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ABSTRACT 
 
Aims: Aging is accompanied by telomere shortening. Increased telomere shortening is considered a marker of 
premature aging. Cardiac aging results in the development of cardiac pathologies. Electrocardiogram (ECG) 
measures reflect cardiac excitation, conduction, and repolarization. ECG measures also prolong with aging and 
are associated with cardiac pathologies including atrial fibrillation. As premature prolongation of ECG measures 
is observed, we hypothesized that such prolongation may be associated with telomere length. 
Methods and Results: We studied the large, community-based KORA F4 Study. Of 3,080 participants enrolled 
between 2006 and 2007 with detailed information on demographic, anthropometric, clinical, and ECG 
characteristics, 2,575 presented with available data on leukocyte telomere length. Telomere length was 
determined by real-time quantitative PCR and expressed relative to a single copy gene. We fitted multivariable 
adjusted linear regression models to associate the ECG measures RR-interval, PR-interval, QRS-duration, and 
heart rate corrected QTc with telomere length. 
In our cohort, the mean age was 54.9±12.9 years and 46.6% were men. Increased age was associated with shorter 
telomere length (p<0.01), and men had shorter telomere length than women (p<0.05). In unadjusted models, 
heart rate (p=0.023), PR-interval (p<0.01), and QTc-interval (p<0.01) were significantly associated with shorter 
telomere length. However, no significant associations remained after accounting for age, sex, and covariates. 
Conclusions: ECG measures are age-dependent, but not associated with shortened telomere length as a marker 
of biological aging. Further research is warranted to clarify if shortened telomeres are associated with clinical 
cardiac pathologies including atrial fibrillation. 
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INTRODUCTION 
 
Electrocardiogram (ECG) recordings are widely used in 
clinical routine. Quantitative ECG measures thereby 
reflect cardiac excitation (RR-interval), atrial (PR-
interval) and ventricular (QRS-duration) conduction, 
and cardiac repolarization (heart rate corrected QTc). 
All mentioned ECG measures are age-dependent [1]. 
Some individuals present with altered ECG measures, 
for example with early-onset PR prolongation, before 
reaching an expected calendar age. It is unclear if such 
premature changes reflect underlying subclinical 
pathologies, or if these individuals are affected by a 
premature biological age, which does not correspond 
with their calendar age. 
 
Telomere length has gained scientific interest as a 
marker of biological aging [2]. Telomeres are tandem 
repeats of six nucleotides (TTAGGG) located at the  
end of each chromosome. Intact telomeres prevent 
spontaneous DNA damage and preserve genomic 
integrity. However, telomeres shorten during each 
mitotic cell cycle. As cellular lifetime progresses, 
telomere shortening leads to apoptosis [3, 4]. Men have 
shorter telomeres on average compared to women [5]. 
Furthermore, telomere shortening has been linked to 
numerous common conditions including obesity, 
smoking, hypertension, elevated plasma cholesterol 
levels, cancer, and cardiovascular diseases [6–13]. 
 
Here we used data from the large and well-characterized, 
community-based KORA Study to systematically test 
associations between ECG measures and telomere length. 
We hypothesized that shorter telomeres reflect advanced 
biological age and are associated with age-dependent 
changes in ECG measures. 
 
MATERIALS AND METHODS 
 
Study population 
 
The community-based KORA (Cooperative Health 
Research in the Region of Augsburg) Study has been 
conducted since 1984 in the population living in and 
around Augsburg, Germany [14]. From 1999 to 2001, 
4,261 individuals age 25-74 years of German nationality, 
randomly selected through the registration office, were 
enrolled into the KORA S4 survey. The KORA F4 
survey was performed as a seven-year follow-up of 
KORA S4, conducted between 2006 and 2007. Overall, 
3,080 individuals (79.6% of KORA S4) agreed to 
participate. Details have been reported elsewhere [15]. 
All participants provided written informed consent to 
participation in the study. The investigations were 
carried out in accordance with the Declaration of 
Helsinki. All study methods were approved by the ethics 

committee of the Bavarian Chamber of Physicians, 
Munich (S4: EC No. 99186 and for genetic 
epidemiological questions 05004, F4: EC No. 06068). 
 
Clinical covariates and electrocardiogram recording 
 
All participants received an assessment of demographic, 
anthropometric, and clinical characteristics through a 
standardized personal interview, a physical examination, 
and a self-administrated questionnaire. All participants 
further received a twelve-lead Electrocardiogram 
(Hörmann Bioset 9000) recorded under standardized 
conditions after 10 min rest in supine position. For the 
present study, ECGs were filtered for ECG-quality and 
analyzed using the automated Hannover ECG System 
(HES) as reported before [16, 17]. We excluded 
participants presenting with extreme PR values (≤80ms 
or ≥320ms), second or third degree atrioventricular 
block, atrial fibrillation, a history of myocardial 
infarction, Wolff-Parkinson-White syndrome, or in the 
presence of a pacemaker or implantable cardioverter 
defibrillator. We further excluded currently pregnant 
women (Figure 1). For the presented analyses we tested 
the four commonly used ECG parameters, RR-interval, 
PR-interval, QRS duration, and QTc corrected using 
Bazett’s formula. 
 
Measurement of telomere length 
 
Participants provided biosamples for laboratory 
assessment including genetic analyses upon enrollment 
into the community-based KORA study and at the same 
visit as all other measures and characteristics. In all 
those with available peripheral blood biospecimens, we 
determined telomere length as previously described in 
detail [18]. In brief, DNA was extracted from peripheral 
blood leucocytes and telomere length was determined 
using a quantitative PCR-based technique. By expressing 
telomere length as the T/S ratio of the telomere repeat 
copy number (T) to the single copy gene 36B4 (S), we 
standardized results irrespective of PCR cycles. For 
quality control, a standard DNA from a K562 cell line 
was used to assess variation across PCR plates, and 
duplicates were used to assess intra-sample variability. 
The coefficient of variation of telomere length was 
3.1%. 
 
Statistical analysis 
 
Discrete data are presented as absolute and relative 
frequencies. Continuous variables are shown as mean 
± standard deviation. Telomere length is used as a 
continuous variable and is considered normally 
distributed. Telomere length is compared by sex using 
the Welch two sample t-test. An unadjusted linear 
regression is fitted for telomere length and age. We 
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then fitted multivariable-adjusted linear regression 
models to associate the outcome of ECG measures 
with the predictor telomere length. We accounted for 
age, sex, height, and body-mass-index. We present 
sex-stratified results. All statistical analyses were 
performed using Rstudio (Version 1.2.1335, Boston, 
MA, USA). Significance was assumed for a two-sided 
p <0.05. 
 
RESULTS 
 
The study flow is visualized in Figure 1. Of 3,080 
participants enrolled in the KORA F4 study, 2,684 had 
complete availability of ECG and telomere length data. 
Of these, 109 individuals fulfilled any exclusion 
criteria. Hence, 2,575 individuals were included into the 
final analysis. Baseline characteristics of the study 
cohort and the distribution of their ECG measures are 
listed in Table 1. The cohort’s mean age was 54.9±12.9 
years and 53.4% were females. 
 
The mean telomere length, expressed as the T/S ratio 
relative to the single copy gene 36B4, was 1.86±0.33. 
As previously reported, men had significantly shorter 
telomeres compared to women (1.81 vs. 1.90, p<0.001). 
Also, telomeres were significantly shorter in older 
individuals. The age-dependent relation is depicted in 

Figure 2. Per year of age, the decrease was -0.0099 
relative T/S units (standard error 0.0005; p<0.001). This 
age-dependent relation was likewise observed when 
stratified by sex (data not presented). 
 
The associations between ECG measures and telomere 
length are summarized in Table 2. By unadjusted 
regression, we found a significant relation between 
telomere length and RR-interval (p=0.023), PR-interval 
(p<0.001), and QTc (p<0.001). Regarding the 
directionality of effects, a shorter telomere length 
associated with a shorter RR-interval, i.e., a higher heart 
rate, but inversely correlated with a longer PR-interval 
and a longer QTc, respectively. However, after 
accounting for age and other covariates, no significant 
association between ECG measures and telomere length 
remained. Also, sex-stratified, adjusted analyses 
revealed no significant associations (Table 2). 
 
DISCUSSION 
 
In the large, community-based KORA study, we 
associated commonly determined ECG measures with 
peripheral blood leukocyte telomere length as a marker 
of biological aging. Despite a known age-dependence of 
the ECG measures, we found no effect of telomere 
length beyond the influence of calendar age. 

 

 
 

Figure 1. Illustration of the cohort composition. 
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Table 1. Cohort characteristics. 

 n=2,575 
Demographics  
Age; years 54.9±12.9 
Male sex; n (%)  1,200 (46.6%) 
ECG measures  
RR-interval; ms 944±144 
PR-interval; ms 167±23 
QRS-duration; ms 92±9 
QTc-interval; ms  425±20 
Telomere assessment  
Relative telomere length 1.86±0.33 

Telomere length expressed relatively using a T/S ratio of 
measured telomere length (T) divided by the copy number of the 
single copy gene 36B4 (S). 

 

 
 

Figure 2. Scatterplot showing the relation of telomere length (y-axis) depending on age (x-axis). Red line indicates the linear 
regression line. 
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Table 2. Regression results. 

 
Model 1 Model 2 

Beta (SE) p Beta (SE) p 
RR-interval 3.1x10-5 (4.2x10-5) 0.46   
 Men   3.7x10-5 (5.8x10-5) 0.52 
 Women   2.0x10-5 (6.2x10-5) 0.75 
PR-interval 1.5x10-4 (2.7x10-4) 0.58   
 Men   -1.2x10-4 (3.7x10-4) 0.74 
 Women   4.6x10-4 (3.8x10-4) 0.23 
QRS-duration 7.3x10-4 (7.2x10-4) 0.31   
 Men   6.0x10-4 (1.0x10-3) 0.56 
 Women   7.8x10-4 (1.0x10-3) 0.43 
QTc-interval -8.6x10-3 (9.9x10-3) 0.38   
 Men   -6.2x10-3 (1.4x10-2) 0.66 
 Women   -9.6x10-3 (1.4x10-2) 0.49 

The table lists the beta coefficients (Beta) and standard errors (SE) of linear regression models for 
the ECG measures as outcomes and telomere length as predictor. Unadjusted models are 
described in the manuscript text only. Model 1 is adjusted for age, sex, height, and body-mass-
index. Model 2 presents sex-stratified results adjusted for age, height, and body-mass-index. 

 

The ECG measures in our study reflect the full cardiac 
cycle from excitation (RR) via atrial (PR) and ventricular 
(QRS) conduction to ventricular repolarization (QTc). 
All measures thereby can be influenced by external 
factors. Such external conditions exemplarily include 
heart failure and myocardial infarction, which may result 
in QRS-prolongation [19]. Various drugs can prolong 
both the PR-interval and QTc [20, 21]. Importantly, also 
advancing age is an external factor influencing these 
ECG measures [1]. Consequently, elderly individuals 
often require a pacemaker due to a symptomatic slowing 
of heart rate or a symptomatic atrio-ventricular 
conduction block [22]. 
 
Since aging per se is a non-avertible process, the question 
arises if a biological age differing from the person’s 
calendar age is a marker that can be approximated 
clinically. Telomere length is a well-established marker 
of biological age [2]. For various clinically relevant 
cardiovascular conditions, an association with telomere 
length beyond the effect of calendar age has been shown 
[2, 11]. 
 
With the results of our presented analysis, we confirm 
the prior notion that predominantly RR-interval, PR-
interval, and QTc are indeed age-related [23–26]. All 
three measures show a highly significant association 
with telomere length as a marker of age in general. 
However, after accounting for the effect of calendar 
age, no significant association with telomere length 
remained. We therefore conclude that biological age, as 
measured by telomere length, beyond the effect of 

calendar age is not a relevant contributor to changes in 
the investigated ECG measures in a community-based 
cohort. 
 
Whereas telomere length has been studied for the 
relation to various clinical conditions and markers [6–
10], only limited data exist regarding their role on ECG 
measures. The available prior data are conflicting. A 
small study in 273 Australian patients with or without 
diabetes mellitus described a weak correlation with 
QRS-duration depending on telomere length status [27]. 
Another study in 222 Japanese patients presenting with 
several predominantly chronic neurologic conditions 
investigated ECG measures in relation to semi-
quantitatively measured telomere length using Southern 
blot analysis. The authors report an association with 
ECG measures including PR-interval, QRS-duration, 
and QTc [28]. Importantly, both studies did not adjust 
for age. To the best of our knowledge, the only prior 
study that investigated ECG measures in relation to 
telomere length and did account for calendar age is a 
small investigation in 139 healthy Chinese patients. 
Telomere length was semi-quantitatively determined 
using restriction fragment length analysis and the 
authors did not find a correlation with ECG measures 
after age adjustment [29]. Given the limitations of the 
existing data, we present a most systematic analysis of 
ECG measures representing the full cardiac cycle. 
Further, we study a well characterized cohort that 
represents the German general population and is not 
restricted to a specific underlying disease phenotype. 
Most importantly, our analyzed cohort comprises 2,575 
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individuals. It is hence almost ten-fold larger than prior 
reports. This cohort size warrants sufficient statistical 
power to also detect weak association signals. We are 
thus confident that indeed no relevant effect of telomere 
length on ECG measures is missed due to a lack of 
power. 
 
Yet, some considerations are required when interpreting 
our findings: The KORA study enrolled participants of 
European descent. Since telomere length shares a 
heritable component [30], our results may not be fully 
generalizable. Also, we studied a community-based 
sample where possible pre-existing diseases and 
conditions have a low prevalence. It may thus be that 
our findings cannot be extrapolated to large cohorts of 
patients presenting with a specific underlying condition. 
We assessed telomere length in peripheral blood 
leucocytes, where results do not necessarily reflect fully 
the telomere length in cardiac tissue. Yet, prior data 
suggest a high correlation across tissues [31]. 
Furthermore, we were not able to investigate different 
leukocyte subtypes, which may be characterized by 
differential telomere length results that may hence have 
influenced the association with ECG measures. Most 
importantly, prolongation of the studied ECG measures 
can itself predispose to clinical conditions. Exemplarily, 
PR-interval prolongation is an established risk factor for 
atrial fibrillation (AF) [32]. Even though we did not find 
a relevant association between ECG measures and 
telomere length, it remains unresolved if telomere 
length is relevant for the pathophysiology of selected 
age-dependent conditions. At least for AF, a relation 
with telomere length has been suggested, but the results 
remain conflicting [33–35]. 
 
In conclusion, ECG measures are clearly age-
dependent. However, in a large, well-characterized, and 
sufficiently powered cohort we were not able to 
substantiate the hypothesis that telomere length as a 
marker of biological age is a relevant contributor to this 
age-dependent prolongation of ECG measures. It 
remains to be resolved if telomere length is involved in 
the pathophysiology of cardiac diseases like AF that are 
correlated with a prolongation of ECG measures. 
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