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ABSTRACT

POC1 centriolar protein A (POC1A) effect in pan-cancer remains uncertain. The POC1A expression in normal and
tumor tissues underwent analysis in this study utilizing data from the Genotype-Tissue Expression (GTEXx)
project and the Cancer Genome Atlas (TCGA) database. POC1A prognostic value and clinicopathological
features were assessed utilizing the TCGA cohort. The relationship between immunological cell infiltration and
POC1A of TCGA samples downloaded from TIMER2 and ImmucCellAl databases were observed. The relation
between POC1A and immunological checkpoints genes, microsatellite instability (MSI) as well as tumor
mutation burden (TMB) was also evaluated. Additionally, gene set enrichment analysis (GSEA) was utilized for
exploring POC1A potential molecular mechanism in pan-cancer. In almost all 33 tumors, POCA1 showed a high
expression. In most cases, high POC1A expression was linked significantly with a poor prognosis. Additionally,
Tumor immune infiltration and tumors microenvironment were correlated with the expression of POC1A. In
addition, TMB and MSI, as well as immune checkpoint genes in pan-cancer, were related to POC1A expression.
In GSEA analysis, POC1A is implicated in cell cycle and immune-related pathways. These results might elucidate
the crucial roles of POC1A in pan-cancer as a prognostic biomarker and immunotherapy target.

INTRODUCTION

Worldwide, cancer is one of leading mortality causes
[1]. Most cancers are diagnosed at a progressive stage,
so the cure rate is quite low. Tumor immunotherapy has
revolutionized the therapeutic effect of cancer, but the
treatment is only beneficial to a small number of cancer
patients [2]. According to current studies, tumor
microenvironment has a key role in tumor occurrence
and progression [3-5]. Tumor microenvironment is
fundamentally consisting of cancerous cells, immune
cells, various signal molecules, fibroblasts and
extracellular matrix, where immune cells are a critical
part [6]. Tumor cells secrete immunosuppressive
cytokines and reprogram immune cells in the tumor
microenvironment; as a result, tumor immune
microenvironment is inhibited, so as to escape immune
recognition and finally escape immune surveillance [7].

Tumor immunosuppressive microenvironment will not
only promote tumor progression, but also weaken
the effect of immunotherapy [8]. Hence, it is critical
to find innovative biomarkers for identifying tumor
immunosuppressive microenvironment to improve the
effectiveness of tumor immunotherapy.

As an important component of the centrosome, in
biological processes, POC1A (POCL1 centriolar protein
homolog A, also known as WDR51A, plays a critical
role for centrioles formation and steady-state [9].
Numerous studies confirmed the link between POC1A
and facial dysmorphism and hypotrichosis (SOFT)
syndrome, onychodysplasia, short stature, all of which
are associated with abnormal cell mitosis [10, 11].
POC1A may have a crucial role in cell proliferation,
based on these studies. Therefore, POC1A is considered
to be a cell cycle-regulating factor [12]. At the moment,
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some studies have explored the POCI1A’s role in
tumors. Wada et al. revealed that POC1A was a
biomarker for predicting the recurrence of intrahepatic
cholangiocarcinoma [13]. Dastsooz et al. suggested that
POC1A gene might be the new target for cancers
therapies [14]. Even so, POC1A’s role in pan-cancer is
still uncertain.

Using TCGA database, this is the initial study to
accomplish pan-cancer analysis of POC1A. The
relationship of POC1A expression with prognosis,
tumour immunity microenvironment, DNA methylation,
immune checkpoint gene, microsatellite instability
(MSI), drug sensitivity and tumour mutation burden
(TMB) was systematically observed to elucidate POC1A
clinical role and potential molecular mechanism in
pan-cancer.

MATERIALS AND METHODS
Analysis of gene expression

The tumor immune estimation resource version 2
(TIMER2) database (http://timer.cistrome.org) was
utilized for exploring the variations between POC1A
expression across different tumor tissues or tissue
subtypes as well as adjacent normal tissues acquired
from the TCGA project [15]. In the form of a box plot,
gene expression levels distributions were represented.
The Wilcoxon test was utilized for assessment of
statistical significance of differential expression. For
tumors without normal control, such as CESC, DLBC,
GBM, OV, PAAD, PCPG, SARC, UCS, THYM, LGG,
etc., Genotype-Tissue Expression (GTEX) and TCGA
databases were utilized to acquire POC1A expression
profile data of tumor tissues and matched normal
tissues. The R language was employed for analyses and
graphics. Subsequently, the tumor stage information of
the TCGA database has been utilized for exploring
the POC1A expression in various tumor stages.
UCSC Xena was utilized to download the TCGA and
GTEx expression profiles and clinical information
(https://xenabrowser.net/datapages/).

Gene alteration analysis

The cBioPortal database was utilized for downloading
mutation and copy number variation (CNV) data of
POC1A(https://www.chioportal.org/) [16].

Survival prognosis analysis

For exploring the POC1A expression effect on
pan-cancer prognosis, we utilized Kaplan-Meier and
Univariate Cox regression (UniCox). The optimal cutoff
value was utilized to differentiate the groups of POC1A

with low and high expression. Survival analyses
(overall, disease-specific, progression-free, and disease-
free) were assessed. The R packages “survminer” and
“survival” were utilized to analyse the data.

Immune infiltration analysis

The immunosuppressive microenvironment is one of
the reasons contributing to tumor patients’ poor
prognosis; therefore, the correlation between POC1A
and the immune microenvironment was further
explored. The TIMER2 and ImmuCellAl databases
were utilized for downloading data of immune cell
infiltration of TCGA (http://timer.comp-genomics.org/)
(http://bioinfo.life.hust.edu.cn/ImmuCellAl#!/) [17].
The correlation between POC1A and immune cell
infiltration was calculated. The R language “estimate”
package was utilized to calculate StromalScore,
ImmuneScore, and ESTIMATEScore (Sum of
StromalScore and ImmuneScore). The correlation
between POC1A expression and these scores was
evaluated.

Immune checkpoints genes analysis

Tumor immune regulation is tightly linked to immune
checkpoint-related genes. The association between
immune checkpoint gene expression and POCI1A
expression underwent analysis. Additionally, the
correlation of POC1A with immune regulatory genes
was explored.

TMB and MSI analysis

Tumor mutation burden (TMB) is linked to
immunotherapy effectiveness in various cancers. TMB
was computed for each tumor sample, and the relation
between TMB and POC1A expression was assessed
utilizing Spearman’s correlation. The relationship
between MSI and POC1A expression was also
analyzed.

Gene set enrichment analysis (GSEA) of POC1A in
pan-cancer

For POC1A expression profile assessment in pan-
cancer, the GSEA was utilized relying on the Reactome
database. The analysis was implemented in the R
package “clusterprofiler”. The top 20 results of each
tumor identified by GSEA analysis were displayed.

POCI1A correlation with drug sensitivity analysis in
pan-cancer

The Genomics of Drug Sensitivity in Cancer database
was utilized for downloading 192 medications IC50
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values as well as 809 cell lines’ gene expression profiles
(GDSC: https://www.cancerrxgene.org/). The analysis
of POC1A correlation with 192 medications IC50
values was done.

RESULTS
POCI1A is highly expressed in pan-cancer

POC1A expression in pan-cancer was observed through
TIMER2 webserver usage. As listed in Figure 1A,
POC1A expression levels were significantly elevated in
tumor tissues of BLCA, BRCA, HNSC, HNSC-HPV,
LUAD, CHOL, LUSC, PRAD, STAD, ESCA, THCA,
COAD, LIHC, UCEC (P<0.001), READ (P<0.01), and
KIRP (P<0.05) than adjacent normal tissues. POC1A
expression was assessed using TCGA and GTEx
data for tumors without normal control. POC1A
overexpression was detected in 27 of 33 types of cancer,
comprising ACC, BLCA, BRCA, CESC, CHOL,
COAD, DLBC, ESCA, GBM, HNSC, KICH, KIRP,
LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD,

READ, SARC, SKCM, STAD, THCA, THYM, UCEC,
and UCS. Even so, POCLA under-expression was
detected in three tumors, comprising LAML, PCPG,
and TGCT (Figure 1B). The correlation of POC1A
expression with pathological tumor staging in the
TCGA cohort was done, and it was raised as tumor
stages increased in ACC, BRCA, KICH, KIRC, LUAD,
LUSC, HNSC, PAAD and KIRP (Figure 2A-21).

POCI1A gene alteration in pan-cancer

Copy number alteration (CNA) and mutation influence
gene expression. Hence, we evaluated the POC1A
mutations and CNA. We observed the highest frequency
of POCI1A alterations (>7%) in patients with
undifferentiated stomach adenocarcinoma, where
“Mutation” was the major type (Figure 3A). POC1A
expression was negatively correlated with KIRP but
positively correlated with can in 23 of 33 tumors
(Figure 3B), suggesting that high CNA was among the
major reasons for high POC1A expression in pan-
cancer.
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Figure 1. Pan-cancer POC1A expression. (A) POClA expression analysis in pan-cancer through TIMER2 database utilization.
(B) Expression of POC1A in normal and tumor tissues from the GTEx and TCGA cohorts. ¥*P<0.05, ¥*P<0.01, ***P<0.001, ****P<0.0001.
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POCI1A high expression in pan-cancer is related to
poor prognosis

The UniCox and Kaplan-Meier survival analyses were
utilized for exploring POC1A prognostic value in pan-
cancer. POC1A low and high expressions were
differentiated using the optimal cut-off value.
According to Kaplan-Meier, worse overall survival was
related to elevated POC1A expression in ACC, BLCA,
CHOL, KICH, KIRC, KIRP, LAML, LGG, LIHC,
LUAD, MESO, PAAD, PCPG, PRAD, SARC, and
SKCM (Figure 4). POC1A was considered to be a risk
factor for OS, according to UniCox analysis in ACC,
DLBC, KICH, KIRC, KIRP, LGG, LIHC, LUAD,
MESO, PAAD, PCPG, PRAD, READ, SKCM, and
THYM (Figure 5A). POC1A prognostic value in pan-

cancer for DSS, DFI, and PFI was also analyzed, and
the results are illustrated in Figure 5B-5D. Based on
these findings, elevated POC1A expression in pan-
cancer was linked to a poor prognosis and might be a
potential prognostic biomarker.

POC1A  correlation in pan-cancer  with
microenvironment and tumor immune infiltration

The tumor-infiltrating lymphocytes amount is an
essential predictor of prognosis in cancer patients
and their responsiveness to immunotherapy. The
StromalScore, ImmuneScore, and ESTIMATEScore of
the tumor tissue were calculated using the R language
“estimate” package, and their correlation with POC1A
expression was evaluated. The findings revealed that
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Figure 2. POC1A expression at various stages of tumor. (A-1) Expression of POC1A at various stages of tumor in indicated tumors.

*P<0.05, **P<0.01, ***P<0.001, **** <0.0001.
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POC1A was shown to be negatively correlated with
StromalScore and ImmuneScore in most tumors and
positively correlated with tumor purity. (Figure 6A). By
exploring the correlation of POC1A expression with
immune cell infiltration utilizing ImmuCellAl database,
it was noticed that POC1A was positively associated
with nTreg cells in most tumors while negatively
correlated with immune Killer cells as CD4 and CD8 T
cells and activated natural Kkiller (NK) cells (Figure 6B).
Similarly, according to TIMER2 database results, a
negative correlation of POC1A with NK and CD8 T
cells was noted in most tumors (Figure 7).

POC1A expression is associated with immune
checkpoint genes

The important targets of immunotherapy are immune
checkpoints genes. Five immune checkpoint genes
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were recognized. In pan-cancer, POC1A relation
with immune checkpoint gene expression was
assessed. The findings showed a positive correlation of
POCL1A expression with immune checkpoints in
several tumors (Figure 8A-8I), suggesting that
immune cells are inhibited. The correlation of POC1A
with expression and immune regulatory genes was
further analyzed. The results showed that the POC1A
gene has a potential immunomodulatory effect in most
tumors (Figure 9A-9D).

POCI1A correlation with TMB and MSI in pan-cancer

Each tumor sample’s TMB was calculated, and
correlation was assessed between POC1A expression
and TMB. The results are illustrated in Figure 10A. The
expression levels of POC1A showed a significant
positive correlation with TMB in BLCA, BRCA,
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Figure 5. POC1A UniCox analysis. (A) POC1A overall survival (OS) analysis utilizing the UniCox in TCGA pan-cancer. (B) POC1A disease-
specific survival (DSS) analysis in TCGA pan-cancer utilizing the UniCox. (C) POC1A disease-free interval (DFI) analysis in TCGA pan-cancer
utilizing UniCox. (D) POC1A progression-free interval (PFI) analysis in TCGA pan-cancer utilizing UniCox. Red color indicates statistical
significance.

5201 AGING

WWWw.aging-us.com



COAD, GBM, KICH, LGG, LIHC, LUAD, LUSC,
PAAD, PRAD, SKCM, SARC, STAD, UCEC, UCS,
and UVM, and a negative correlation with TMB in
THYM. The correlation of POC1A expression with
MSI was assessed, and the results are illustrated in

A TumorPurity * R - -
ImmuneScore
ESTIMATEScore

StromalScore

v
HNSC - -
SARC| &

NILOOO0L a00>
G0gEp3esEEZRoES
Fexsa—~ " ExXgEa 5

DC =
Neutrophil . * e - - s

B_cell = e - B B
- - = -
CD8_naive . - i
[

Tem -
Monocyte -
By
iTreg
Macrophage
NKT
Tem
CD4_naive
InfiltrationScore
Te
Tgd
Th17
CD8_T
Th2
NK
Tfh
MAIT
CD4_T

LGG

CHOL

Figure 10B. Notably, POC1A expression levels had a
significant positive correlation with MSI in BLCA,
COAD, ESCA, HNSC, KIRC, LIHC, MESO, SARC,
STAD, and UCEC, and a significant negative
correlation with MSI in READ.
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Figure 6. Immune infiltration analysis according to the ImmucCellAl database. (A) Correlation of POC1A expression with immune cell
infiltration in LUAD. (B) Relation of POC1A expression with tumor purity, ImmuneScore, ESTIMATEscore and StromalScore. Red and blue
colors indicate positive and negative correlations, respectively; deeper color indicates a strong correlation *P<0.05, **P<0.01, ***P<0.001,

***%P<0.0001.
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associated with POC1A expression. Red and green colors indicate positive and negative correlation, respectively; deeper color indicates a

Figure 7. Immune infiltration analysis according to the TIMER2 database. In pan-cancer, immune cell infiltration levels are
strong correlation *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.



GSEA analysis of POC1A of each tumor identified by this analysis are shown
in Figure 11. POC1A was positively correlated with

Based on the Reactome database, genes correlating with immune-related and cell cycle-related pathways in
POC1A (P <0.05) were ranked and underwent GSEA various tumors, which is compatible with the previous
analysis in pan-cancer. The R package “clusterProfiler” conclusion that POC1A has an immune regulatory
was utilized to perform the analysis. The top 20 results function.
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Figure 8. Correlation of POC1A expression with immune checkpoint genes. (A-1) POC1A expression is positively correlated with
immune checkpoints in several tumors. Red and green lines indicate positive and negative correlations, respectively. Deeper color indicates a

strong correlation.
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Drug sensitivity analysis

POC1A1 correlation with 1Cso of 192 anticancer
medications was evaluated. It was discovered that
patients who express elevated POC1A expression
might be resistant to most anticancer medications
like vincristine, oxaliplatin, carmustine, etc. (Figure
12A-12D).

DISCUSSION
The centrosome is an organelle plays a key role in cell

division process and can regulate cell cycle process
[18]. Several studies have affirmed that centrosome
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amplification is existed in practically all cancer types
and has been correlated with tumorigenesis and
chromosomal instability (CIN) [19-21]. Thus, abnormal
centrosome regulation is a hallmark of cancer [22].
Lopes et al. studied Barrett’s esophagus patients
and found that before the cells began to transform
into cancer cells, they initially accumulated in the
centrosomes, and centrosome expansion promoted the
occurrence of esophageal cancer [23]. POC1A, an
essential component of the centrosome, is known to be a
cell cycle regulator. Lu et al. found that POC1A could
be a potential biomarker for gastric cancer with a poor
prognosis [24]. Even so, POC1A role in pan-cancer is
uncertain. Therefore, the present study systematically
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Figure 11. GSEA analysis of POC1A in pan-cancer. (A-D) GSEA detected the top twenty genes of indicated tumors (NES > 1.5, adjusted
P <0.05). Red implies immune regulation-related or cell cycle-related pathways.
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analyzed the relation of POCLA expression with
prognosis, tumor mutation burden (TMB), tumor
immunity microenvironment, immune checkpoint gene,
microsatellite instability (MSI) and drug sensitivity in
33 different tumors using the TCGA database.

The findings showed that POC1A was significantly
highly expressed in 27 of 33 cancer types, while
observed only in LAML, PCPG, and TGCT that
POC1A expression was reduced. It was also found that
the expression of POC1A elevated with the increase of
tumor stage in nine tumor types (Figure 2A-2l).
Furthermore, elevated expression of POC1A was
significantly related to poor overall survival, DFI, DSS
and PFI in various tumors. All of these findings imply
that POC1A is an important oncogene and a potential
biomarker for pan-cancer poor prognosis. Furthermore,
positive correlation of POC1A mRNA expression with
POC1A high CNA. Chromosome deletion of POC1A
was the most marked in gastric cancer, and
chromosome amplification was the most significant in
seminoma. These results suggest a low level of POC1A
mutation in pan-cancer and a high correlation between
CNV and POC1A expression.

Current studies have illustrated that one of the causes
for the poor prognosis in tumor patients is the
immunosuppressive microenvironment [25-28]. Thus,
we observed POC1A correlation with the immune
microenvironment in pan-cancer utilizing two different
immune cell infiltration data. It was noticed that
POC1A expression was negatively correlated with
ImmuneScore and StromalScore while positively
correlated with tumor purity in majority of tumors.
Besides, the infiltration levels of immune Killer cells,
including CD4 T and CD8 T cells and activated NK
cells, were inversely correlated with POCL1A expression
in pan-cancer. Even so, two different analytical
methods revealed a positive correlation between
immunosuppressive cells, including nTregs and iTregs,
and POC1A expression. POC1A correlation with the
immune checkpoint gene was further evaluated. The
findings revealed POC1A positive correlation with an
immune checkpoint in various tumors, suggesting that
immune cells were inhibited. Moreover, the correlation
of POC1A expression with immunomodulatory genes
was scrutinized, and the findings revealed that
POC1A had potential immunomodulatory effects in
most tumors (Figure 9A-9D). Collectively, these
findings imply that elevated POC1A expression is
related to immunosuppressive tumor microenvironment.
Expression of POC1A was also significantly positively
correlated with TMB and MSI in most tumors, implying
that patients with elevated POC1A expression might be
more susceptible to immunotherapy. Given POC1A’s
role and prognostic value in pan-cancer, the possible

biological function and associated signal pathway of
POC1A in pan-cancer were further predicted using
GSEA analysis. According to our GSEA results,
POC1A was positively correlated with cell cycle and
immune-related pathways in a variety of tumors. Taken
together, these findings imply that the POC1A gene
might have immunomodulatory functions and that
tumor patients with elevated POC1A expression might
be in an immunosuppressive condition.

In addition, the correlation of POC1AL expression with
the IC50 of 192 anticancer medications was carried out,
and patients with elevated POCLA expression are
resistant to most anticancer medications, including
vincristine, oxaliplatin, carmustine, introduces a novel
idea and direction for studying the mechanism of
chemoresistance.

CONCLUSIONS

This is the initial study which performed a more
comprehensive POC1A bioinformatics analysis in pan-
cancer. POCL1A is a potential prognostic biomarker
and therapeutic target in pan-cancer. Importantly,
immunosuppressive  tumor microenvironment and
immune checkpoint genes were noticed to be related to
elevated POC1A expression. We speculated that
POC1A might be a novel potential biomarker during
screening of immunotherapy sensitive patients.
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