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INTRODUCTION 
 

The composition of the diet has a major impact on our 

lives. This includes not only several different health 

aspects, but in fact even the lifespan. In this context, 

different dietary compositions can convey either positive 

or negative effects. These effects usually concern the 

macronutrients proteins, fat and carbohydrates [1, 2]. 

Micronutrients, on the other hand, can also mediate 

positive effects on health, but these effects are much less 

well understood so far. Extracts or isolated components, 
especially from plants, algae and fungi, serve as sources 

for these positive effects, which are achieved through  

a modified composition of micronutrients. It can  

be assumed that the life-prolonging effects of these 

micronutrients in the plant-fungal and algal extracts are 

due to a pharmacological action. This pharmacological 

effect could, ideally, mimic the effects of a 

macronutrient intervention such as a caloric restriction 

(CR) or a dietary restriction (DR) [3]. Exemplary for 

such an effect is rapamycin, a macrolide first isolated 

from the fungus Streptomyces hygroscopicus [4]. 

Rapamycin has shown its potential as a lifespan 

prolonging agent in several studies using different 

models [5–7], but its use as a regularly taken medication 

in humans, with the aim of prolonging the lifespan is 
under intense discussion due to the observed and 

anticipated side effects [8]. Besides rapamycin and 

rapamycin-related compounds, alpha-ketoglutarate is 

one of the very few compounds that showed its potential 
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ABSTRACT 
 

Food has a decisive influence on our health, to the extent where even lifespan can be directly affected by it. In 
the present work, we have examined the effects of an aqueous extract of the marine brown alga Eisenia bicyclis 
in terms of its potential to extend lifespan. For this purpose, we used the fruit fly Drosophila melanogaster as a 
model. The experiments showed that small amounts of Eisenia extract can extend lifespan by up to 40%. This 
effect is not only related to the median but also to the maximum lifespan. Interestingly, this life-extending 
effect is sex-specific, i.e. it occurs exclusively in females. Even under stressful nutritional conditions such as a 
high sugar diet, this effect is detectable. Mechanistic studies showed that this life-prolonging effect depends on 
a functional Tor and a functional FoxO signaling pathway. It can be concluded that components of the Eisenia 
extract prolong lifespan by interacting with the Tor-FoxO axis. This study may serve to stimulate further 
investigations, which on the one hand show such a life-prolonging effect also in other organisms and on the 
other hand identify the substances responsible for this effect. Finally, it may also encourage the increased use 
of arame as a health-promoting food supplement. 
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as a lifespan prolonging agent. Administration of alpha-

ketoglutarate, an intermediate of the TCA cycle has been 

shown to increase life- and health span in a sex-

dependent manner by interfering with Tor signaling and 

by reducing inflammation [9–12]. What these two 

substances have in common is that they interact with the 

Tor signaling pathway, suggesting that interaction with 

this pathway may be a general property of life-

prolonging substances [13]. 

 

To expand the range of substances that show a health 

and lifespan promoting effect, extracts of plants and 

algae seem to be excellent. This insight is based, among 

other things, on the observation that certain populations 

that consume diets with a large proportion of certain 

plants and algae are markedly healthy and long-lived. 

Southeast Asian groups, for example, who consume a 

lot of marine products, are worth mentioning [14, 15]. 

To exploit this important resource, we conducted a 

broad-based screen in which we examined a larger 

number of different plant and algal extracts with respect 

to their life-prolonging effects. For this purpose, we 

used the fruit fly Drosophila as a model, since only it 

and the nematode C. elegans can fulfil the requirements 

for such a screen [5, 16]. Although the first use of the 

fly in studies focusing on the effects of interventions on 

lifespan dates almost 70 years back [17], the majority of 

studies employed C. elegans, as it is easier to use in 

high-throughput formats [18]. Nevertheless, the fruit 

fly, similarly as other insects such as the red flour beetle 

Tribolium [19], offers several advantages compared 

with C. elegans comprising an organ composition and 

nutritional physiology that shares considerable 

similarities with those of humans [20, 21]. Based on 

these screening systems, a series of plant and algal 

extracts have been identified that hold the potential to 

increase lifespan, but unfortunately most studies lack 

any mechanistic analysis. A recent study showed that an 

aqueous extracts of furbelow, a brown alga (Saccorhiza 

polyschides) can induce a robust prolongation of 

lifespan in Drosophila. This was seen under control 

conditions but even more pronounced under different 

stress conditions [22]. The identical extract was able to 

mediate comparable effects in mice, although here the 

focus was more on health-promoting effects [23]. 

Mechanistically, the effects on lifespan could be 

attributed to an interference with the Tor signaling 

pathway [22]. 

 

In the present study, we investigated the effects of an 

aqueous extract of the brown alga Arame (Eisenia 

bicyclis) for its life-prolonging potential. Here, a sex-

specific positive effect on lifespan was shown that was 
also seen under nutrient and other stress conditions. 

Moreover, we identified that this effect was Tor-

dependent. Thus, we could show that this alga, which is 

used for a long time as a food supplement in Japan and 

[24, 25], has the potential to increase health- and 

lifespan if used as a food supplement. 

 

RESULTS 
 

Eisenia bicylis extracts extend lifespan of Drosophila 

melanogaster in a sex-dependent manner 

 

An aqueous extract of the brown alga Arame (E. 

bicyclis) was identified during a larger screen of 

plant and algal extracts for their life extending 

potential using fruit flies as a model system [22, 

26]. To further characterize and to verify this 

lifespan prolonging effect, we used two different 

concentrations (0.1% and 0.05%) of this extract and 

measured lifespan in cohorts of mated females of 

the Drosophila melanogaster w1118 strain. Animals 

subjected to 0.05 % of the E. bicyclis extract (EBE) 

showed a lifespan prolongation (Figure 1A), with 

an increase in median lifespan of about 40 % 

(p<0.0001). Application of the extract at a higher 

concentration (0.1%) showed the absence of 

adverse effects and that this higher concentration 

increased the median lifespan to a very similar 

extent (39.5 %, p<0.0001). The increases in lifespan 

were not only seen for the median lifespan, but also 

for the maximal lifespans (10% of animals with 

highest lifespans) under both conditions (56 d to 63 

d and 51 d to 65 d, respectively, p<0.0001 each, see 

also Supplementary Table 1). We also tested 

cohorts of mated males, but we did not see any 

lifespan-extending effect by application of the 

Eisenia extract (Figure 1C). To exclude that the 

observed effects on lifespan are only strain-specific, 

we tested a second Drosophila strain, namely 

y1w1118. Here, we could also show a robust lifespan 

prolongation induced by the EBE (Figure 1C; 

p<0.0001). Again, also the maximum lifespans 

were increased (45d to 48.5 d, p=0.0006). 

 

To exclude indirect effects caused by reduced 

uptake and therewith leading to an induced caloric 

restriction with its lifespan prolonging effects, we 

quantified the nutritional intake using the 

consumption-excretion assay. Here, no statistically 

significant differences in food consumption during 

a 24 h period could be observed (Figure 2A, 

p=0.3015). Moreover, we treated the flies with 0.05 

% EBE and analyzed the body composition. 

Therefore, we analyzed parameters such as body 

weight, protein content, triacylglycerol levels, and 

glucose content. Regarding the body weight, the 
experimental groups did not show any difference 

(p=0.1606) (Figure 2B). We examined lipid storage 

and carbohydrate content by measuring triglyceride 
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(TAG) and glucose levels, respectively and have 

related that to body weight, since this is the only 

independent reference variable. TAG levels and 

glucose content of whole flies fed with the extract 

also showed no significant changes (p=0.1023 and p 

=0.6134 respectively) (Figure 2C, 2D). Only with 

respect to the body protein content of EBE-treated 

flies, a significant but mild reduction compared to 

the control group was observed (p=0.0033) (Figure 

2E). To demonstrate that the observed lifespan 

extension does not compromise other measures of 

health, a fecundity test was performed. It revealed 

that algal treated flies produced similar amounts of 

eggs as the control group (p=0.1051) (Figure 2F). 

 

Phenotypic analysis of the effects of EBE treatment 

 

We analyzed the effect of EBE intake on additional 

phenotypic characteristics. In doing so, we subjected 

the influences on the activity behavior to a special 

analysis (Figure 3). The general activity pattern hardly 

differs between control and EBE-treated animals 

(Figure 3A), the same is true for the cumulative 

activity over a 24 h period (Figure 3B). We also 

analyzed sleep amounts and sleep patterns, because 

sleep duration has been associated with lifespan [27]. 

A more detailed analysis of sleep behavior revealed 

slightly, although not significantly, increased sleep 

episodes after EBE treatment over a 24 h period 

(Figure 3C). However, further breakdown into daytime 

sleep activity (Figure 3D) and nighttime sleep activity 

(Figure 3E) revealed that the amount of nighttime 

sleep was significantly increased. 

 

E. bicyclis extracts improve resistance to some stress 

conditions 

 

We next analyzed if addition of the EBE changed the 

lifespan in response to stressful conditions. We first 

assessed resistance to starvation by placing control and 

 

 
 

Figure 1. Application of Eisenia bicyclis extract (EBE) enhances lifespan in female Drosophila. Lifelong application of 

0.05% EBE (red) to adult female Drosophila (w1118) was compared to control flies of the same genotype (blue). The proportion of 
surviving animals is displayed against time (A). In (B), 0.1 % EBE was used under otherwise identical conditions. A similar analysis 
was performed with w1118 males and 0.05% EBE was applied (red) and compared with controls (blue) (C). Female flies of the yw 
strain were confronted with 0.05 EBE (red and compared to matching controls (blue) (D). (n > 100 per condition). Statistical 
analyses were done using a log-rank test. Ns means not significant, *** means p< 0.005, **** means p<0.001. 
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EBE-treated flies on agar only, to prevent energy intake, 

while sufficient water is supplied. Under these 

conditions, the median lifespan was 72 h and 70 h for 

the EBE treated and the control group, respectively. 

However, the difference was not statistically significant 

(p=0.1997) (Figure 4A and Supplementary Table 1). In 

contrast, adding EBE to the flies’ food increased the 

resistance to desiccation. The median lifespan for the 

control group was 24 h, whereas this increased to 25 h 

in EBE-treated flies (p=0.0027) (Figure 4B). 

Subsequently, we tested the effects of the major 

nutritional stressors, namely high-fat, and high sugar 

diets. Flies treated with 0.05 % EBE had a slight, but 

significant lifespan extension on a high-fat diet (HFD). 

The median lifespans were 29 and 30 days for the 

control group and the EBE treated groups, respectively 

(p=0.0140) (Figure 4C). Moreover, we reared flies on 

food containing 30 % sugar and asked whether the 

administration of EBE reduced the deleterious effects of 

the high sugar diet. Here, we found that the EBE 

addition led to an increase in median lifespan by about 

30% from 35 days under control conditions to 46 days 

in response to EBE application (Figure 4D; p-value 

<0.0001). The maximum lifespans also showed a 

significant increase (from 46 in controls to 50 after 

EBE, p<0.0001). 

 

Due to the effects of EBE on HSD mentioned earlier, 

we quantified the body composition of flies reared on 

a HSD (Figure 5). The body weight, total TAG levels 

 

 
 

Figure 2. Effects of Eisenia bicyclis extract of physiological parameters of female Drosophila. Application of EBE to 

female adult flies did not change the intake of nutrients over a 24 h period (A). The body weight was also not changed in response 
to EBE (B). The effects on body fat (C), on body glucose (D) and body protein (E) were quantified. Fecundity was quantified under 
both conditions (F). N≥10, mean values ± S.E.M. are given. Statistical analyses were performed with unpaired t-tests. Ns means not 
significant, ** means p< 0.01. 
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and whole-body protein did not change under these 

conditions (Supplementary Figure 1). Only the body 

glucose level in glucose level of EBE treated flies was 

significantly lower if compared to the control group  

(p= 0.0443) (Supplementary Figure 1). 

 

Mode of action of the lifespan prolonging effects of 

EBE 

 

To elucidate potential mechanisms by which the extract 

extends the lifespan of flies, we tested the alpha-

amylase activity in flies in response to EBE treatment as 

this has been shown to be modulated by Eisenia-derived 

phlorotannins [28]. Here, no differences in the alpha-

amylase activities between control animals and those 

subjected to EBE were seen (Figure 5A). We then 

assessed which signaling pathways are responsible for 

the lifespan-prolonging effects of an EBE treatment. We 

first evaluated Sir2-dependent processes since 

activation of the Sir2 pathway was clearly identified as 

life-prolonging in Drosophila [29]. By analyzing sir2-

deficient flies, we could show that Sir2 is obviously not 

the relevant EBE target, as the corresponding flies 

nevertheless showed EBE-induced lifespan extension 

(Figure 5B). Nevertheless, the reduced increase in 

lifespan could also be interpreted in a way that Sir2 

participates in the life-prolonging effect. Furthermore, 

we analyzed the Tor signaling pathway and tested Tor-

deficient animals for this purpose. Here, we could show 

that EBE application did not show any lifespan-

prolonging effect in these animals, proving that the Tor 

signaling pathway is closely linked to the EBE-induced 

effect (Figure 5C). Since FoxO signaling is closely 

linked to lifespan on the one hand and can act 

 

 
 

Figure 3. Influence of Eisenia bicyclis extracts on activity and sleep of adult female flies. Activity traces derived from a DAM-based 

analysis (A) of mated female flies in a 24h period. The total mean activity in a 24h period (B), the accumulated total sleep time (C), and the 
accumulated daytime sleep time (D) and the accumulated nighttime sleep time (E). N≥10, mean values ± S.E.M. are given (B–E). Average 
sleep amounts are stated as a fraction of 1. Statistical analyses were performed with unpaired t-tests. Ns means not significant, * means  
p< 0.05. 
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downstream of Tor on the other [30], we also checked 

this factor and analyzed foxo-deficient animals. Again, 

we could not detect any EBE-induced positive effect on 

lifespan (Figure 5D). This means that FoxO is also 

required for EBE-mediated effects on lifespan. Since 

Tor-signaling is also more important for proteostasis, 

we checked protein synthesis using the puromycin assay 

(Figure 5E, 5F). Here, we could not determine any 

effect of EBE treatment on new protein formation 

(Figure 5E, 5F). 

 

Qualitative HPLC-MS analyses of aqueous extracts 

 

We performed a comparative HPLC-MS study to 

characterize the algae material and find the very first 

clues about the possible substances responsible for the 

life-prolonging effects. For this purpose, we compared 

aqueous extracts of three marine plants/algae with 

different properties to focus especially on those 

substances that are specifically found in EBE. The 

extracts in question were those of Eisenia bicyclis, of 

the brown alga Saccorhiza polyschides, and of the 

picklegrass (Salicornia spec.). The EBE is in the center 

of the current study and the Saccorhiza polyschides 
extract has been characterized in detail to exert life- 

and/or health-span extension in flies and mice [22, 23]. 

The Salicornia extract on the other hand is of marine 

origin, but not an algae and serves as a control. The 

extracts were separated by chromatography on C18, 

compounds detected by Time-of-Flight mass 

spectrometry (ToF-MS) and identified based on library 

search (cf. methods and Supplementary Material). The 

MS analysis gave relative concentration differences 

between the samples. Principal component analysis 

(PCA) showed that the compositions of the extracts 

were clearly distinguishable (Figure 6A). By 

performing a partial least-squares discriminant analysis 

(PLS-DA) (Supplementary Figure 2), the top 100 

features which are higher abundant in Eisenia bicyclis 
samples could be determined and sorted by their 

importance (Supplementary Table 5). Moreover, we 

show differentially present metabolites as a heatmap 

(Supplementary Figure 3). Of these 100 selected 

metabolites with differential occurrence in the different 

samples, we focused on those metabolites that are 

specifically found in EBE and for which information on 

 

 
 

Figure 4. Influence of Eisenia bicyclis extracts of lifespan in response to different stressors. Lifespan of w1118 females in response 

to starvation (A) and desiccation (B) in control flies and those subjected to 0.05 % EBE. Lifespan of W1118 females on a high-fat diet (C) and a 
high sugar diet (D) (n > 100 per condition). Statistical analyses were done using a log-rank test. ns means not significant, * means p<0.05, ** 
means p< 0.01, **** means p<0.001. 
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life-prolonging potential is already available. In 

particular, 2 substances stood out, 7-phloroeckol (Figure 

6B) and caffeic acid quinone (Figure 6C). In the case of 

7-phloroeckol, however, a differentiation to the 

isoflavonoid C-glyoside UNPD147636 is not possible 

due to identical mass numbers. It should be noted, 

however, that 7-phloroeckol is one of the "lead 

substances" of the brown alga of the genus Eisenia, 

whereas isoflavonoid C-glyosides are hardly known in 

algae. 

DISCUSSION 
 

In the study presented here, we followed the goal of 

identifying algae extracts that exert a life-prolonging 

effect and tried to explain this effect mechanistically. 

The long-term goal, which is of course in the 

background, was to recommend such extracts as a food 

supplement for human use. We were able to show that 

an aqueous extract of the brown alga Arame (Eisenia 

bicyclis) produced a marked prolongation of the 

 

 
 

Figure 5. Mode of action of the Eisenia bicyclis extract induced lifespan prolongation. The alpha-Amylase activity of control flies 

and EBE treated ones (A) are displayed. Lifespan analyses of control and EBE-treated female flies of the genotypes: dSir2-deficient (B), TOR-
deficient (C), and FoxO-deficient (D). Western blot analysis of samples from control flies (Co) and EBE-treated ones (EBE) of puromycin 
treated flies (E) and the quantification of bad intensities (F). lifespan did not increase on concentrated medium containing 0.05 % EBE,  
(n > 100 per condition). Protein synthesis of flies treated with 0.05 % EBE was not affected (E, F). N≥10, mean values ± S.E.M. are given (A, F). 
Statistical analyses were performed with unpaired t-tests. ns means not significant. (B–D, n > 100 per condition). Statistical analyses were 
done using a log-rank test. ns means not significant, **** means p<0.001. 
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lifespan, which accounted for almost 40 % of the 

median lifespan. This extension affected not only the 

median but also the maximum lifespan. Thus, this study 

joins others that have already shown a positive effect of 

algae and plant extracts in the Drosophila model [22, 

31–34]. To ensure that this is a true pharmacological 

effect and not a confounder based on reduced food 

intake, we investigated whether the extract affects food 

intake. We were able to exclude this and thus rule out 

that aversive effects of an extract on food intake induce 

a CR caused by the altered behavior. Unfortunately, 

such controls are rarely investigated in other studies, 

which severely limits their power. In addition, we were 

able to independently demonstrate life extension in a 

second Drosophila strain. The observation that different 

wild-type strains show different lifespans has already 

been demonstrated but does not interfere with 

interventions that change lifespan [35]. This clearly 

indicates that the observed life-prolonging effects 

should generally apply to Drosophila melanogaster. 

 

Interestingly, the rather substantial lifespan prolonging 

effect induced by EBE was sex specific. This means 

that only females showed this positive effect and males 

were not affected. This is different from a recent study 

employing extracts from another brown alga, namely of 

the furbelow Saccorhiza polyschides, where both sexes 

showed similar lifespan extensions, although the degree 

of lifespan-extension was substantially smaller [22]. 

Such sex-specific effects have been shown more 

frequently. It seems to be a phenomenon that is 

particularly significant in aging studies. In most cases, 

 

 
 

Figure 6. Untargeted HPLC-MS analysis of algae extracts. Principal component analysis (PCA) (A) of algae extracts measured using the 
ESI+ and ESI- acquisition mode. Underlying peak areas are log10 transformed and pareto-scaled. (B, C) LC-ToF-MS intensities of 7-phloroeckol 
(B) and caffeic acid quinone (C). Intensities are displayed as the mean of triplicate injections (duplicate injections for Saccorhiza). 



www.aging-us.com 6435 AGING 

females are more susceptible to interventions and show 

larger effects [10, 36]. This is also true for interventions 

such as CR (Regan et al. 2016). Metabolic processes 

clearly differ between both sexes in Drosophila [37, 

38], and it was shown that female flies are far more 

responsive to dietary interventions such as dietary 

restriction than males are [39]. This implies that there is 

a general bias in responsiveness towards females in 

nutritional interventions. 

 

Regarding the underlying mechanism, we clearly 

identified the Tor-FoxO axis as the site of action of EBE 

effects. In contrast, the Sir2 pathway and associated 

signaling pathways do not seem to be relevant for the 

observed life-prolonging effect. The distinctly complex 

Tor signaling pathway, in which Tor is the central 

control unit, appears to be of general importance for age-

related processes. This is illustrated by the fact that the 

best characterized life-prolonging substance to date, 

rapamycin, was the eponym for this protein. Tor 

signaling takes a central role because it permanently 

determines the nutritional state of the cell, in particular 

the protein balance of the cell, and uses this information 

to adjust cell metabolism accordingly. For this reason, 

the Tor signaling pathway is also considered the central 

target of a CR or DR intervention. Consequently, 

substances or extracts that interfere with the Tor 

signaling pathway and that exert a life-prolonging effect 

can also be referred to as DR mimetics. Inhibition of the 

Tor pathway to prolong lifespan has been demonstrated 

in a variety of systems [40–42]. Therefore, it can be 

assumed that one or more components from the EBE 

specifically interfere with the Tor signaling pathway and 

thus exert the life-prolonging effect. Interestingly, we 

were also able to show that, in addition to the Tor 

signaling pathway, FoxO and thus FoxO-dependent 

processes are also necessary for the life-prolonging 

effects of EBE treatment. This can be explained 

relatively simply by the fact that there is a Tor-FoxO 

axis that is precisely responsible for these processes. The 

functionality of such an axis has already been shown in 

other systems [30, 43, 44]. Accordingly, it can be 

assumed that this is also a functional Tor-FoxO axis, in 

which an EBE component leads to inhibition of the Tor 

signaling pathway and this effect is translated via FoxO 

into an extension of the lifespan. Nevertheless, it 

remains obscure, why males did not react although their 

Tor/FoxO axis appears to be very similar compared to 

those of females. 

 

Another aspect that could be of importance in this 

context is the observed slight prolongation of night 

sleep. This is relevant because there is a correlation 
between sleep duration and sleep patterns as well as 

lifespan [45–47]. An improvement in night sleep could 

therefore be associated with an increase in lifespan. 

It can be concluded that EBE impart lifespan prolonging 

effects. It has already been described that health-

promoting effects can be attributed to this alga. Here, 

especially inhibition of inflammatory responses [48, 

49], cancer development [50, 51], and inhibition of 

ROS-mediated damages [25, 52, 53] had been 

characterized. The bases identified and anticipated for 

these described effects differed fundamentally from 

each other and could be attributed to different substance 

classes. Inspired by these studies, several different 

substances, or classes of substances, from Eisenia 
bicylis were investigated in detail. Here, a special focus 

was on phlorotannins that directly interfered with 

enzyme activities such as α-glucosidase, alpha-amylase, 

or pancreatic lipase [28, 54]. 

 

Moreover, these phlorotannins from Eisenia bicylis 

have also been shown to protect against ROS stress, 

reduce inflammatory responses, and to show 

antibacterial activities [48, 49, 55–57]. Among the 

phlorotannins, different eckol derivatives are the most 

often characterized representatives [58]. 7-Phloroeckol, 

the substance that we identified as one of those that are 

highly specific for Eisenia extracts, is one of them. 

Recently, it has been associated with antidiabetic effects 

and with a pronounced inhibition of alpha-amylase 

activities. In our study, we were unable to show 

inhibition of alpha-amylase activities by EBE, which is 

not surprising as the effective inhibitory concentration 

of these eckols is in the range of 1mM [59, 60], a 

concentration that will never be reached in our assay, 

where the unfractionated extract accounts for less than 

0.1% of the total food. Thus, 7-phloroeckol is a 

candidate compound that might have additional effects 

acting at much lower concentrations Besides the 

phlorotannins, fucosterols have been shown to be 

associated with relevant biological activities [48, 53, 

61]. One last compound of interest is caffeic acid 

quinone, which is an oxidized product of caffeic acid 

[62], with caffeic acid being one compound with the 

proven ability to prolong lifespan [63]. In addition to 

the different compounds of algae extracts that elicit 

biological functions, a different mode of action has also 

been presented, namely, an epigenetic effect that can 

modulate inflammatory responses [64]. 

 

Taken together, it can be concluded that we could show 

with this study that a simple aqueous extract of Eisenia 
bicylis can substantially prolong the lifespan of female 

Drosophila. This sex-specific effect is seen in different 

Drosophila strains and under diverse stressors. The 

extract components responsible for this effect interact 

very specifically with the Tor signaling pathway, which 
in turn uses the FoxO signaling pathway to mediate 

these life-extending effects. Because of the other health-

promoting effects already described for Eisenia bicyclis 
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extracts, such extracts should also be excellent 

supplements to human diets. This is insofar relevant as 

it exerts its positive effects at concentration of less than 

0.1% of the total ingested diet, making the EBE a very 

promising food supplement that could be used with only 

a few grams per day. On the other hand, this study may 

serve to identify the active components from the extract 

in subsequent studies. We propose few candidate 

compounds that might be responsible for mediating the 

observed effects with 7-Phloroeckol being the most 

promising one for future research that also might use 

mice to test if lifespan prolongation is also seen there. 

 

CONCLUSIONS 
 

In summary, the results of this project state that an 

aqueous extract of the brown alga Eisenia bicylis 

substantially extends both the mean and maximum 

lifespan of different strains of Drosophila 
melanogaster. This effect is clearly sex-specific, being 

observed only in females. Extract does not affect food 

intake or alter significant physiological parameters. 

Even under stress conditions, this supplement conferred 

a very clear advantage. The analysis of the underlying 

mechanism revealed that the life-prolonging effect 

relies unambiguously on the Tor/FoxO axis and is not 

expressed in the absence of these signaling pathways. 

We proposed candidate substances in the extracts that 

could possibly mediate this effect. The study presented 

here could promote the use of this already known 

extract as a dietary supplement as a health promoting 

intervention in human nutrition. 

 

MATERIALS AND METHODS 
 

Algal extraction 

 
Eisenia bicyclis extract was prepared according the 

method described by Onur et al. (Onur et al., 2013). In 

short, the dried algal material was grinded with an 

analytical mill (IKA Type A11 basic). 3 grams of 

grinded alga were transferred into a test tube containing 

30 ml of boiling double distilled water. After slight 

stirring, the suspension was sonicated for 1 min and 

centrifuged for 2 min at 2000 g. The supernatant was 

filtered, and the soluble extract was freeze-dried and 

stored frozen until use. 

 

Fly husbandry 

 

Wild type adult flies were kept as previously described 

[65]. In brief, they were cultivated on a diet containing 

5 % (w/v) yeast extract, 8.6 % (w/v) corn meal, 5 % 

(w/v) sucrose, and 1 % (w/v) agar-agar supplemented 

with 1 % (v/v) propionic acid and 3 % (v/v) nipagin 

named here Drosophila medium. Adults, 3–5-days after 

hatching were used in the experiments. After this initial 

period of 3-5 days where the flies had the chance to 

mate, they were separated according to their sex. All 

experiments were performed at 25° C, a light-dark cycle 

of 12h:12h, and 60 % humidity. For most experiments, 

the wild type strain w1118 was used. The following fly 

strains were used for the study: w1118 (Bloomington 

stock ID #5905), Sir2-deficient (Bloomington stock ID 

#8838), Tor-deficient (Bloomington stock ID #11218), 

dfoxo-deficient (foxo21/21) (Marc Tatar lab), y1w1118 

(Bloomington stock ID #111281). 

 

Lifespan assay and analysis 

 

The mated female flies were separated into experimental 

groups and kept on the food described above. Vials were 

regularly changed every 2 days and dead flies were 

counted every day. For the high sugar diet, the sucrose 

concentration was increased to 30 % and for the high-fat 

diet, the concentrated medium was supplemented with 

20 % palm fat. To supplement the food with the algal 

extract, the aqueous extract was added on top of the food 

in the experimental vials at the final concentration of 

interest. For this reason, the concentration is calculated 

to correspond to the concentration in the entire medium. 

Then, the water is allowed to evaporate to dry the food. 

A total of at least 100 animals were used at minimum 

per experiment, divided into 5 aliquots with at least 20 

animals each, which is well in the range used for 

lifespan assays [66]. 

 

Body fat quantification 

 

The whole-body triacylglycerol (TAG) content was 

measured using coupled colorimetric assay [67] as 

previously described [68]. In short, samples were 

collected (5 females per sample) and weighted. 1 ml 

PBS/Tween-20 (0.05 %) was added to the samples, and 

they were homogenized in a bead ruptor apparatus 

(BioLab Products, Bebensee, Germany) for 2 min at 3.25 

m/s. Next, samples were centrifuged for 3 min at 3000 g 

and the supernatant was transferred to new tubes. The 

supernatant was heat-inactivated at 70° C for 10 min and 

centrifuged for 3 min at 2500 g. 50 µl of each sample was 

added to a 96-well plate and the absorbance was 

measured at 500 nm (T0). 200 µl prewarmed triglyceride 

reagent was added to each well and incubated for 30 min 

at 37° C with mild shaking. The absorbance was again 

measured at 500 nm (T1). The TAG concentration was 

determined by subtracting T0 from T1. The TAG content 

was quantified using a triolein-equivalent standard curve. 

 

Glucose measurement and protein content analysis 

 

The body glucose levels were determined using a 

Glucose (HK) Assay Kit (GAHK-20, Sigma-Aldrich, 
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Taufkirchen, Germany) according to the manufacturer’s 

instruction with minor modifications. Samples were 

collected (5 female flies per sample), weighted, and 

homogenized using a bead ruptor apparatus (BioLab 

Products, Bebensee, Germany) for 2 min at 3.25 m/s. For 

the glucose measurement, the supernatants were heated 

for 10 min at 70° C and then centrifuged for 3 min at 

maximum speed at 4° C. 30 µl of the supernatant was 

added to a well of a 96-well plate. 100 µl of the HK 

reagent was added to each well and the plate was 

incubated at room temperature for 15 min. Then, the 

absorbance was measured at 340 nm. The glucose content 

was calculated using a glucose standard curve. For the 

determination of the protein content, the samples were 

centrifuged for 1 min at 1000 rpm at 4C. The supernatant 

was transferred to a new 1.5 ml tube and centrifuged 

again at 6000 rpm, at 4° C for 10 min. The supernatant 

was again transferred to new tubes and centrifuged at 

maximum speed, at 4° C for 10 min. The protein content 

was measured using the Pierce BCA Protein Assay Kit 

according to the manufacturer’s instructions. 

 

Starvation, desiccation resistance, and fecundity assay 

 

To assess flies’ resistance to starvation, flies transferred 

to vials containing 1 % agar after feeding with food of 

interest. The survivorship of flies was recorded every 

two h at 25° C and 60 % humidity and 12-h light-dark 

cycle. To determine the resistance to desiccation, flies 

were transferred to empty vials after feeding them with 

the food of interest. The flies were kept at 25° C and  

60 % humidity and 12 h light-dark cycle. The survival 

of flies was monitored every 1 to 2 h. The mated female 

flies were kept in vials containing the food of interest 

and the laid eggs were counted every day for 7 days. 

 

Activity and sleep analysis 

 

Activity and sleep were monitored using the Drosophila 

Activity Monitor (DAM2) system and analyzed by 

ShinyR [69]. The mated female flies were allowed to 

feed on the food of interest for 2 weeks and then were 

placed into tubes containing Drosophila medium. The 

tubes were loaded into the DAM system and maintained 

at constant conditions (25° C, 60 % humidity, and 

12/12- h light-dark cycle). The first two days were 

spared for acclimatization and the data were collected 

on the third day. Sleep measurements were done 

according as described [69] with a period of 5 min 

without activity interpreted as a sleep phase. Data were 

recorded every 60 s. 

 

Food intake 

 

The food consumption of flies was measured using the 

consumption-excretion method by Shell et al. [70]. First 

the 0.5 % (w/v) blue dyed (Brilliant Blue FCF food dye; 

E133) was prepared. The Drosophila medium or blue 

dyed Drosophila medium (0.5% (w/v) Brilliant Blue 

FCF food dye; E133) was dispensed into caps of 2 ml 

screw cap vials. For adaptation, individual flies were 

transferred to 2 ml screw cap vials with Drosophila 

medium. After a few h feeding on the concentrated 

medium the flies were transferred to 2 ml vials with 

blue dyed food. After 24 h feeding on blue dyed food 

three ceramic beads and 500 µl H2O were added to the 

vials. The samples were essentially treated and 

measured as described earlier [71]. 

 

Puromycin assay and Western blotting 

 

Young adult flies were starved overnight and 

transferred to a vial containing concentrated medium 

and puromycin (10 µg/ml). After 1 h treatment with the 

food, the flies were homogenized in 200 µl RIPA buffer 

using a bead ruptor apparatus (BioLab Products, 

Bebensee, Germany) for 2 min at 3.25 m/s. The protein 

concentration was quantified using BCA Protein Assay 

Kit (Thermofisher, Karlsruhe, Germany). 40 µg of 

protein was loaded on SDS-PAGE gel and the protein 

were resolved through electrophoresis. The proteins 

were transferred to a PVDF membrane using semi-dry 

transfer for 1 h. To block unspecific binding, the 

membrane was treated with 5 % non-fat dry milk 

powder in TBST for 1.30 h. The membrane was 

incubated with anti-puromycin (3RH11) antibody 

(Kerafast, Boston, USA, EQ0001) over night at 4° C. 

After 3 times washing with TBST, HRP-coupled anti-

rabbit secondary antibody was used. The bands were 

visualized using Clarity™ Western ECL substrate and 

the ChemiDocImager (BioRad, Feldkirchen, Germany). 

 

Alpha-amylase activity 

 

The alpha-amylase activity was determined using a high 

sensitivity alpha-amylase kit (K-AMYLSD, Megazyme 

Ltd., Bray, Ireland) according to the manufacturer’s 

instruction with minor modifications. 5 female flies per 

treatment group were homogenized in 200 µl PBS. 10 

µl of the supernatants were added to 90 µl of amylase 

solution (65 µl amylase SD reagent mixed with 25 µl 

buffer). The assays were incubated for 30 min at 37° C, 

before adding 100 µl of stop reagent. For each sample, a 

blank (t = 0 min) was generated, where the stop solution 

was added prior to the amylase reagent. Absorbance of 

samples and corresponding blanks was read at 405 nm 

in a microplate reader. 4-5 samples per treatment group 

were measured in duplicate in two independent 

determinations. Amylase activities were calculated with 
the Mega-Calc™ Data Calculator sheet. One unit of 

amylase activity is defined as the amount of enzyme 

required to release one micromole of p-nitrophenol 
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from 4,6-O-ethylidene-α-4-nitrophenyl-maltoheptaoside 

per min under the defined assay conditions. 

 

Untargeted data acquisition and HPLC-MS analyses 

 

The untargeted data acquisition was performed using the 

TripleToF 6600 mass spectrometer (Sciex, Darmstadt, 

Germany) coupled to a Exion LC system (Sciex) 

operating in the ESI negative (ESI-) and ESI positive 

(ESI+) ionization mode as described earlier [72, 73]. 

Algae samples, QC and blank samples were analyzed 

using the data-independent acquisition (DIA) mode 

SWATH, by initially performing a ToF-MS scan with an 

accumulation time of 200 ms (m/z 100 - 1200), followed 

by 16 fixed Q1 isolation windows with an accumulation 

time of 81 ms in the m/z range from 100 to 1200 with 1 

Da overlap. Following Q1 isolation windows were 

applied: m/z 169 – 240, 239 – 310, 309 – 380, 379 – 

450, 449 – 520, 519 – 590, 589 – 660, 659 – 730, 729 – 

800, 799 – 870, 869 – 940, 939 – 1010, 1009 – 1080, 

1079 – 1150 and 1149 – 1200. The chromatographic 

separation was achieved on a C18 column with guard 

column of the same type (Kinetex C18, 100×2.1 mm, 1.7 

µm, Phenomenex, Aschaffenburg, Germany) at an oven 

temperature of 40° C and a flow rate of 0.3 ml/min. The 

injection volume was 5 µl, the sample concentration was 

10 mg extract per ml in water. Gradient elution with 

0.1% formic acid (mobile phase A) and 0.1% formic 

acid in acetonitrile (mobile phase B) was as follows: 0 

min 5% B, 0.5 min 5% B, 12 min 50% B, 13 min 100% 

B, 16.5 min 100% B, 17 min 5% B and 20 min 5% B. 

Samples were injected in triplicates in a randomized 

order with QC injections every eight to tenth injection. 

Blanks (solvent) were injected regularly, and the ToF 

calibration for instrument accuracy was performed after 

every fifth sample. For data acquisition and instrumental 

control, AnalystTF software (version 1.7.1, Sciex) was 

used. 

 

Peak picking and feature alignment of acquired data in 

the ESI- and ESI+ mode was performed using MS-DIAL 

(version 4.70) [74] (Supplementary Table 2). The feature 

alignment files for each ionization mode were then 

exported and further processed for feature reduction and 

annotation using MS-CleanR [75] (Supplementary Table 

3) and MS-Finder (version 3.52) [76, 77] (Supplementary 

Table 4). For a first feature annotation process, public 

MS/MS libraries (Supplementary Table 4) were applied 

to obtain a broad overview of compounds. In a second 

annotation process, the seaweed specific Seaweed 

Metabolite Database (SWMD) was applied [78]. To 

make this library accessible for the MS-Finder 

annotation, the files storing the structural information 
(.mol) were downloaded from the SWMD homepage 

(https://www.swmd.co.in/) and converted to InChI Key, 

SMILES, formula, and exact mass using the Excel plugin 

from ChemOffice (version 20.0, PerkinElmer, Waltham, 

U.S.A). The structural information of the SWMD were 

further supplemented by compounds known to occur in 

brown algae (Supplementary Table 4). 

 

After completion of the feature reduction and annotation 

process, an ESI+/ESI- merged and annotated feature list 

was exported, which was further statistically analyzed 

using R. Therefore, NA values were first removed by 

inserting a half of the minimum observed intensity per 

feature for all features, then the dataset was log10 

transformed and pareto-scaled. For a first overview a 

principal component analysis (PCA) was performed 

using the R package mixomics [79] (Figure 6A). To 

gather further insight, which specific features are 

responsible for the separation of the algae samples, a 

partial least-squares discriminant analysis (PLS-DA) 

was performed using the mixomics package (Figure 6B). 

A special focus was set on features higher abundant  

in the Eisenia samples compared to the Salicornia  

and Saccorhiza samples. Therefore, Salicornia and 

Saccorhiza samples were put together in one group  

and compared to Eisenia samples. The PLS-DA was 

then calculated using two components, while the 

background was calculated using the maximum distance 

function and a resolution of 500. The loadings were 

subsequently exported and sorted by increasing values 

of component 1 to select only the first 100 features, 

which are higher concentrated in Eisenia compared to 

Salicornia/Saccorhiza samples. Based on the two 

annotation processes using MS-CleanR/MS-Finder, 

features are shown with up to two annotations 

(Supplementary Table 5). 

 

Statistical analysis 
 

Statistical analyses were performed with the Prism 9 

work package. For analyses of lifespan data, a log-rank 

test was used (Mantel-Cox or Gehan-Breslow-

Wilcoxon). At least 100 individuals were analyzed per 

treatment, usually in 5 replicates with at least 20 

individuals each. Parametric data were analyzed with 

unpaired Student’s t-test and non-parametric data with 

Mann–Whitney test (usually with N≥10). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Effect of Eisenia bicyclis extracts on female flies subjected to a HSD. Body weight (A), TAG levels  
(B), protein contents (C), and glucose contents of females on high sugar control diet and high sugar diets supplemented with 0.05 %. N≥10, 
mean values ± S.E.M. are given (D). Statistical analyses were performed with unpaired t-tests. ns means not significant, * means p< 0.05. 
 

 
 

Supplementary Figure 2. Untargeted metabolome analysis of algae extracts. Partial least-squares discriminant analysis of  

algae extracts measured using the ESI+ and ESI- acquisition mode. Underlying peak areas are log10 transformed and pareto-scaled. The 
Top100 features responsible for the separation of Eisenia bicyclis from Salicornia/Saccorhiza were extracted for further analysis 
(Supplementary Table 4). 
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Supplementary Figure 3. Heatmap of metabolome analysis of algae extracts. Relative abundances of the Top100 compounds 

showing differential distribution between the samples (Eisenia bicyclis-, Salicornia spec.-, Saccorhiza polyschides-extract). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 5. 

 

Supplementary Table 1. Median, mean, and maximum lifespans of experiments described in this manuscript. 

  Median lifespan[d] Mean lifespan [d] Maximum lifespan [d] 

Drosophila medium 

EBE 0.05 % 56 48.75 66 

control 40 39.46 59 

EBE 0.1 % 53 52.5 65 

control 38 38.18 53 

Male flies 
EBE 0.05 % 51 49.15 65 

Control 53.5 50.33 65 

yw 
EBE 0.05 % 39 36.65 52 

control 33 32.17 45 

Starvation 
EBE 0.05 % 72 h 70.29 h 96 h 

control 70 h 68.62 h 94 h 

Desiccation 
EBE 0.05 % 25 h 26.49 h 38 h 

control 24 h 24.39 h 38 h 

HFD 
EBE 0.05 % 30 26.7 39 

control 29 25.39 36 

HSD 
EBE 0.05 % 46 42.12 54 

control 35 34.3 50 

dSir2-deficient 
EBE 0.05 % 41 36.61 51 

control 37 34.12 44 

Tor-deficient 
EBE 0.05 % 48 47.81 60 

control 48 46.86 58 

Foxo-deficient 
EBE 0.05 % 26 26.82 48 

control 26 24.83 43 
  Median lifespan [h] Mean lifespan [h] maximum lifespan [h] 

Starvation 
EBE 0.05 % 72 70.29 96 

control 70 68.62 94 

Desiccation 
EBE 0.05 % 25 26.49 38 

control 24 24.39 38 
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Supplementary Table 2. Data processing parameters using MS-Dial 4.70. 

Data collection  

Retention time begin 0 min 

Retention time end 20 min 

MS1 mass range begin 100 Da 

MS1 mass range end 1200 Da 

MS/MS mass range begin 50 Da 

MS/MS mass range end 1200 Da 

Peak detection  

Minimum peak height 1000 amplitude 

Adduct (neg)  

[M-H]-, [M-H-H2O]-, [M+Na-2H]-, [M+FA-H]-, [2M-H]-, [2M+FA-H]-  

Alignment  

Retention time tolerance 0.1 min 

MS1 tolerance 0.025 Da 

Remove features based on blank information yes 

Preset values were applied if not stated otherwise. 

 

Supplementary Table 3. Data processing parameters using MS-CleanR 1.0 with R 3.6.1 
(x64). 

Clean MS-Dial data  

Maximum mass difference 0.005 Da 

Maximum retention time difference 0.01 min 

Use Pearson correlation to compute clusters no 

Keep top peaks by cluster  

Intensity yes 

Degree yes 

Number of peaks to keep 2 

Launch MS-Finder annotation  

Select the best annotation for each peak based only on MS-Finder scores? yes 

Preset values were applied if not stated otherwise. 
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Supplementary Table 4. Data processing parameters using MS-Finder 3.52. 

Method  

Spectral database search yes 

Formula prediction and structure elucidation by in silico fragmenter yes 

Use internal experimental library (MassBank, GNPS, ReSpect yes 

User-defined DB All public MS/MS database 13.04.2021* 

Precursor oriented spectral search yes 

Basic  

Mass tolerance (MS1) 0.01 Da 

Mass tolerance (MS2) 0.05 Da 

Mass range max 1200 Da 

Mass range min 50 Da 

Formula Finder  

Element selection O, N, P, S, F, Cl, Br, I 

Time out 1 min 

Data source  

Local Databases 

LipidMAPS, YMDB, ECMDB, DrugBank, FooDB, 

PlantCyc, CheBI, T3DB, STOFF, NPA, NANPDB, 

COCONUT, KNApSAcK, PubChem, UNPD 

User-defined DB 

InChI and SMILES information of SWMD 

compounds supplemented by Eisenin, 

Pyropheophytin a, Triphlorethol A, 7-Phloroeckol, 

Eiseniachloride-A-C, Eiseniaiodide-A-B 

MINEs, PubChem Online Never use it 

*http://prime.psc.riken.jp/compms/msdial/main.html#MSP 
Preset values were applied if not stated otherwise. 

 

Supplementary Table 5. Top100 features responsible for the separation of Eisenia from Salicornia/Saccorhiza. 

 

http://prime.psc.riken.jp/compms/msdial/main.html#MSP

