 

AA 10 (3.9) 6 (5.6) 1.59 (0.55–4.58) 0.388 2.32 (0.66–8.21) 0.191 

rs117405516    0.554  0.812 

GG 220 (84.6) 94 (86.2) 1.00  1.00  

GA 38 (14.6) 13 (11.9) 0.80 (0.41–1.57) 0.518 0.91 (0.43–1.89) 0.791 

AA 2 (0.8) 2 (1.8) 2.34 (0.32–16.86) 0.399 1.97 (0.20–19.88) 0.564 

rs28481460    0.075  0.077 

AA 180 (70.0) 32 (31.7) 1.00  1.00  

AC 69 (26.8) 57 (56.4) 1.80 (1.08–2.98) 0.023* 1.93 (1.09–3.42) 0.024* 

CC 8 (3.1) 12 (11.9) 1.54 (0.70–3.38) 0.280 1.64 (0.68–3.92) 0.268 

rs12463673     0.493  0.541 

CC 131 (51.4) 61 (58.1) 1.00  1.00  

CT 105 (41.2) 38 (36.2) 0.78 (0.48–1.26) 0.303 0.74 (0.43–1.27) 0.27 

TT 19(7.5) 6 (5.7) 0.68 (0.26–1.78) 0.431 0.93 (0.32–2.73) 0.901 

rs130347     0.047*  0.022* 

CC 108 (41.9) 53 (49.5) 1.00  1.00  

CT 126 (48.8) 38 (35.5) 0.61 (0.38–1.00) 0.051 0.48 (0.27–0.83) 0.009* 

TT 24 (9.3) 16 (15.0) 1.36 (0.67–2.77) 0.400 1.05 (0.46–2.38) 0.905 

rs6108246     0.991  0.964 

GG 180 (71.7) 74 (71.8) 1.00  1.00  

GT 63 (25.1) 26 (25.2) 1.00 (0.59–1.71) 0.989 0.93(0.51–1.67) 0.803 

TT 8 (3.2) 3(2.9) 0.91 (0.24–3.53) 0.894 1.06 (0.23–4.85) 0.939 

rs6688233     0.420  0.397 

CC 155 (59.6) 66(61.7) 1.00  1.00  

CT 97 (37.3) 35(32.7) 0.85 (0.52–1.37) 0.501 0.83 (0.48–1.44) 0.512 

TT 8 (3.1) 6 (5.6) 1.76 (0.59–5.28) 0.312 1.92 (0.58–6.32) 0.285 

rs6509294    0.656  0.479 

GG 205 (80.7) 81 (76.4) 1.00  1.00  

GA 47 (18.5) 24 (22.6) 1.29 (0.74–2.25) 0.365 1.37 (0.73–2.58) 0.326 

AA 2 (0.8) 1 (0.9) 1.27 (0.11–14.15) 0.848 2.75 (0.21–36.63) 0.443 

rs3758354     0.338  0.495 

AA 176 (68.0) 80 (74.8) 1.00  1.00  

AC 76 (29.3) 26 (24.3) 0.75 (0.45–1.26) 0.282 0.80 (0.45–1.44) 0.464 

CC 7 (2.7) 1 (0.9) 0.31 (0.04–2.60) 0.283 0.34 (0.04–2.92) 0.324 

rs3813600     0.656  0.623 

GG 147 (56.8) 63 (58.3) 1.00  1.00  

GA 96 (37.1) 36 (33.3) 0.88 (0.54–1.42) 0.588 0.77 (0.45–1.32) 0.333 

AA 16 (6.2) 9 (8.3) 1.31 (0.55–3.13) 0.539 0.95 (0.36–2.48) 0.920 

rs22956524     0.631  0.582 

GG 180 (70.0) 79 (74.5) 1.00  1.00  

GT 69 (26.8) 25 (23.6) 0.83 (0.49–1.40) 0.477 0.75 (0.42–1.36) 0.343 

TT 8 (3.1) 2 (1.9) 0.57 (0.12–2.74) 0.483 0.65 (0.12–3.51) 0.615 

*:p-value < 0.05; a, after the adjustment for age and body mass index; OR, odds ratio; CI, confidence interval. 

 

rs130347, a significant difference was found in the 
dominant model (CC vs. CT + TT) in all participants 

after adjustment for age and BMI (OR = 0.57, 95%  

CI = 0.34–0.95; p = 0.031). For rs28481460, a 

significant difference was found in the dominant 
model (AA + AC vs. CC) in all participants after 

adjustment for age and BMI (OR = 1.87, 95% CI = 

1.08–3.24; p = 0.026). 
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Table 4. Association of rs130347 and rs28481460 with osteoporosis. 

Independent variable Crude-OR (95% CI) p-value Adj-OR (95% CI)a p-value 

rs130347     

Allele model  0.792  0.305 

C 1.00  1.00  

T 0.96 (0.68–1.34)  0.82 (0.55–1.20)  

Dominant model  0.180  0.031* 

CC 1.00  1.00  

CT + TT 0.73 (0.47–1.15)  0.57 (0.34–0.95)  

Recessive model  0.119  0.325 

CC + CT 1.00  1.00  

TT 1.71 (0.87–3.37)  1.48 (0.68–3.22)  

rs28481460     

Allele model  0.078  0.03* 

A 1.00  1.00  

C 1.36 (0.97–1.90)  1.52 (1.04–2.23)  

Dominant model  0.025*  0.026* 

AA 1.00  1.00  

AC + CC 1.75 (1.07–2.85)  1.87 (1.08–3.24)  

Recessive model  0.789  0.77 

AA + AC 1.00  1.00  

CC 1.10 (0.54–2.27)  1.13 (0.51–2.51)  

*: p-value < 0.05; a, After the adjustment for age and body mass index; OR, odds ratio; CI, confidence interval. 

 

mRNA expression of SNP polymorphisms with 

downstream genes 

 

This case–control study showed that rs28481460 and 

rs130347 are associated with the risk of osteoporosis. In 

this study, the GTEx database was used for expression 

quantitative trait loci analysis of the mRNA expression 

of SNP loci and downstream genes. The GTEx query 

steps used for gene expression analysis are shown in 

Supplementary File 2. We observed that the presence of 

the rs130347 C minor allele in whole blood decreases 

downstream A4GALT expression (p = 0.0041). In 

skeletal muscle tissue samples, the presence of the 

rs130347 C minor allele influences downstream 

A4GALT expression (p = 0.011; Figure 2). Furthermore, 

we noted that the presence of the rs28481460 C minor 

allele in whole blood does not influence downstream 

ABHD2 expression. In the skeletal muscle tissue 

samples, the presence of the rs130347 C minor allele 

does not influence downstream ABHD2 expression  

(p = 0.68; Figure 3). 

 

DISCUSSION 
 

In this study, we investigated the association of the 

binding sites of seven TFs (E2F4, EGR1, JUN, Sp1, 

TCF7L2, TP53, and CTNNB1) with osteoporosis. Our 

study results revealed that a binding site SNP of the  

TF, JUN, rs130347, was significantly associated with 

osteoporosis. In addition, we explored the mRNA 

expression of rs130347 in the GTEx database and noted 

that both the whole blood and the skeletal muscle 

samples showed that the presence of the C allele in 

rs130347 decreases A4GALT expression. 

 

Osteoporosis is known to be caused by an imbalance 

between osteoblasts and osteoclasts [33]. Currently, it is 

known that the biological pathway that influences 

osteoblasts is the RANK-OPG-RANKL pathway [34]. 

The binding of RANK and RANKL stimulates NF-κB 

activation and increases MAPK, JNK, ERK, and p38 

activities, and these signaling pathways influence 

osteoclast formation [35]. JUN and FOS are members 

of the activator protein 1 (AP-1) family. JNK protease 

influences osteoblast differentiation by enhancing its 

binding with Ap-1 family proteins [36]. To validate the 

effects of JUN on bone growth, a previous study 

transplanted long bones that induce JUN synthesis into 

mice with an impaired immune system [37]. The results 

revealed a significant increase in the bones of the 

transplanted mice. This showed that JUN is vital to the 

development of the skeletal system. 

 

rs130347 is located upstream of A4GALT, has a length of 

29 kb, and is located at 22q13.2. Its primary function is to 

catalyze the conversion of galactose to lactosylceramide 
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to synthesize globotriaosylceramide (Gb3) [38]. A study 

demonstrated that Gb3 can bind to verotoxin produced by 

Escherichia coli to induce apoptosis [39]. Gb3 was also 

shown to be able to prevent human immunodeficiency 

virus infection [40]. Moreover, other studies showed  

that a genetic defect in α-galactosidase in patients with 

Fabry disease leads to the aberrant accumulation of  

Gb3 in endothelial cells, causing kidney, heart, and 

cerebrovascular lesions, and decreases BMD. This results 

in an increased risk of osteoporosis in patients with Fabry 

disease [41, 42]. However, the association between 

A4GALT and osteoporosis remains unknown and the 

biological mechanisms involved are yet to be elucidated. 

We found that rs130347 is a polymorphic locus located 

in the binding site of the TF, JUN, and causes a decrease 

in A4GALT expression. 

 

 
 

Figure 2. Effects of rs130347 polymorphism on A4GALT expression. (A) The presence of the rs130347 C minor allele in whole blood 
decreases downstream A4GALT expression (p = 0.0041) (B) In skeletal muscle tissue samples, the presence of the rs130347 C minor allele 
influences downstream A4GALT expression (p = 0.011). 
 

 
 

Figure 3. Effects of rs28481460 polymorphism on ABHD2 expression. (A) The presence of the rs28481460 C minor allele in whole 

blood does not influence downstream A4GALT expression (p = 0.90). (B) The presence of the rs130347 C minor allele in skeletal muscle tissue 
samples does not influence downstream ABHD2 expression (p = 0.68). 
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In this study, we employed a candidate screening 

method different from previous studies and used the 

NGS data in the Taiwan BioBank to screen for TFBS 

polymorphisms that had the highest association with 

osteoporosis. SNP loci that were not previously 

investigated for their association with osteoporosis were 

identified in the case–control study. Compared with the 

results of GWAS, most SNPs found were not causally 

related and no association could be found with the 

disease [43, 44]. The bioinformatic analysis used in  

this study successfully identified one SNP that is 

correlated with osteoporosis. In future, multiple omics 

technologies, including genomics, transcriptomics, 

epigenomics, proteomics, and metabolomics, can be 

combined to identify the molecular factors contributing 

to disease pathogenesis and thus address genetic 

susceptibility to disease development. 

 

Certain potential limitations of this study might have 

influenced the results. The differential gene data for 

candidate TFs were obtained from the mesenchymal 

stem cells of the Caucasian population, which may differ 

from the RNA sequencing results of the Asian 

population; this may have influenced the candidate TF 

results. Furthermore, this study used ChIP-Seq data from 

the JASPAR database for repeated validation of tissue-

derived nonosteocytes, which may have influenced the 

results. Sample size limitations resulted in an inability  

to examine the effects of genes with an MAF of  

<5% and structural mutations (insertions/deletions) on 

osteoporosis. Therefore, we recommend increasing the 

sample size in the future to examine SNPs that were  

not covered in this study in order to obtain more 

osteoporosis-related SNP results. 

 

CONCLUSIONS 
 

In summary, our data demonstrated that rs130347 plays 

an important role in postmenopausal women with 

susceptibility to osteoporosis, modulating the epigenetic 

regulation of a critical osteoporosis-related gene, 

A4GALT. rs130347 impairs the binding of JUN, which 

may lead to decreased A4GALT expression. However, 

the effect of the JUN binding site SNP rs130347 and 

A4GALT on the development and function of 

osteoporosis remains incompletely understood, and 

further exploration of the regulatory mechanism, such 

as by RNA-Seq of the genomes of Taiwanese patients, 

is warranted. 
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