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INTRODUCTION 
 

Lung transplantation has become the only effective 

treatment for end-stage benign lung diseases induced by 

various causes [1]. However, compared with other 

organ transplantation (such as heart transplantation, 

kidney transplantation, and liver transplantation), the 5-

year survival rate after lung transplantation is reported 

to be about 60%, and about 24% of patients die while 

waiting for donor lungs [2]. There are many reasons 

responsible for the failure or low long-term survival rate 

of lung transplantation, among which, lung ischemia-

reperfusion injury (LIRI) is the main cause. Ischemia-

reperfusion injury (IRI) is a common and important 

pathophysiological process during lung transplantation, 

which mainly includes local ischemic injury and 

reperfusion injury [3]. In addition, LIRI may be related 

to rejection after surgery. However, the mechanism of 

LIRI remains unclear at present. Therefore, it is of great 

significance to examine the precise pathogenesis of 

LIRI for alleviating LIRI and improving lung 

transplantation outcome. 

 

MicroRNAs (miRNAs) are the small endogenous non-

coding RNAs that contain approximately 18-25 

nucleotides, which function to modulate gene 

expression at translational and transcriptional levels. 

MiRNAs can specifically recognize and bind to the 

target mRNAs by forming the RNA-induced silencing 

complex (RISC), thus regulating the expression of 

specific genes [4]. In addition, miRNAs are suggested 

to exert vital parts in the modulation of diverse 

pathophysiological processes within mammals, and 

more than 50% of mammalian protein-coding genes are 

regulated by miRNAs. MiRNAs have been verified in 

many reports to participate in IRI, which mainly 
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autophagosomes within PMVECs. According to our results, miR-141 suppressed β-catenin level through reducing 
EGFR level. Besides, the miR-141/EGFR/β-catenin axis enhanced autophagy to aggravate LIRI. To sum up, miR-141 
suppresses EGFR expression to inhibit β-catenin level, which subsequently aggravates autophagy and complicates 
LIRI. The above results offer the candidate therapeutic target for the treatment of lung IRI. 
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regulate cell proliferation, differentiation, apoptosis, 

autophagy, inflammation and immune response. 

Besides, there are many studies on the roles of miRNAs 

in in kidney, liver, brain and heart IRI [5–9]. Typically, 

miR-141 shows low expression in PC12 and H9C2 cells 

experiencing IRI, and it also aggravates IRI. We are 

interested in exploring the function and underlying 

mechanism by which miR-141 regulates LIRI [10, 11]. 

According to our bioinformatics analysis results at 

TargetScan website, miR-141 potentially targeted and 

suppressed the expression of epidermal growth factor 

receptor (EGFR). EGFR has been previously suggested 

to exert a vital part in cell growth, differentiation, 

autophagy and apoptosis, and it is also involved in some 

signaling pathways [12, 13]. Meanwhile, β-catenin is 

reported to be closely related to EGFR. Under the action 

of EGFR, β-catenin accumulates in the nucleus to 

induce cell proliferation; on the other hand, β-catenin 

can directly target EGFR and activate the downstream 

signaling pathways [14]. Moreover, the β-catenin 

signaling pathway possibly exerts a vital part in 

resisting IRI. Based on the above observations, the miR-

141/EGFR/β-catenin axis is suggested to participate in 

LIRI occurrence [15]. In this study, we reported the 

damage of miR-141 against IRI in a mouse model and 

discovered that the inhibition of β-catenin signaling 

induced by EGFR constituted a critical mechanism. 

 

RESULTS 
 

miR-141 levels increased within PMVECs and lung 

tissues experiencing IRI 

 

Firstly, I/R surgery was performed to construct the lung 

IRI mouse models, later, a blood gas analyzer was 

utilized for arterial blood gas analysis in mouse left 

ventricle. Then, we weighed lung tissues from mice on 

the electronic balance to determine W/D ratio, thus 

evaluating edema (Figure 1A, 1B). As a result, relative 

to sham operation group, I/R modeling mice had 

reduced PaO2/FiO2 ratio within left ventricle, whereas 

elevated lung tissue W/D ratio. As revealed by HE 

staining (Figure 1C) together with TUNEL staining 

(Figure 1D), relative to sham operation group, I/R 

modeling group had aggravated apoptosis and lung 

tissue injury, thus confirming that LIRI mouse models 

were successfully constructed. Later, we used mouse 

PMVECs to induce H/R models to conduct in vitro 

 

 
 

Figure 1. Expression of miR-141 upregulates in lung tissues and PMVECs of I/R injury. (A) Blood gas analyzer was used to  
detect the blood gas in arterial blood in left ventricle of mice. (B) The statistical graph of W/D ratio of lung tissues of mice. (C) HE staining 
results of lung tissues (× 400) and lung injury scores. TUNEL staining (D) and flow cytometry assay (E) was used to detect the apoptosis of 
mouse lung cells (× 200) and PMVECs. The expression of miR-141 in mouse lung tissues (F) and PMVECs (G) were determined by RT-qPCR. * 
p < 0.05 was considered statistically significant. The experiment was repeated three times independently. Results were expressed as the 
mean ± SD. 
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analysis. As revealed by flow cytometric analysis 

(Figure 1E), H/R-challenged cells showed increased 

apoptosis compared with the untreated cells, suggesting 

that H/R cell models were successfully induced. At last, 

we adopted RT-qPCR to measure miR-141 levels 

within I/R mouse lung tissues (Figure 1F) as well as 

H/R cells (Figure 1G). As a result, relative to controls, 

miR-141 levels within I/R lung tissues and H/R cells 

were up-regulated, thus confirming the high expression 

of miR-141 within LIRI cells and tissues. 

 

miR-141 knockdown suppressed autophagy to 

mitigate LIRI in vitro and in vivo 

 

As shown above, miR-141 was up-regulated within LIRI 

cells and tissues. For understanding the function of miR-

141 in autophagy during LIRI, we divided animals into 

sham operation group, miR-141 antagomir or antagomir 

NC transfection group, and I/R modeling group. As for 

PMVECs, they were treated with or without miR-141 

antagomir or antagomir NC and later subjected to H/R 

treatment. Thereafter, we performed RT-qPCR analysis 

for analyzing miR-141 levels within lung tissues of IRI 

mice (Figure 2A). As a result, compared with sham 

operation group, miR-141 expression increased within 

lung tissues from IRI modeling group and IRI modeling 

+ antagomir NC transfection group, but that decreased 

after miR-141 antagomir transfection. Thereafter, we 

measured the autophagy-related genes (ARGs, including 

BECN1 and LC3II/I) levels within lung tissues through 

WB assay (Figure 2B). As a result, relative to sham 

operation group, BECN1 expression and LC3II/I ratio 

elevated within lung tissues from IRI modeling group 

and IRI modeling+antagomir NC transfection group. 

Relative to I/R modeling+antagomir NC transfection 

group, BECN1 expression and LC3II/I ratio decreased 

after miR-141 antagomir transfection. Arterial blood gas 

analysis was conducted in mouse left ventricle by using 

the blood gas analyzer, then, edema was assessed through 

calculating W/D ratio (Figure 2C, 2D). As a result, 

relative to sham operation group, I/R modeling group and 

I/R modeling+antagomir NC transfection group had 

reduced PaO2/FiO2 ratio, whereas elevated lung tissue 

W/D ratio (p<0.05). Besides, I/R modeling+ miR-141 

antagomir transfection mice showed increased 

PaO2/FiO2 ratio whereas decreased W/D ratio compared 

with I/R modeling mice receiving antagomir NC 

transfection (p<0.05). As suggested by HE staining 

(Figure 2E) as well as TUNEL staining (Figure 2F) 

results, relative to sham operation group, I/R modeling 

group and I/R modeling+antagomir NC transfection 

group had increased apoptosis and aggravated lung tissue 

injury, while miR-141 antagomir transfection mitigated 
cell injury and inhibited apoptosis. Consistent results 

were obtained from each cell experiment after 

transfection (Figure 2G–2J). As suggested by the above 

findings, miR-141 knockdown mitigated LIRI and 

inhibited autophagy in vitro and in vivo. 

 

miR-141 inhibited β-catenin level by the negative 

regulation of EGFR level 

 

As predicted by the TargetScan database, miR-141 

potentially targets and suppresses the EGFR level in mice. 

As a result, this study speculated that miR-141 targeted 

the EGFR level and suppressed β-catenin level in mice, 

and such speculation was further validated. According to 

RT-qPCR and WB results, the expression of β-catenin 

and EGFR decreased within LIRI cells and tissues relative 

to that within control cells and non-carcinoma tissues 

(Figure 3A, 3B). Moreover, analysis based on microarray 

suggested that there was a binding site in miR-141 for 

EGFR (Figure 3C). We conducted dual luciferase 

reporter gene assay to examine such targeting association 

of miR-141 with EGFR by using the mouse PMVECs 

(Figure 3D). As a result, the fluorescence intensity in 

PMVECs exposed to H/R and co-transfection with wt-

EGFR-3’UTR and miR-141 agomir was markedly 

reduced in comparison with that in cells exposed to H/R 

and agomir NC transfection, and that in cells exposed to 

H/R and co-transfected with mut-EGFR-3’UTR and 

miR-141 agomir was not significantly different. We 

further conducted RT-qPCR and WB assays to detect the 

role of miR-141 knockdown in β-catenin and EGFR 

expression in H/R cell model (Figure 3E). According to 

our findings, miR-141 showed negative regulation on β-

catenin and EGFR expression. Later, the cell line 

showing the highest silencing efficiency (si-EGFR-3) 

was screened to conduct later analyses (Figure 3F). Later, 

miR-141 antagomir + si-EGFR, miR-141 antagomir + si-

NC, or antagomir NC + si-NC were co-transfected into 

H/R-challenged PMVECs. The expression levels of miR-

141, β-catenin and EGFR were measured by RT-qPCR 

and WB assays (Figure 3G). As a result, miR-141 

antagomir increased β-catenin expression within H/R-

challenged PMVECs, while si-EGFR transfection 

abolished such effect. At last, associations of miR-141 

with EGFR level, miR-141 with β-catenin level, and 

EGFR with β-catenin level within lung tissues of 10 LIRI 

mice were examined through Pearson correlation analysis 

(Figure 3H). As a result, miR-141 level was inversely 

related to EGFR and β-catenin levels, whereas EGFR 

level was positively correlated with β-catenin level. As a 

result, miR-141 suppressed β-catenin level by targeting 

and inhibiting EGFR. 

 

The miR-141/EGFR/β-catenin axis enhanced 

autophagy and aggravated H/R-mediated injury of 

mouse PMVECs 

 

For investigating the function of miR-141/EGFR/β-

catenin axis in autophagy during the H/R-mediated 
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Figure 2. miR-141 inhibition suppresses autophagy and relieves lung I/R injury in vivo and in vitro. (A) RT-qPCR analysis for 

analyzing miR-141 levels within lung tissues of IRI mice. (B) Western blotting was used to detect the protein expression of LC3II/I and BECN1 
in mouse lung tissues. (C) Blood gas analyzer was used to detect the blood gas in arterial blood in left ventricle of mice. (D) The statistical 
graph of W/D ratio of lung tissues of mice. (E) HE staining results of lung tissues (× 400) and lung injury scores. (F) TUNEL staining (× 200) was 
used to detect the apoptosis of mouse lung cells. (G) RT-qPCR analysis for analyzing the miR-141 expression in mouse PMVECs. (H) Western 
blotting was used to detect the protein expression of LC3II/I and BECN1 in mouse PMVECs. (I) LC3 immunofluorescence assay was used to 
detect autophagosomes. (J) flow cytometry assay was used to detect the apoptosis of PMVECs. * p < 0.05 was considered statistically 
significant. The experiment was repeated three times independently. Results were expressed as the mean ± SD. 
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Figure 3. miR-141 represses EGFR to suppress expression of β-catenin. (A, B) RT-qPCR and Western blot assays were used to detect 

the expression of EGFR and β-catenin in lung tissues of mice and PMVECs with I/R injury. (C) the predicted binding sites between miR-141 and 
EGFR based on TargetScan database. (D) the dual luciferase reporter gene assay proved that validation of the binding relationship between 
miR-141 and EGFR. (E) RT-qPCR and Western blot assays were used to detect the expression of EGFR and β-catenin in response to silencing 
miR-141 in H/R cell model. (F) RT-qPCR assay was used to detect the silencing efficiency of si-EGFR-1/-2/-3 in H/R-exposed mouse PMVECs. 
(G) The expression of miR-141, EGFR and β-catenin in PMVECs by RT-qPCR and Western blot analysis. (H) Pearson correlation analysis of the 
correlation between miR-141 and EGFR, between miR-141 and β-catenin, as well as between EGFR and β-catenin. * p < 0.05 was considered 
statistically significant. The experiment was repeated three times independently. Results were expressed as the mean ± SD. 
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injury, we transfected PMVECs with or without miR-141 

antagomir + si-EGFR, miR-141 antagomir, or antagomir 

NC, and later treated cells under H/R conditions. Firstly, 

EGFR and miR-141 expression levels were determined 

through RT-qPCR assay (Figure 4A). As a result, relative 

to non-H/R-exposed PMVECs, miR-141 level was up-

regulated, whereas EGFR level was down-regulated in 

cells treated under H/R environment and in cells treated 

with H/R and antagomir NC simultaneously. Relative to 

mouse PMVECs subjected to H/R and antagomir NC 

treatment, miR-141 level decreased within mouse 

PMVECs subjected to H/R exposure combined with 

miR-141 antagomir+si-EGFR or miR-141 antagomir 

transfection, whereas EGFR level increased within 

mouse PMVECs exposed to H/R and miR-141 antagomir 

transfection. Relative to mouse PMVECs exposed to H/R 

and miR-141 antagomir transfection, EGFR level 

declined after transfection with miR-141 antagomir + si-

EGFR. According to WB assay (Figure 4B), LC3 

immunofluorescence analysis (Figure 4C) as well as flow 

cytometric analysis (Figure 4D), relative to non-H/R-

exposed mouse PMVECs, β-catenin and EGFR levels 

declined within cells subjected to H/R exposure and cells 

subjected to H/R exposure plus antagomir NC 

transfection, while BECN1 level, LC3II/LC3I, apoptosis 

rate and autophagosomes increased. Compared with 

PMVECs subjected to H/R exposure and antagomir NC 

transfection, β-catenin and EGFR levels increased in cells 

exposed to H/R and miR-141 antagomir transfection, 

whereas BECN1 level, LC3II/LC3I, apoptosis rate and 

autophagosomes decreased. But further si-EGFR 

exposure had contrary findings. As a result, the miR-

141/EGFR/β-catenin axis deteriorated injury to cells 

under H/R exposure through promoting autophagy. 

 

miR-141/EGFR/β-catenin axis promoted autophagy 

in vivo to deteriorate LIRI 

 

For investigating the role of miR-141/EGFR/β-catenin 

axis in autophagy during LIRI in vivo, we classified 

mice into sham operation group, miR-141 antagomir 

transfection group, antagomir NC transfection group, 

and miR-141 antagomir + si-EGFR transfection group; 

thereafter, all mice were treated under I/R environment. 

Firstly, EGFR and miR-141 levels within mouse lung 

tissues were measured through RT-qPCR (Figure 5A). 

As a result, relative to sham operation group, miR-141 

level elevated in I/R-challenged mice as well as in I/R-

challenged mice under antagomir NC transfection, 

whereas EGFR level reduced. Relative to I/R-

challenged mice under antagomir NC transfection, miR-

141 level decreased in I/R-challenged mice under miR-

141 antagomir transfection and those under miR-141 
antagomir + si-EGFR transfection, and EGFR level 

increased in I/R-challenged mice under miR-141 

antagomir transfection. Relative to I/R-challenged mice 

under miR-141 antagomir transfection, EGFR level 

reduced in I/R-challenged mice under miR-141 

antagomir+si-EGFR transfection. As shown by WB 

assay (Figure 5B), arterial blood gas analysis (Figure 

5C), W/D ratio measurement (Figure 5D), HE staining 

(Figure 5E) together with TUNEL staining (Figure 5F) 

results, relative to sham operation group, β-catenin and 

EGFR levels and PaO2/FiO2 ratio decreased, whereas 

LC3II/LC3I ratio, W/D ratio, BECN1 level, apoptosis 

and lung tissue injury increased in I/R-challenged mice 

and in I/R-challenged mice under antagomir NC 

transfection. Relative to I/R-challenged mice under 

antagomir NC transfection, β-catenin and EGFR levels, 

together with PaO2/FiO2 ratio elevated, but 

LC3II/LC3I ratio, W/D ratio, BECN1 level, apoptosis 

and lung tissue injury decreased in I/R-challenged mice 

under miR-141 antagomir transfection. Besides, miR-

141 antagomir combined with si-EGFR treatment led to 

contrary results compared with those obtained by miR-

141 antagomir treatment alone. In conclusion, miR-141 

targeted and suppressed EGFR level in LIRI tissues to 

suppress β-catenin level and suppressing β-catenin 

aggravated autophagy for aggravating LIRI in vivo. 

 

DISCUSSION 
 

Ischemia and reperfusion after ischemia often occur in a 

variety of clinical processes, such as major surgery and 

organ transplantation, which are usually accompanied 

with serious destructive consequences, resulting in 

tissue damage [16]. Undoubtedly, restoring the 

perfusion of ischemic tissue is necessary to maintain the 

physiological function of the tissue. However, 

reperfusion itself can also trigger a series of complex 

events, which is the so-called ischemia-reperfusion 

injury (IRI). Take lung transplantation as an example, in 

the process of lung transplantation, although complete 

and long-term hypoxia lasts for only several hours, it 

causes unimaginable but unavoidable consequences [1]. 

Severe IRI leads to primary graft dysfunction (PGD), 

which accounts for the main cause of high short-term 

and long-term morbidity and mortality rates after lung 

transplantation [17]. At present, no specific treatment is 

available for the prevention of IRI. To offer new 

therapeutic targets for treating LIRI, the present work 

examined the role of miR-141 in LIRI and its 

associations with β-catenin and EGFR. It is reported 

that I/R treatment induces the low expression of miR-

141 in H9C2 and PC12 cells [10, 11]. miR-141 

inhibitors significantly aggravate IRI by promoting cell 

apoptosis. There are many studies on the role of 

apoptosis in IRI. It is found that inhibition of apoptosis 

can reduce IRI [18–20]. Apoptosis is closely related to 
autophagy that plays dual roles (both positive and 

negative) in apoptosis [21]. For example, midazolam 

has been reported to induce autophagy of lung cancer 
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Figure 4. miR-141/EFGR/β-catenin axis gives rise to autophagy, contributing to the progression of H/R-induced injury  
in vitro. (A) miR-141 and EGFR expression in mouse PMVECs was measured by RT-qPCR. (B) EGFR, β-catenin, LC3II/I and BECN1 expression in 
mouse PMVECs were measured by Western blot analysis. (C) LC3 immunofluorescence assay (× 400) was used to detect autophagosomes of 
PMVECs. (D) the apoptosis rate of PMVECs was measured by flow cytometry assay. * p < 0.05 was considered statistically significant. The 
experiment was repeated three times independently. Results were expressed as the mean ± SD. 
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Figure 5. miR-141 inhibits EGFR to downregulate β-catenin, thereby enhancing autophagy to promote lung I/R injury in vivo. 
(A) RT-qPCR was used to detect the expression of miR-141 and EGFR in mouse lung tissues. (B) Western blotting was used to detect the 
protein expression of ERFG, β-catenin, LC3II/I and BECN1 in mouse lung tissues. (C) Blood gas analyzer was used to detect the blood gas in 
arterial blood in left ventricle of mice. (D) The statistical graph of W/D ratio of lung tissues of mice. (E) HE staining results of lung tissues  
(× 400) and lung injury scores. (F) TUNEL staining (× 200) was used to detect the apoptosis of mouse lung cells. * p < 0.05 was considered 
statistically significant. The experiment was repeated three times independently. Results were expressed as the mean ± SD. 
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A549 cells, and inhibition of autophagy mitigates the 

cytotoxicity of receptor tyrosine kinase inhibitors [22], 

indicating that autophagy has different functions in a 

variety of tissue cells. It should also be noted that, 

autophagy is a double-edged sword. A certain degree of 

autophagy represents the self-protective mechanism of 

cell self-renewal, which contributes to adapting to 

adverse environment and improving cell tolerance, but 

excessive autophagy will lead to cell death [23]. Studies 

have shown that I/R leads to excessive autophagy, 

which aggravates damage to the liver, kidney, heart, and 

lung [2, 7, 9, 10, 16, 18]. As suggested by our results, 

miR-141 showed low expression within lung tissues in 

the IRI mouse model. Moreover, findings in this study 

indicated that miR-141 knockdown within PMVECs 

inhibited autophagy and apoptosis, thus ameliorating 

LIRI, which was related to the up-regulation of EGFR 

and β-catenin expression.  

 

The change in cellular behavior is closely related to 

protein expression. LC3II/I ratio has been extensively 

used as a biomarker for autophagy, which indicates the 

autophagy of esophageal cancer cells. On the other 

hand, Beclin1 exerts an important part in the formation 

of autophagosomes and the fusion of autophagosomes 

with lysosomes. EGFR is a key factor that regulates  

cell proliferation [24], which participates in multiple 

signaling pathways and induces cell proliferation, 

differentiation and invasion. Some studies have shown 

that EGFR is significantly correlated with the 

autophagy activity of lung cancer cells [25]. The 

downregulation of EGFR inhibits β-catenin expression 

in the nucleus and promotes apoptosis; at the same time, 

the downregulation of β-catenin weakens the targeted 

activation of EGFR and accelerates apoptosis [26]. In 

the present study, down-regulation of miR-141 

decreased LC3II/I ratio and suppressed BECN1 

expression, thus leading to LIRI-induced autophagy. 

Meanwhile, the expression of both EGFR and β-catenin 

in PMVECs decreased by H/R treatment. Further,  

miR-141 targeted EGFR to inhibit the expression of  

β-catenin. Therefore, miR-141 was confirmed to have 

an important function in enhancing LIRI through 

specifically inhibiting EGFR by suppressing β-catenin. 

 

In addition, results from HE staining suggested interstitial 

and perivascular pulmonary edema, interalveolar 

bleeding, alveolar tubular “hyaline” changes, and 

neutrophil/macrophage/polymorphonuclear cell infiltration 

into alveolar cavity and pulmonary interstitium  

post-LIRI, and these were mitigated by inhibiting miR-

141 expression. LIRI was related to the severity of 

inflammation and neutrophil infiltration. Meanwhile, 
miR-141 has been suggested to exert a vital part in the 

regulation of immune cells during the inflammatory 

response via the HMGB1 gene and protein pathway [27]. 

In response to IL-36, miR-141-5p expression increased 

within HTR-8/SVneo and PTC cells [28]. Thus, our 

future studies will focus on the role of miR-141/EGFR/β-

catenin axis in inflammatory response caused by IRI. 

 

In conclusion, inhibition of miR-141 reduces the  

IRI-induced autophagy within lung tissues, which  

is achieved through suppressing EGFR to restrain  

β-catenin, thereby inhibiting LIRI occurrence. Such 

results help to further understand the LIRI mechanism 

and the role of miR-141 as a therapeutic target for the 

clinical LIRI treatments. 

 

MATERIALS AND METHODS 
 

Establishment of the LIRI mouse model 

 

Altogether 68 6-8-week-old C57BL/6J male mice 

weighing 20-26g were obtained and raised under the 

light/dark cycle of 12-h/12 h, and they were allowed to 

eat food freely. Later, all animals were classified as 

sham-operation (n = 10), ischemia alone (n = 10), and 

I/R (n = 48) groups. The 3% pentobarbital sodium was 

injected into mice intraperitoneally at a dose of 50 

mg/kg for anesthesia, followed by intubation with the 

20G needle through tracheotomy and connection to the 

rodent ventilator with controlled volume (Harvard 

Inspira ASV). Then, we opened the 3rd-4th lateral 

intercostal space in left thoracic cavity and mice were 

given intraperitoneal injection of heparin (100 U/kg, 

Qianhong, Changzhou, China). At 5 min later, we used 

a non-invasive microvascular clip to clamp the left 

pulmonary hilum for 1 h, then we removed the clip for 

2 h of reperfusion in mice. Mice in sham operation 

group (n = 10) received identical procedure except for 

pulmonary hilum clamping. After reperfusion for 1 h, 

we drew arterial blood from the left ventricle. 

Thereafter, excessive sodium pentobarbital (150 

mg/kg) was injected into mice intraperitoneally for 

euthanasia, followed by resection of the left lung. At 48 

h prior to modeling, mice in I/R modeling group (n = 

12) were administered with or without miR-141 

antagomir, miR-141 antagomir + siRNA targeting 

EGFR (si-EGFR, Shanghai GenePharma Co., Ltd., 

Shanghai, China) or antagomir negative control (NC) 

through the trachea. In brief, we diluted si-EGFR to 20 

μmol/L and then exposed mouse glottis directly under 

the animal laryngoscope. Later, we inserted the 

nebulizer into mouse trachea via the mouth to nebulize 

si-EGFR (100 μL) to mice. Thereafter, we conducted 

ischemia for 1 h and reperfusion for 2 h. As for mice in 

I/R + miR-141 antagomir + si-EGFR group, they were 

exposed to 2 h of miR-141 antagomir treatment, 
Followed by si-EGFR treatment. Later, we chose 10 

successful mouse models to conduct subsequent 

experiments. 
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Establishment of the in vitro cell model of hypoxic 

reoxygenation (H/R)  

 

Pulmonary microvascular endothelial cells (PMVECs) 

were obtained from Cell Biologics Inc. (Chicago, IL, 

USA), cultivated within the M-1168 medium (Cell 

Biologics), and incubated within the traditional 

incubator under 37° C and 5% CO2 conditions. During 

the culture process, we adjusted cell density based on 

the cell growth rate, and then we grew cells into the 6-

well plates. After reaching 80-90% confluency, 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) 

was utilized to transfect cells with miR-141 antagomir, 

agomir NC, miR-141 antagomir + si-NC, antagomir NC 

+ si-NC, or miR-141 antagomir + si-EGFR. Prior to 

transfection, Lipofectamine 2000 was blended with the 

transfectants, followed by dilution with medium and 5 

min of standing under ambient temperature. Afterwards, 

400 μL solution was added to every well and mixed 

sufficiently. At 6 h after cell transfection, we replaced 

the original medium by the freshly prepared medium 

and cultured the cells for another 24 h. Later, all cells 

were incubated within the hypoxic incubator that 

contained 5% CO2 and 95% N2 for a period of 12 h, 

followed by another 4 h of incubation within the 

traditional incubator for constructing the H/R cell 

models. Afterwards, we harvested cells to conduct 

further analysis. Each mouse was given humanistic 

treatment following the guidelines for the Care and Use 

of Laboratory Animals released by the National 

Institutes of Health (NIH). The Experimental Animal 

Ethics Committee approved our experimental protocols. 

Each experiment was conducted in strict accordance 

with specific guidelines for minimizing animal 

sufferings, discomfort and pain. 

 

Reverse transcription quantitative PCR (RT-qPCR) 

 

The RNeasy Mini Kit (Qiagen, Valencia, CA, USA) 

was utilized to isolate total RNA. Thereafter, the 

extracted mRNA was prepared to cDNA by adopting 

the RT kit (RR047A, Takara, Kusatsu, Shiga, Japan) 

through reverse transcription. Later, the miRNA First-

Strand cDNA Synthesis (Tailing Reaction) kit 

(B532451-0020, Shanghai Sangon Biotechnology Co., 

Ltd., Shanghai, China), which also offered the U6 

upstream primer (loading reference) and universal 

miRNA negative primer, was applied in synthesizing 

cDNA from miRNA. Afterwards, we utilized the 

SYBR® Premix Ex TaqTM II (Perfect Real Time) kit 

(DRR081, Takara) to load samples. The ABI 7500 

system (Applied Biosystems, Foster City, CA, USA) 

was employed for RT-qPCR analysis. Moreover, all the 
remaining primers were obtained from Shanghai 

Sangon Biotechnology Co., Ltd., and β-actin was  

used to be the loading reference. The 2-ΔΔCt approach 

was utilized to calculate relevant product levels. Table 1 

presents the sequences of each primer used in this study. 

 

Western blotting (WB) assay 

 

The radio-immunoprecipitation assay that contained the 

phenylmethylsulfonyl fluoride was conducted to isolate 

total cellular or tissue proteins. Thereafter, we 

determined the extracted protein content through the 

bicinchoninic acid (BCA) protein detection kit. After 

dissolving the proteins (50 μg) into the 2 × SDS loading 

buffer, we heated the mixture for 5 min under 100° C. 

Then, we separated the proteins by SDS-PAGE and 

transferred them onto the PVDF membranes. Later, 5% 

skim milk powder was used to block the membranes for 

1 h under ambient temperature, followed by incubation 

using primary antibodies (Abcam Inc., Cambridge, UK) 

under 4° C overnight, including β-catenin (1:2000), 

EGFR (1: 800), recombinant Human Beclin 1 (BECN1; 

1:2000), light chain 3B (LC3B) (1:1000), together with 

β-actin (ab8227, 1:1000). Thereafter, we further 

incubated the membranes using the HRP-conjugated 

goat anti-rabbit secondary IgG antibody (H&L 1:2000, 

Abcam) for additional 1 h. Subsequently, the enhanced 

chemiluminescence fluorescence detection kit 

(Ameshame, Little Chalfont, UK) was utilized to 

visualize each membrane. At the same time, we 

employed the Bio-Rad Imaging Analysis System (Bio-

Rad, Hercules, CA, USA) to obtain images, and 

adopted Quantity One v4.6.2 to analyze results. The 

gray value ratio of related protein band to β-actin 

(loading reference) was calculated as the relative 

protein level. 

 

Arterial blood gas analysis 

 

Upon the completion of reperfusion, we collected 

arterial blood (0.4 mL) from the left ventricle by using 

the heparinized empty needle (1 mL). Thereafter, the 

blood gas analyzer (Mindray, Shenzhen, China) was 

utilized to analyze PaO2/FiO2 at once. 

 

Ratio of wet weight to dry weight (W/D) 

 

The OHAUS-Precision electronic balance was used to 

weigh approximately 1/3 left lung tissues, which was 

denoted as the wet weight. Thereafter, we dried the 

tissues within an oven for 72 h under 60° C till the 

weight remained unchanged, which was denoted as the 

dry weight. Thereafter, we calculated W/D ratio to 

determine lung tissue edema. 

 

Hematoxylin-eosin (HE) staining 

 

The 4% formaldehyde was utilized to fix lung tissues 

for a period of 24 h, followed by paraffin embedding, 
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Table 1. The primer sequence of RT-qPCR. 

Gene Sequence (5’-3’) 

miR-141 
F: CGTGAGTCTAGAACTGCCACTT 

R: GCACATCTGCAAGACAGGCT 

EGFR 
F: AGTTTCCAGAGGGTCTCCAGCACTCC 

R: GACTGTTCTGTCGCAAGGCCAG 

β-catenin 
F: GGTGTGGGGTCATGGGTTG 

R: TCATGTACTATGGCTCTGTGGCT 

β-actin 
F: GTGAAGGAACCGACCCACCGG 

R: CTTTGACTGCTTTGAGCCC 

U6 
F: GCGAAGCACCGACGAGGACA 

R: GCAGGAAGCTAAGGTATGGA 

 

slicing and HE staining in succession. Thereafter, two 

investigators independently analyzed the histology 

under the microscope according to the scoring standard 

of lung injury. The scores given by them were later 

averaged to obtain the eventual score. To be specific, 

the score of 0 indicated no injury, while that of 4 stood 

for severe injury, which included bleeding, alveolar 

congestion, alveolar wall thickness, neutrophil counting, 

and interstitial edema. 

 

LC3 immunofluorescence examination 

 

After 4% paraformaldehyde fixation and 0.3% Triton X-

100 permeabilization, the bovine serum albumin (BSA) 

was used to block cells, and rabbit anti-LC3B antibody 

(ab51520, 1:2000, Abcam) was later used to incubate 

cells under 4° C overnight, followed by another 1 h of 

incubation by the Alexa Fluor 488-labeled donkey anti-

rabbit IgG secondary antibody (A21206, 1:500, Thermo 

Fisher Scientific, Waltham, MA, USA) under ambient 

temperature. Afterwards, we utilized the confocal laser 

microscope (Leica TCS SP5II STED, Mannheim, 

Germany) to observe cells. Altogether 200 or more cells 

were calculated from every section to determine the LC3 

spot cell (autophagosome) proportion. 

 

Terminal deoxynucleotidyl transferase-mediated 2’-

deoxyuridine 5’-triphosphate-biotin nick end-labeling 

(TUNEL) staining 

 

We conducted TUNEL staining in line with specific 

protocols (Merck Millipore, Billerica, MA, USA). 

Thereafter, investigators counted the TUNEL-positive 

cells, which had brown nuclei, by using the light 

microscope (Olympus, Tokyo, Japan) independently (5). 

 

Dual luciferase reporter gene assay 

 

In this study, Shanghai GenePharma Co., Ltd was 

responsible for designing and synthesizing the mutant 

(mut) and wild-type (wt) reporter plasmids (pGL3-mut-

EGFR-3’UTR and pGL3-wt-EGFR-3’UTR) for EGFR-

3’UTR. Then, mouse PMVECs were co-transfected 

with miR-141 agomir or Agomir NC and mut-EGFR-

3’UTR or wt-EGFR-3’UTR, separately. We lysed cells 

at 48 h after transfection. Later, the luciferase assay kit 

(K801-200, Biovision, Milpitas, CA, USA) was 

employed to measure luciferase activities through the 

dual luciferase reporter gene assay system (Promega, 

Madison, WI, USA) in line with specific protocols. 

Then, we determined the relative light unit (RLU) ratio 

of firefly luciferase to renilla luciferase to measure the 

target reporter gene activation level, and renilla 

luciferase was used to be the endogenous control. 

 

Flow cytometric analysis 

 

The Annexin V-fluoresceine isothiocyanate (FITC)/ 

propidiumiodide (PI) kit (KeyGEN Biotech., Co., Ltd., 

Nanjing, Jiangsu, 199 China) was utilized to measure cell 

apoptosis in accordance with specific instructions. Later, 

the flow cytometer (FACSCalibur, BD Biosciences, San 

Jose, CA, USA) was adopted for result analysis. 

 

Statistical analysis 

 

The SPSS21.0 (IBM Corp. Armonk, NY, USA) was 

employed for all statistical analyses. We presented 

measurement data in a form of mean ±SD. For normally 

distributed unpaired data with variance homogeneity, we 

analyzed them by unpaired t-test between both groups. 

In addition, ANOVA along with Tukey’s post-hoc tests 

were adopted to compare across several groups. Also, 

the repeated measures ANOVA was employed to 

statistically analyze time-based measurements inside 

every group, and multiple comparisons were completed 

using Bonferroni’s post-hoc test. The associations across 
miR-141, β-catenin and EGFR were determined by the 

Pearson correlation coefficient. A difference of p < 0.05 

suggested statistical significance. 
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