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INTRODUCTION 
 

Arising in the adenohypophysis, pituitary adenomas 

(PAs) are the second most common primary intracranial 

neoplasms and account for nearly 25% of central 

nervous system tumors in adults [1]. Although the 

majority of PAs are benign, 40% of PAs exhibit 

aggressive behaviors such as locoregional invasiveness, 

rapid growth, and a high tendency to recur, which 
represented a poor patient prognosis [2, 3]. At present, 

chemotherapy and surgical resection are major 

modalities for PA treatment [4]. However, aggressive 

PAs can develop resistance to these treatment 

modalities. It is reported that the rate of recurrence of 

PAs after resection is high with about 7~58% [5, 6]. 

Besides, the therapeutic effects of chemotherapy are not 

satisfactory, due to the strong cytotoxic effects of 

common anti-tumor drugs [7, 8]. Therefore, deep 

exploration of the pathogenesis of tumor invasion is 

desperately needed to identify new molecular targets 

and drugs for aggressive PAs. 
 

Programmed cell death 10 (PDCD10), also termed 

“cerebral cavernous malformations 3” (CCM3) or “TF-1 
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ABSTRACT 
 

As the second most common primary intracranial neoplasms, about 40% of pituitary adenomas (PAs) exhibit 
aggressive behaviors and resulting in poor patient prognosis. The molecular mechanisms underlying the 
aggressive behaviors of PAs are not yet fully understood. Biochemical studies have reported that programmed 
cell death 10 (PDCD10) is a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex 
and plays a dual role in cancers in a tissue- or disease-specific manner. In the present study, we report for the 
first time that the role of PDCD10 in PAs. Cell proliferation, migration and invasion were either enhanced by 
overexpressing or inhibited by silencing PDCD10 in PA cells. Moreover, PDCD10 significantly promoted 
epithelial–mesenchymal transition (EMT) of pituitary adenoma cells. Mechanistically, we showed that the 
expression of CXCR2, together with phosphorylation levels of AKT and ERK1/2 were regulated by PDCD10. 
Activation of CXCR2 inversed inactivation of AKT/ERK signal pathways and the tumor-suppressive effects 
induced by PDCD10 silencing. Finally, the pro-oncogenic effect of PDCD10 was confirmed by in vivo tumor 
grafting. Taken together, we demonstrate for the first time that PDCD10 can induce aggressive behaviors of PAs 
by promoting cellular proliferation, migration, invasion and EMT through CXCR2-AKT/ERK signaling axis. 
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cell apoptosis-related gene 15” (TFAR15), is widely 

expressed in various types of human cells [9]. 

Originally, PDCD10 was described as an apoptosis-

related factor that is up-regulated upon apoptotic stimuli 

and inhibits natural cell death of HEK293 cells and 

fibroblast cells [10, 11]. Besides, PDCD10 was found to 

participate in the formation of a STRIPAK complex and 

regulates a wide variety of cellular processes [12]. For 

example, PDCD10 can recruit germinal centre kinase III 

(GCKIII) kinase to striatins (STRNs) to regulate cell 

proliferation and migration [13, 14]. As one of the CCM 

proteins family, PDCD10 also plays a critical role in 

angiogenesis in the central nervous system. Similar to 

CCM1 and CCM2, mutations in the PDCD10 gene were 

responsible for cerebral cavernous malformations which 

are characterized by aberrant angiogenesis in the brain 

[15, 16]. In recent years, the function of PDCD10 in 

tumors has been increasingly emphasized. Several 

studies reported that expression of PDCD10 was altered 

and associated with tumor progression in various types 

of cancers including ovarian cancer, breast cancer, 

hepatocellular carcinoma, and non-small cell lung 

cancer, while a study on glioblastoma indicated a dual 

role and disease-specificity of the function of PDCD10 

[17–21]. Given these multiple functions in tumors, 

PCDC10 could be involved in PA pathology. However, 

the function of PDCD10 in PAs has not yet been 

described. A dataset from the GEO database shows that 

the expression level of PDCD10 was increased in PAs 

tissues compared with normal counterparts (Figure 1A), 

which suggests a pro-oncogenic effect of PDCD10 in 

PAs. 

 

As a G-protein-coupled receptor, CXC motif chemokine 

receptor 2(CXCR2) is predominantly expressed on the 

surface of inflammatory cells including neutrophils, 

oligodendrocytes, mast cells, eosinophils, and monocytes 

[22]. However, CXCR2 has also been found on epithelial 

cells, endothelial cells, some neuroendocrine cells (e.g., 

pituitary), and various tumor cells [23, 24]. We 

previously showed that PDCD10 promotes tumor 

progression in vivo by enhancing CXCL2-CXCR2 

signaling in glioblastoma [25]. In this study, we 

systematically explored the functional role of PDCD10 in 

PAs and demonstrated that PDCD10 could regulate 

activation of AKT/ERK signaling pathways by altering 

the protein expression level of CXCR2 to modulate 

cellular proliferation, migration, invasion and EMT in 

PAs. 

 

MATERIALS AND METHODS 
 

Human pituitary adenoma samples 

 

From July 2017 to October 2018, 15 invasive and 15 

noninvasive PA samples were collected from patients 

who underwent surgery at the Department of 

Neurosurgery, Tongji Hospital affiliated with Tongji 

Medical College, Huazhong University of Science and 

Technology. Knosp grading scheme and intraoperative 

findings were employed to determine the invasiveness 

of the tumor [26]. The clinical characteristics of the 

patients were summarized in Table 1. The median age 

of patients at surgery was 43.5 years (range 23-68 

years). Thirteen were male (43.3%), and 17 were 

female (56.7%) with a male to female ratio of 1:1.31. 

Tumor samples were used for immunohistochemical 

(IHC) staining, protein, and RNA extraction. The 

positive cell rate was quantified using ImageJ software 

(NIH). 

 

Cell culture and transfection 

 

Att-20 cell line was established from mouse ACTH-

secreting pituitary tumors by Buonassisi et al. [27], and 

TtT/GF is a murine folliculo-stellate-like cell line 

deriving from a thyrotrophic pituitary tumor [28]. The 

two mouse PA cell lines were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM, Gibco, Carlsbad, 

USA) containing 10% fetal bovine serum (FBS, Gibco) 

and 1% Penicillin/Streptomycin and were placed in a 

thermostatic incubator at 37° C with 5% CO2. 

Recombinant mouse CXCL2 protein (R&D System) 

was added into the culture medium to study the 

signaling pathways in a subset of experiments as 

indicated. 

 

Lentiviral shRNA vector for mouse PDCD10 (LV-

PDCD10 71721) and control vector (Scramble shRNA, 

LVCON054) were purchased from GenePharma, 

Shanghai, China. Cells were seeded into 6-well plates 

to achieve 20-30% confluence before infection. And 

then 1 ml of serum-free medium containing lentivirus 

(1×109 TU/ml) was added to each well. After 72h, a 

culture medium containing 1 mg/ml puromycin was 

used for 3 weeks to select PA cells with stable 

knockdown of PDCD10. CDS-sequence of mouse 

PDCD10 was inserted into pcDNA-3.1 plasmids to 

gain PDCD10-overexpression vectors. Cells were 

transiently transfected with the pc3.1-PDCD10 

plasmids and control plasmids (pc3.1) by using 

lipo3000 (Invitrogen) according to the manufacturer’s 

instructions. The knockdown or overexpression of 

PDCD10 was confirmed by RT2-PCR and western 

blotting. 

 

Protein extraction and Western blotting 

 

The protocols of cell protein extraction and western 
blotting were performed as previously [29]. Antibodies 

to PDCD10, E-cadherin, N-cadherin and Vimentin 

(VIM) were purchased from Proteintech Group. 
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Antibody to GAPDH was purchased from Servicebio. 

Primary antibodies to CXCR2 and ki-67, and secondary 

antibodies for western blotting were purchased  

from Abcam. Antibodies to ERK1/2, p-ERK1/2 

(phosphorylation site Thr202/Tyr204), STAT3, p-

STAT3 (phosphorylation site Tyr705), AKT, and p-

AKT (phosphorylation site Ser473) were obtained from 

Cell Signaling Technology, Inc. 

 

 
 

Figure 1. Expression of PDCD10 in human pituitary adenomas. (A) A dataset (GSE26966) was obtained from the GEO database to 

compare the mRNA expression level of PDCD10 between PA tumor tissues (N=14) and normal pituitary tissue (N=9). (B) Relative mRNA 
expression levels of PDCD10 by RT-qPCR in invasive (n=15) and non-invasive (n=15) pituitary adenomas. Non-invasive values were set to 1.  
(C) Representative Western blots showed the expression level of PCDC10 protein (25 kDa) in invasive and noninvasive pituitary adenomas. 
Band intensities were quantified and normalized to GAPDH. (D) Representative images of immunohistochemistry evaluated the expression of 
PDCD10 in invasive and non-invasive (n=15) pituitary adenomas. **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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Table 1. The clinical characteristics of the patients. 

 Invasive PA Noninvasive PA 

Age   

Mean 41.7 44.3 

Range 23-68 28-65 

Gender   

Male 8 6 

Female 7 9 

Knosp Grade   

I 0 7 

II 0 8 

III 5 0 

IV 10 0 

 

Cell proliferation, migration, and invasion assay 

 

4.0×103 cells were seeded into 96-well-plate in 

quintuplicate. After 72 hours of incubation, the 

absorbance was measured at 450 nm by adding a CCK8 

reagent (Boster Biological Technology) to detect cell 

proliferation. Cell migration was evaluated by scratch 

assays as described previously [25]. After 16 hours of 

incubation, the migrated area was photographed and 

calculated by ImageJ software. For invasion assay, 8 

mm pore transwell inserts (Corning Life Sciences) were 

coated with 75μl Matrigel matrix (Corning, 200 μg/mL) 

as upper chambers. 700μl DMEM medium with 20% 

FBS was added into the 24-well-plate. Meanwhile, 

5.0×104 cells were suspended in a serum-free medium 

and were added to the inserts which were placed in a 

24-well-plate. After 48h, the cells were fixed with 10% 

formalin and stained with 0.1% crystal violet solution. 

The numbers of invaded cells were counted at 200x 

magnification. 

 

Xenograft experiments 

 

Nude mice (blab/c-nu; SJA Laboratory Animal Co. Ltd, 

Hunan, China) were subcutaneously injected with 5 × 106 

cells to establish the Att-20 and TtT/GF cell xenograft 

model. Tumor growth was monitored regularly and 20 

days after injection, tumor sizes and weights were 

measured. For IHC staining, tumor samples were 

paraffin-embedded following 4% paraformaldehyde 

fixation. The IHC results were analyzed by ImageJ. For 

western blotting, the total protein of the tumor samples 

was extracted. 
 

Statistical analysis 

 

Statistical software GraphPad Prism Ver.8.0 was 

employed for performing Statistical analysis and 

graphing. The student’s t-test and ANOVA were 

appropriately used for statistical analyses. Statistical 

significance was established as p<0.05. 

 

RESULTS 
 

Expression of PDCD10 in human pituitary 

adenomas 
 

A dataset (GSE26966) from the GEO database shows 

that the mRNA expression level of PDCD10 was 

increased in PAs tissues compared with normal 

counterparts (Figure 1A). Furthermore, the expression 

of PDCD10 was examined between non-invasive and 

invasive PA tumor samples which were collected from 

the Neurosurgery department at Tongji Hospital. In 

contrast to non-invasive PAs, the mRNA and protein 

expression levels of PDCD10 were significantly 

upregulated in invasive PAs on the mRNA (Figure 1B), 

protein level (Figure 1C), and following IHC staining 

with anti-PDCD10 (Figure 1D). 

 

PDCD10 silencing suppresses the proliferation, 

migration, invasion and EMT of PA cells 

 

To explore the functional role of PDCD10 in PAs, we 

first examined the impact of PDCD10 silencing on cell 

proliferation, migration, and invasion in PA cell lines. 

As shown in Figure 2A, 2B, western blotting confirmed 

the knockdown efficiency of PDCD10-shRNA 

lentivirus. Besides, PDCD10 silencing significantly 

increased the epithelial marker expression (E-cadherin) 

but reduced the mesenchymal marker expression (N-

cadherin and VIM), demonstrating a significant 

inhibition of EMT process in PA cells (Figure 2A, 2B). 

The results of the CCK-8 assay showed significant 

suppression of cell proliferation after PDCD10 

silencing in Att-20 and TtT/GF cells (Figure 2C, 2D). 
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Figure 2. PDCD10 silencing suppresses the proliferation, migration, invasion and EMT of PA cells. (A) Western blotting was 
performed to detect the impact of PDCD10 silencing on the expression of EMT markers in Att-20 cells and TtT/GF cells. (B) Band intensities 
were quantified and normalized to GAPDH. (C, D) CCK-8 assay was used to assess cell proliferation capacity after PDCD10 silencing in Att-20 
and TtT/GF cells. (E, F) Scratch assay was used to examine the relative migration rates of Att-20 and TtT/GF cells (magnification:100x).  
(G, H) Transwell invasion assay was used to analyze the invasion potential of Att-20 and TtT/GF cells (magnification: 200x). * P < 0.05. 
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According to the scratch assay, the relative migration 

rate of Att-20 and TtT/GF cells in the PDCD10-shRNA 

group was 35.2±4.3% and 45.7±6.4%, respectively 

(Figure 2E, 2F). In addition, transwell invasion assays 

revealed that PDCD10 silencing reduced numbers of 

invaded cells in Att-20 (65.2±11.6%) and TtT/GF 

(60.3±8.5%) cells (Figure 2G, 2H). 

 

Overexpression of PDCD10 promotes the 

proliferation, migration, invasion and EMT of PA 

cells 

 

We further sought to verify the effect of PDCD10 in a 

gain-of-function setting, PDCD10-overexpressing PA 

cell lines were generated by transfection of pcDNA 3.1 

plasmids containing the full-length coding sequence  

of murine PDCD10. The transfection efficiency  

was confirmed by western blotting (Figure 3A, 3B). 

Overexpression of PDCD10 reduced E-cadherin 

expression but increased the expression of N-cadherin 

and VIM, indicating a remarkable promotion of EMT 

process in PA cells (Figure 3A, 3B). Besides, up-

regulation of PDCD10 remarkably promoted the 

capacities of proliferation (Figure 3C, 3D). The relative 

migration rate of Att-20 and TtT/GF cells in PDCD10 

overexpression group was 168.7±7.4% and 

163.8±6.3%, respectively (Figure 3E, 3F). 

Overexpression of PDCD10 increased numbers of 

invaded cells in Att-20 (56.2±13.2%) and TtT/GF 

(79.5±15.8%) cells (Figure 3G, 3H). Altogether, these 

results suggest that PDCD10 exerts a pro-oncogenic 

effect in PA cells. 

 

PDCD10 alters the protein expression level of 

CXCR2 and regulates the activation of downstream 

AKT/ERK signal pathways 

 

According to our previous study, CXCL2-CXCR2 

signaling mediated by PDCD10 participates in the 

crosstalk between glioblastoma cells and microglia/ 

macrophages and promotes tumor growth [25]. 

Therefore, we analyzed expression levels of CXCR2 in 

PDCD10-silencing and PDCD10-overexpressing PA 

cells. Figure 4 revealed that PDCD10 silencing reduced 

the protein expression levels of CXCR2, while CXCR2 

expression was elevated in the PDCD10-overexpression 

group of Att-20 and TtT/GF cells. Meanwhile, the 

activation state of downstream signaling pathways 

including AKT, ERK, and STAT3 was examined to 

further explore the underlying mechanism of PDCD10. 

As shown in Figure 4, PDCD10 silencing significantly 

inhibited phosphorylation of AKT and ERK1/2 but  

not STAT3 in Att-20 and TtT/GF cells. In addition, 
compared with the control group, simultaneous activation 

of AKT and ERK1/2 was observed in PDCD10-

overexpression Att-20 and TtT/GF cells. 

Activation of CXCR2 rescues the inactivation of 

AKT/ERK signaling and the tumor-suppressive 

effects induced by PDCD10 silencing 

 

Based on the above results, we presumed that CXCR2 

may participate in the regulation of PDCD10 in the 

aggressive behavior of PA cells. To verify the 

hypothesis, PDCD10-silencing cells were treated with 

recombinant mouse CXCL2 protein to induce the 

activation of CXCR2, followed by analyses of cellular 

proliferation, migration, and invasion. 

 

After treatment with CXCL2, the phosphorylation 

levels of AKT and ERK1/2 were significantly increased 

(Figure 5A, 5B). Moreover, the inhibition of cellular 

proliferation induced by PDCD10 silencing was 

reverted via activation of CXCR2 by CXCL2 

administration in Att-20 and TtT/GF cells (Figure 5C, 

5D). CXCL2 treatment in PDCD10-silencing group 

also increased migration area (87.8±8.2% and 

147.4±13.6%, respectively) and numbers of invaded 

cells (79.2±15.8% and 110±13.7%, respectively) in PA 

cell lines (Figure 5E–5H). These results suggest that 

PCDC10 and CXCL2 are part of the same signal 

cascade. 

 

PDCD10 silencing impairs the tumorigenesis and 

reduces CXCR2 expression of PA cells in vivo 
 

Finally, in vivo experiments were implemented to verify 

the effect of PDCD10 on tumorigenesis in PAs by 

establishing Att-20 and TtT/GF cell xenograft nude 

mice model with stable PDCD10-silencing. Consistent 

with the results from the in vitro experiments, PDCD10 

silencing significantly reduced the tumor sizes and 

weights of xenograft tumors (Att-20 cell line: 

0.94±0.07g vs. 0.38±0.06g, and TtT/GF cell 

line:1.04±0.11g vs. 0.34g±0.12g) (Figures 6A, 5B). 

Besides, the Ki-67 staining, a proliferation indicator, 

was also decreased in PDCD10-silencing tumor 

samples according to IHC results (Figure 6C–6F). IHC 

staining and western blotting also further confirmed that 

PDCD10 silencing decreased CXCR2 expression level 

in vivo (Figure 6C–6H). These data confirm that 

PDCD10 promotes tumor growth by regulating the 

expression of CXCR2 in PAs. 

 

DISCUSSION 
 

As the second most common type of primary CNS 

tumors, high recurrence rates, and increased mortality 

as a consequence of aggressive PAs remain a great 

clinical challenge. The strong abilities of proliferation 
and infiltration/invasion of tumor cells result in large 

tumor size and severe destruction of adjacent normal 

structures, which is the major cause for incomplete 
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Figure 3. Overexpression of PDCD10 promotes the proliferation, migration, invasion and EMT of PA cells. (A, B) Western 

blotting was performed to detect the impact of PDCD10 overexpression on the expression levels of EMT markers in Att-20 cells and TtT/GF 
cells. Band intensities were quantified and normalized to GAPDH. (C, D) CCK-8 assay was used to assess cell proliferation potential after 
PDCD10 overexpression in Att-20 and TtT/GF cells. (E, F) Scratch assay was employed to examine the relative migration rates of Att-20 and 
TtT/GF cells after PDCD10 overexpression (magnification:100x). (G, H) Transwell invasion assay was used to detect the invasion potential of 
Att-20 and TtT/GF cells after PDCD10 overexpression (magnification: 200x). * P < 0.05. 
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removal of PAs and relapse [30]. However, the molecular 

and cellular mechanisms underlying the aggressive 

behaviors of PA cells need to be elucidated. 

 

PDCD10 is an evolutionarily conserved protein and is 

widely distributed in a variety of tissues. According to a 

dataset from the GEO database, the expression levels of 

PDCD10 are increased in PA tissues compared to 

normal pituitaries (Figure 1A), suggesting that PDCD10 

may exert a pro-tumorigenic effect in PAs. 

Using loss-of-function as well as gain-of-function 

approaches, we demonstrate the pro-oncogenic effect of 

PDCD10 in Att-20 and TtT/GF cells: when expressed at 

high levels, PDCD10 enhanced the abilities of cellular 

proliferation, migration, invasion and epithelial to 

mesenchymal transition (EMT) in PAs. Some studies 

have indicated that PDCD10 plays an essential role in 

cell survival and migration. For example, Fidalgo et al. 

found PDCD10 can protect cells exposed to reactive 

oxygen species from death by mediating phosphorylation 

 

 
 

Figure 4. PDCD10 alters the protein expression level of CXCR2 and regulates the activation of downstream AKT/ERK signal 
pathways. (A, B) Western blotting was used to detect the expression level of CXCR2 and phosphorylation level of AKT, ERK1/2 and STAT3 in 
Att-20 cells after PDCD10 silencing or overexpression. Band intensities were quantified and normalized to GAPDH. * P < 0.05. (C, D) In TtT/GF 
cells, western blotting was performed to examine the expression level of CXCR2 and phosphorylation level of AKT, ERK1/2 and STAT3 after 
PDCD10 silencing or overexpression. Band intensities were quantified and normalized to GAPDH. * P < 0.05. 
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Figure 5. Activation of CXCR2 rescues the inactivation of AKT/ERK signaling and the tumor-suppressive effects induced by 
PDCD10 silencing. (A, B) Western blotting was performed to examine the phosphorylation levels of AKT and ERK1/2 after recombinant 

CXCL2 administration (200ng/ml) in Att-20 and TtT/GF cells with PDCD10 silencing. (C, D) CCK-8 assay was used to evaluate cell proliferation 
potential after CXCL2 administration in Att-20 and TtT/GF cells with PDCD10 silencing. (E, F) Relative migration rate of ATT-20 and TtT/GF cells 
with PDCD10 silencing was analyzed by scratch assay after CXCL2 administration (magnification: 100x). (G, H) Transwell invasion assay was 
employed to assess the invasion capacity of Att-20 and TtT/GF cells with PDCD10 silencing after CXCL2 administration (magnification: 200x).  
* P < 0.05. 
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Figure 6. PDCD10 silencing impairs the tumorigenesis and reduces CXCR2 expression of PA cells in vivo. (A, B) Images for Att-20 

and TtT/GF xenografts from nude mice (Left). Statistical analysis of xenograft tumor weights (Right). (C, D) Representative IHC images of Att-
20 and TtT/GF xenograft tumor tissues for PDCD10, CXCR2 and Ki-67 staining (200x). Scale bars: 100μm. (E, F) Intensity of PDCD10, CXCR2 
and Ki-67 staining were analyzed by IHC-Profiler. (G, H) Western blotting was performed to examine the expression of CXCR2 in Att-20 and 
TtT/GF xenograft tumor samples. Band intensities were quantified and normalized to GAPDH. * P < 0.05. 
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of the Ezrin/Radixin/Moesin proteins [31]. Proteomic 

analysis identified some proteins which regulate the cell 

cycle as interactors of PDCD10 [16, 32]. Under 

physiological conditions, PDCD10 is indispensable for 

neuronal migration during development [33]. In recent 

years, accumulating evidence has shown that 

dysregulation of PDCD10 was closely related to 

tumorigenesis and progression in diverse tumor types. 

Initially, PDCD10 was found to be associated with 

protein phosphatase-2A, a regulator of mitogenesis, and 

to enhance proliferation in malignant T cells [34]. Sun et 

al. reported that PDCD10 promotes the progression of 

hepatocellular carcinoma by interacting with PP2Ac to 

increase activation of YAP [21]. In ovarian cancer cells, 

PDCD10 upregulates Wnt/β-catenin signaling thereby 

augmenting migration of tumor cells [17]. Genome-wide 

analysis also showed that increased copy number and 

high expression level of PDCD10 are associated with 

tumor grade, nodal involvement and advanced FIGO 

stage in ovarian cancer [35]. In breast cancer, 

overexpression of PDCD10 induced the inactivation of 

the ROCK/Rho signal pathway to suppress cell adhesion 

and promote cell migration and invasion [20]. PDCD10 

also participates in regulation of stemness of breast 

cancer cell [36]. Besides, PDCD10 was identified as the 

target of CircSMARCA5-miR-432 axis, and was found 

to promote proliferation, metastasis and glycolysis of 

prostate cancer cells [37]. The pro-tumorigenic effect of 

PDCD10 was also recently reported in lung cancer and 

bladder cancer [19, 38]. On the contrary, PDCD10 was 

reported as a tumor suppressor in glioblastoma cells [18]. 

These contradictory results hint that function of 

PDCD10 is tissue- and disease-specific in different 

tumors. As shown in our previous results, PDCD10 

participates in the crosstalk between glioblastoma cells 

and microglia/macrophages and promotes tumor growth 

by CXCL2-CXCR2 signaling in vivo [25], which 

suggests that CXCR2 may play a critical role in 

aggressive behaviors mediated by PDCD10 in tumors. In 

this study, we report for the first time that PDCD10 can 

promote cellular proliferation, migration, and invasion of 

PAs by regulating the CXCR2-AKT/ERK signaling axis. 

 

EMT is a cellular process that cells lose their epithelial 

features and acquire mesenchymal phenotype. It is well 

established that EMT is associated with tumor initiation, 

tumor cell migration, tumor stemness, metastasis, and 

treatment resistance in various cancer types [39]. Some 

studies have reported that EMT plays a key role in 

tumor progression of PAs [40, 41]. For example, Li et al. 

found that high CCNB1 expression resulted in cavernous 

sinus invasion of PAs through promoting EMT process 

[40]. PDCD10 was also reported to regulate EMT in 
hepatocellular carcinoma and ovarian cancer [17, 21]. 

Thus, it can be speculated that PDCD10 might 

contribute to tumor progression in PAs by inducing 

EMT. In our study, we observed that PDCD10 silencing 

increased epithelial marker expression (E-cadherin), but 

reduced the mesenchymal marker (N-cadherin and 

VIM), while overexpression of PDCD10 reduced E-

cadherin expression but increased the expression of N-

cadherin and VIM in PA cells. These results suggest 

that PDCD10 acts as regulators of EMT in PAs. 

 

As a seven-transmembrane (7TM) protein, the C-

terminus of CXCR2 is related to phosphorylation and 

internalization of the receptor, while the N-terminal 

dominant and extracellular loops determine the binding 

with ligands [42]. The ligands of CXCR2 include 

CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, 

and CXCL8, among which CXCL1, CXCL2, CXCL3, 

CXCL,5, and CXCL7 bind CXCR2 only [43]. After 

binding of these cognate chemokine ligands to CXCR2 

on the cell surface, the associated G-protein is activated 

and dissociates, which in turn leads to activation of 

multiple downstream signaling cascades including the 

phosphatidylinositol-3 kinase (PI3K)/Akt and RAS-Raf-

MEK1/2-ERK1/2 signaling pathway [42]. 

 

To date, CXCR2 has been extensively studied in 

various types of neoplasms. In lung adenocarcinoma, 

up-regulation of CXCR2 in tumor cells promotes 

invasion and metastasis, which results in a poor 

prognosis [44]. In addition, high expression of CXCR2 

has also been observed in PAs, medullary carcinomas of 

the thyroid, and pheochromocytomas [23]. CXCR2 was 

also reported to be associated with EMT and resistance 

of tumor cells to chemotherapy [45, 46]. Besides, 

CXCR2 was up-regulated in cancer stem cells (CSCs) 

and promotes the growth and migration of CSCs [47, 

48]. In our study, we observed that PDCD10 silencing 

and overexpression significantly inhibited and increased 

protein expression level of CXCR2 together with 

phosphorylation levels of AKT and ERK1/2 in Att-20 

and TtT/GF cells, respectively. In PAs, aberrant 

activation of AKT and ERK pathways was reported to 

lead to abnormal hormone production and neoplastic 

growth [49, 50]. Interestingly, activation of CXCR2 

reversed the down-regulation of ERK1/2 and AKT 

phosphorylation level and suppression of proliferation, 

migration, and invasion induced by knockdown of 

PDCD10. Thus, we assumed that CXCR2 is involved in 

aggressive behaviors of tumor cells mediated by 

PDCD10 in PAs. Proteomic analysis revealed that 

PDCD10 may be involved in vesicle trafficking of 

membrane proteins [16, 32]. Consistent with this, 

several recent studies reported that PDCD10 was 

involved in regulation of exocytosis and AQP2 

membrane targeting [51, 52]. Thus, we speculate that 
CXCR2 expressed as a membrane protein, maybe 

stabilized by PDCD10 and its interactors via regulating 

protein trafficking. However, the precise mechanism of 
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how PDCD10 and CXCR2 cooperate in the cellular 

context requires further exploration in the future. 
 

In vivo, PDCD10 silencing significantly reduced the 

sizes and weights of PA cell-derived tumors in 

xenograft models. In addition, the expression levels of 

Ki-67, which represents a level of tumor proliferation, 

together with CXCR2 were decreased in the PDCD10-

shRNA group. These results further verify the pro-

oncogenic effect of PDCD10 in PAs and imply the 

therapeutic potential of targeting PDCD10. Although 

temozolomide has been included in the guidelines of the 

Endocrine Society and European Society of 

Endocrinology, long-term use of it could result in an 

increase of toxicity including the risk of leukemia and 

bone marrow suppression [53–56]. Besides, the efficacy 

and safety of existing targeted therapies (e.g., RTK 

inhibitors) for PAs still need further investigation [57]. 

Thus, PDCD10 could be a new promising target for the 

design of drugs and treatment of PAs. 
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