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INTRODUCTION 
 

Worldwide, cancer ranks as a leading cause of death and 

disability. According to recent estimates, lung cancer is 

the leading cause of cancer-related death (1.8 million 

deaths; 18%), followed by colorectal (9.4%), liver 

(8.3%), stomach (7.7%), and female breast (6.9%) 

cancers [1]. In recent years, and overcoming 

disappointing results obtained over many decades, 

immunotherapeutic treatments have been clinically 

validated for the treatment of many cancers [2]. Among 

several immunotherapeutic modalities, antibody-based 

immune checkpoint blockade (ICB) aims at extending 

the antitumor activity of T cells by blocking the 

interaction of inhibitory receptors expressed on the 

surface of immune cells with one or more specific 

ligands typically overexpressed in tumor cells. The main 

targets for ICB treatments are cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4), lymphocyte-activation 

gene 3 (LAG-3), and programmed cell death 1(PD-1) or 

its ligand PD-L1 [3, 4]. 

 

Although ICB is generally well tolerated, about 10%  

of its recipients develop serious autoimmune effects  
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ABSTRACT 
 

Serum amyloid A-like 1 (SAAL1) was recently identified as a novel oncogene in hepatocellular carcinoma (HCC). 
To explore the potential role of SAAL1 in other cancers, we conducted a pan-cancer analysis of SAAL1 
expression and its association with tumor microenvironment (TME) immunological profiles, sensitivity to 
chemotherapy agents, response to immunotherapy, and patient prognosis. SAAL1 was overexpressed in most 
malignant tumors in association with poor prognosis. Moreover, its expression was positively correlated with 
TME-relevant immune and mismatch signatures, immunostimulatory infiltrating cells (CD4+ memory T cells, 
activated NK cells, M1 macrophages, and cytotoxic CD8+ T cells), microsatellite instability (MSI), tumor 
mutational burden (TMB), neoantigen load, and immune checkpoint markers (PD-L1, LAG-3 and CTLA-4) in 
multiple cancers. SAAL1 overexpression was also associated with immunotherapy response and overall survival 
(OS) in bladder cancer (BLCA) patients who had received anti-PD-L1 treatment. Gene set enrichment analysis 
(GSEA) further showed significant enrichment of SAAL1 in immune cell signaling, cell cycle, and cell adhesion 
pathways. Moreover, we detected tumor-specific correlations between SAAL1 expression and either 
chemoresistance or sensitivity to common chemotherapeutics. Lastly, we showed that SAAL1 silencing 
suppresses both malignant phenotype and expression of PD-L1 in lung cancer A549 cells in vitro. These findings 
suggest that SAAL1 contributes to tumorigenesis and antitumor immunity mechanisms in different cancer 
types, and may thus serve as both a prognostic biomarker and potential target for cancer immunotherapy. 
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that require specific management [5]. Therefore, the 

development of predictive biomarkers for ICB response 

is needed to optimize patient benefit, minimize the risk of 

toxicities, and guide combination approaches [6]. Of 

note, although high PD-L1 expression on tumor cells was 

associated with response to anti-PD-1 therapies in 

various malignancies, patients with PD-L1-negative 

tumors by immunohistochemistry can still achieve 

clinical benefit with anti-PD-1 or anti-PD-L1 therapies 

[7, 8]. Current evidence suggests that specific biomarkers 

and gene sets related to the tumor microenvironment 

(TME), e.g., tumor-infiltrating immune cells, as well as 

tumoral features such as microsatellite instability (MSI), 

tumor mutational burden (TMB), neoantigen load, and 

expression of immune checkpoint-related genes may 

serve as predictive biomarkers for checkpoint inhibitor 

immunotherapy [9–11]. However, at present, detection of 

these biomarkers is generally expensive and often 

difficult. Therefore, there is a pressing need to identify 

more convenient and economical methods to predict 

tumor response to immunotherapy so that more patients 

can benefit from it. 

 

The serum amyloid A-like 1 (SAAL1) gene is localized 

to chromosome 11p15.1. It consists of 12 exons 

interrupted by 11 introns [12], and encodes a protein with 

474 amino acids and a molecular weight of about 54 kDa, 

which is mainly distributed in the nucleus [13]. SAAL1 

belongs to the serum amyloid A (SAA) superfamily of 

proteins, which are, along with C-reactive protein, the 

major positive acute phase proteins in humans [12]. A 

proteomics study identified human SAAL1 as a 

phosphoprotein upregulated in synovial fibroblasts  

within rheumatoid joints, and its corresponding gene 

sequence was shown to be conserved from zebrafish to 

humans [13, 14]. Interestingly, a recent study identified 

SAAL1 as a novel oncogene in HCC [15]. Since the 

potential involvement of SAAL1 in the pathogenesis 

and progression of other cancer types, as well as  

its significance in cancer immunotherapy, remain 

unexplored, in this study we conducted a pan-cancer 

analysis of SAAL1 expression and its association  

with TME immunological characteristics, sensitivity  

to chemotherapy agents, response to anti-PD-L1 

immunotherapy, and patient prognosis. 

 

RESULTS 
 

Expression of SAAL1 in different types of cancer 

 

Datasets obtained from the Genotype-Tissue Expression 

(GTEx) database indicated that SAAL1 was lowly 

expressed in almost all human normal tissues, with liver 

and lung showing the highest and lowest expression 

levels, respectively (Figure 1A). In turn, analysis of the 

Cancer Cell Line Encyclopedia (CCLE) datasets 

showed that SAAL1 was expressed in most cancer cell 

lines, and predominantly overexpressed in skin cancer 

cell lines (Figure 1B). 

 

SAAL1 expression in cancer and paired normal 

adjacent tissue samples was then analyzed in The 

Cancer Genome Atlas (TCGA) datasets. Results 

showed that SAAL1 was significantly upregulated in 

BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, 

HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, 

PRAD, READ, STAD, THCA, and UCEC tumor 

samples (Figure 1C). Moreover, after combining normal 

tissue data from the GTEx database with tumor tissue 

data from TCGA, SAAL1 was found to be significantly 

upregulated in ACC, BLCA, BRCA, CESC, CHOL, 

COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, 

LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD, 

PCPG, PRAD, READ, SARC, SKCM, STAD, TGCT, 

THCA, UCEC, and UCS (Figure 1D). 

 

In addition, immunohistochemistry data from the 

Human Protein Atlas (HPA) indicated that SAAL1 was 

expressed at medium and high levels in normal breast 

and liver tissues, respectively, and these expression 

patterns did not differ significantly from those detected 

in the corresponding tumors (Figure 2A). In contrast, 

SAAL1 protein was expressed at low levels in normal 

lung tissues, but markedly upregulated in LUAD and 

LUSC tissues (Figure 2A). Moreover, in the National 

Cancer Institute’s Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) database, SAAL1 protein was 

significantly upregulated in breast cancer, colon cancer, 

ccRCC, UCEC, lung cancer, HNSC, GBM, and liver 

cancer compared with corresponding normal tissues. In 

turn, there was no significant difference in SAAL1 

protein expression levels between ovarian and 

pancreatic cancer tissues and their normal counterparts 

(Figure 2B). 

 

Clinical correlation analysis using TCGA data indicated 

that SAAL1 expression was significantly higher in 

LUAD and LUSC patients with a history of smoking 

than in those without (Figure 3A, 3B). In addition, 

SAAL1 expression declined with age in LUSC, but not 

in LUAD (Figure 3A, 3B). We further assessed the 

expression of SAAL1 in different cancer stages and 

found stage-dependent increases in some tumors, 

including ACC, BLCA, and KIRC. However, in both 

BLCA and KIRC, the expression of SAAL1 began to 

decrease or remained constant when the tumors reached 

stage IV (Figure 3C). 

 

Survival analysis for SAAL1 expression 

 

Since SAAL1 was highly expressed in most tumor types, 

the UCSC Xena database was used to examine the 
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Figure 1. Analysis of SAAL1 mRNA expression. Expression levels of SAAL1 in (A) normal tissues, (B) tumor cell lines, (C) tumor tissues 
and paired adjacent noncancerous tissues in TCGA datasets, and (D) normal and tumor tissue samples combined, respectively, from GTEx and 
TCGA databases. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001; ns, not significant. 
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correlation between SAAL1 expression and clinical 

prognosis in different types of cancer. Analysis of overall 

survival (OS) using the Cox univariate shrinkage 

(uniCox) model indicated that SAAL1 was a risk factor 

for OS in ACC (HR=1.917, P<0.001), ESCA 

(HR=1.153, P=0.017), KICH (HR=2.459, P<0.001), 

KIRC (HR=1.407, P<0.001), LGG (HR=1.156, 

P=0.019), LIHC (HR=1.196, P<0.001), LUAD 

(HR=1.108, P=0.015), MESO (HR=1.221, P=0.011), 

PCPG (HR=1.605, P<0.001), and UVM (HR=1.304, 

P=0.017). Surprisingly, SAAL1 expression was 

associated with decreased risk in READ (HR= 0.739, 

P=0.010) (Figure 4A). On progression-free interval (PFI) 

analysis, SAAL1 was a risk factor in ACC (HR=1.865, 

P<0.001), KICH (HR=2.862, P<0.001), KIRC 

(HR=1.369, P<0.001), KIRP (HR=1.663, P<0.001), LGG 

(HR=1.113, P=0.039), LIHC (HR=1.141, P=0.003), 

LUAD (HR=1.089, P=0.022), MESO (HR=1.250, 

P=0.009), PCPG (HR=1.348, P=0.002), PRAD 

(HR=1.138, P=0.007), and UCS (HR=1.147, P=0.035) 

(Figure 4C). 

 

In addition, Kaplan-Meier (KM) analysis of OS 

indicated that high SAAL1 expression predicted worse 

OS in patients with ACC, KICH, KIRC, LIHC, LUAD, 

MESO, PCPG, and UVM (Figure 4B). Meanwhile, KM 

curves for PFI showed that high SAAL1 expression 

predicted shorter PFI times in patients with ACC, 

KICH, KIRC, LIHC, LUAD, MESO, PRAD, and UCS 

(Figure 4D). 

 

 
 

Figure 2. Analysis of SAAL1 protein expression. (A) Representative immunohistochemical staining for SAAL1 in normal and tumoral 

breast, liver, and lung tissues (images obtained from HPA). (B) SAAL1 protein expression levels in normal and tumor tissues. *P<0.05; 
**P<0.01; ***P<0.001; ns, not significant. 
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Alterations and promoter methylation status of the 

SAAL1 gene in different types of cancer 

 

Based on data from the cBioPortal database, mutations 

were the most prevalent alterations in the SAAL1 gene 

among different cancers, with UCEC and SKCM 

showing in turn the highest mutation rates (>2%) 

(Figure 5A). In turn, missense mutations were the main 

type of mutations for the different cancers analyzed 

(Figure 5B). Moreover, pan-cancer KM analysis of  

OS indicated that patients with SAAL1 gene alterations 

had improved OS compared with those with unaltered 

SAAL1 (Figure 5C). Furthermore, as shown in Figure 

5D, SAAL1 promoter methylation levels were 

significantly lower in LUAD and LUSC than in normal 

lung tissues. 

 

 
 

Figure 3. Correlation analysis of SAAL1 expression and clinical parameters. SAAL1 expression in (A) LUAD and (B) LUSC stratified 
according to patients’ smoking history and age. (C) SAAL1 expression as a function of tumor stage. *P<0.05; **P<0.01; ***P<0.001; ns, not 
significant. 



www.aging-us.com 6321 AGING 

Correlation of SAAL1 expression with tumor-

infiltrating immune cells and TME-relevant signatures 

 

Using the CIBERSORT algorithm, we found that in 

most cancer types SAAL1 expression was positively 

correlated with the frequency of favorable tumor-

infiltrating immune cells (i.e., favoring anti-tumor 

immunity) such as activated CD4+ memory T cells, 

activated NK cells, M1 macrophages, and cytotoxic 

CD8+ T cells, and negatively correlated with unfavorable 

tumor-infiltrating immune cells (i.e., favoring 

suppression of anti-tumor immunity) such as regulatory 

T cells (Tregs), resting mast cells, and resting CD4+ 

memory T cells (Figure 6A). 

 

 
 

Figure 4. Relationship between SAAL1 expression and OS and PFI. (A) Forest plot of hazard ratios for OS (univariate survival analysis) 

in various cancer types. (B) Kaplan-Meier curves for OS derived from patients stratified according to SAAL1 gene expression. (C) Forest plot of 
hazard ratios for PFI. (D) Kaplan-Meier curves for PFI. 
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As shown in Figure 6B, SAAL1 expression was 

positively correlated with immune signatures in most 

types of cancer, except for HYM, LAML, LUSC, OV, 

DLBC, GBM, PRAD, and SKCM. SAAL1 expression 

was also positively correlated with mismatch 

signatures in most types of cancer, except for CHOL, 

DLBC, and CESC. Lastly, SAAL1 expression was 

negatively correlated with stromal signatures in most 

types of cancer, except for UVM, ACC, LIHC, and 

LGG. 

 

 
 

Figure 5. Analysis of SAAL1 gene alterations and promoter methylation status in various cancer types. (A) SAAL1 gene alteration 

types and frequencies in different cancer types. (B) Mutation types, sites, and frequencies (case numbers). (C) Survival curves for cancer 
patients with and without altered SAAL1. (D) SAAL1 promoter methylation status in LUAD and LUSC. 
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Figure 6. Correlation analysis of SAAL1 expression with tumor-infiltrating immune cells and TME-relevant signatures in 
various cancer types. (A) Tumor-infiltrating immune cells. (B) TME-relevant signatures. *P<0.05; **P<0.01; ***P<0.001. 
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Association of SAAL1 expression with immune-

relevant genes 

 

SAAL1 expression correlated with that of several 

immune-relevant genes, albeit with different patterns in 

different tumor types. As shown in Figure 7A, SAAL1 

was positively correlated with immunostimulatory 

genes in most types of cancers, including CHOL, LIHC, 

THCA, KIRC, ACC, HNSC, BLCA, KIRP, PAAD, 

LUAD, and BRCA. However, a negative correlation 

was found for THYM, TGCT, DLBC, LUSC, COAD, 

READ, GBM, LAML, UCEC, PRAD, CESC, and 

SKCM. For chemokine-coding genes, a positive 

correlation was found for ACC, BLCA, BRCA, HNSC, 

KIRC, LIHC, LUAD, STAD, and THCA, and a 

negative correlation was detected for LUSC, TGCT, 

THYM, and DLBC (Figure 7B). For MHC genes, a 

positive correlation was found for CHOL, UVM, LIHC, 

THCA, BLCA, HNSC, BRCA, PAAD, PCPG, STAD, 

and LGG, whereas a negative correlation was noted  

for DLBC, TGCT, LUSC, SARC, READ, LAML, 

SKCM, THYM, UCEC, GBM, PRAD, CESC, COAD, 

and OV (Figure 7C). Regarding the association between 

SAAL1 and chemokine receptor genes, a positive 

correlation was observed for CHOL, THCA, KIRC, 

LIHC, and ACC, whereas this correlation was negative 

for THYM, HNSC, TGCT, DLBC, CESC, GBM, 

LUSC, READ, PRAD, LGG, SKCM, LAML, ESCA, 

and COAD (Figure 7D). In summary, SAAL1 

expression showed an especially evident positive 

association with immune-relevant genes in CHOL, 

THCA, LIHC, and STAD, whereas a mostly negative 

correlation was instead detected for THYM, TGCT, 

DLBC, and LUSC. 

 

 
 

Figure 7. Correlation analysis of SAAL1 expression and immune-relevant genes in various cancer types. (A) Immunostimulatory 
genes. (B) Chemokine genes. (C) MHC genes. (D) Chemokine receptor genes. *P<0.05; **P<0.01; ***P<0.001. 
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Functional enrichment analysis of SAAL1 in different 

types of cancer 

 

To explore the potential mechanisms by which SAAL1 

may contribute to carcinogenesis, gene set enrichment 

analysis (GSEA) was performed in TCGA cohorts to 

identify functionally enriched Kyoto Encyclopedia  

of Genes and Genomes (KEGG) pathways and Gene 

Ontology (GO) terms related to immune-relevant 

pathways in high and low SAAL1-expressing cancers 

(Figure 8). KEGG enrichment analysis showed  

that high expression of SAAL1 was mainly associated 

with KEGG-ANTIGEN PROCESSING AND 

PRESENTATION (THCA and LIHC), KEGG-

CHEMOKINE SIGNALING PATHWAY (CHOL and 

BRCA), KEGG-CYTOKINE CYTOKINE RECEPTOR 

INTERACTION (CHOL), and KEGG-NATURAL 

KILLER CELL MEDIATED CYTOTOXICITY 

(CHOL). In turn, low expression of SAAL1 was 

mainly associated with KEGG-CHEMOKINE 

SIGNALING PATHWAY (THYM, TGCT, DLBC, 

and LUSC), and KEGG-CYTOKINE CYTOKINE 

RECEPTOR INTERACTION (THYM, TGCT, DLBC, 

and LUSC). Next, the association of tumors with  

high and low SAAL1 expression and immune-related 

processes was assessed through GO enrichment analysis. 

Results indicated that high expression of SAAL1  

was mainly associated with GOBP-LYMPHOCYTE 

 

 
 

Figure 8. GSEA for SAAL1-enriched KEGG pathways and GO terms in tumors (THCA, LIHC, CHOL, STAD, THYM, TGCT, DLBC 
and LUSC) with high and low SAAL1 expression. The upward trend of the enrichment score (ES) lines denote pathway enrichment in 

the high SAAL1 expression group, and the downward trend of the ES lines indicate pathway enrichment in the low SAAL1 expression group. 
The top five items with the highest correlation with SAAL1 expression were analyzed by KEGG and GO enrichment analysis. 
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ACTIVATION (THCA and CHOL), GOBP-INNATE 

IMMUNE RESPONSE (THCA), GOBP-

INFLAMMATORY RESPONSE (THCA and LIHC), 

and GOBP-POSITIVE REGULATION OF IMMUNE 

RESPONSE (LIHC, CHOL, and BRCA). In turn, low 

expression of SAAL1 was mainly associated with 

GOBP-LYMPHOCYTE ACTIVATION (THYM), 

GOBP-POSITIVE REGULATION OF IMMUNE 

RESPONSE (DLBC), and GOBP-CELL ACTIATION 

INVOVED IN IMMUNE RESPONSE (LUSC). In 

addition, we detected significant associations of SAAL1 

expression with CELL CYCLE, REGULATION OF 

MAPK CASCADE, REGULATION OF PROTEIN 

PHOSPHORYLATION, and FOCAL ADHESION, 

among other GO terms. 

 

Association of SAAL1 with the immune checkpoint 

genes, MSI, TMB, and neoantigen load 

 

Cancer prognosis is importantly determined by 

immunosurveillance efficacy, which is critically 

influenced by the expression of immune checkpoint-

related genes, such as PD-L1, CTLA-4, and LAG-3, in 

cancer cells [16]. Hence, we examined the association 

between SAAL1 and immune checkpoint-related  

gene expression in different cancer types. As shown in 

Figure 9A, SAAL1 expression was positively correlated 

with immune checkpoint gene expression in numerous 

cancer types, including CHOL, LIHC, THCA, STAD, 

PAAD, KIRC, KIRP, HNSC, BLCA, LUAD, BRCA, 

and READ. In turn, a negative correlation between 

SAAL1 and immune checkpoint gene expression was 

detected in THYM, TGCT, LAML, DLBC, COAD, 

PRAD, LUSC, GBM, SKCM, and CESC. Furthermore, 

SAAL1 was positively correlated with CD274 (PD-L1) 

in most cancer types, including LIHC, STAD, KIRC, 

KIRP, HNSC, KICH, ACC, LUAD, and LGG. 

Regarding CTLA-4, a positive correlation with SAAL1 

was observed in LIHC, THCA, KIRC, HNSC, BLCA, 

LUAD, BRCA, and UCEC. In addition, SAAL1 was 

positively correlated with LAG-3 in LIHC, THCA, 

STAD, PAAD, KIRC, KIRP, BLCA, KICH, LUAD, 

BRCA, LGG, and UCEC. 

 

The expression of SAAL1 was significantly correlated 

with higher MSI in UCS, STAD, HNSC, UVM, UCEC, 

KIRC, LIHC, COAD, CESC, SARC, THCA, PRAD, 

and BRCA (Figure 9B). In addition, SAAL1 was 

positively correlated with TMB in STAD, KIRC, 

UCEC, CESC, CHOL, PCPG, LIHC, COAD, GBM, 

THCA, HNSC, and LUAD, and negatively correlated 

with TMB in KIRP (Figure 9C). As for neoantigen load, 

there was a positive correlation for SAAL1 in STAD, 
SKCM, UCEC, and BRCA (Figure 9D). Overall, these 

analyses indicated that SAAL1 expression was 

correlated with that of immune checkpoint genes, albeit 

with different patterns in different tumor types. 

Specifically, it is worth noting that SAAL1 was 

positively correlated with PD-L1, CTLA-4, and LAG-3 

in most cancer types. Similarly, the association between 

SAAL1 expression and MSI, TMB, and neoantigen load 

was positive in most tumors. 

 

Cohort validation of the prognostic effect of SAAL1 

on immunotherapy 

 

The association of SAAL1 with TME-relevant signatures 

in BLCA was analyzed using the CIBERSORT 

algorithm. The results indicated that high expression of 

SAAL1 was significantly associated with immune 

signatures (TMEscoreA, Antigen-processing-machinery, 

Immune-Checkpoint, CD-8-T-effector, and TMEscore) 

and mismatch signatures (Base-excision-repair, DNA-

replication, DNA-damage-response, Nucleotide-excision-

repair, and Mismatch-Repair). On the contrary, low 

SAAL1 expression was significantly associated with 

stromal signatures (Pan-F-TBRs, EMT1, EMT2, and 

TMEscoreB) (Figure 10A). These results suggested that 

high expression of SAAL1 correlates with a favorable 

response to immunotherapy. 

 

The success of PD-L1 blockade therapies in clinical 

trials has greatly advanced the interest in cancer 

immunotherapy [17]. Using data from the IMvigor210 

study, the correlation between SAAL1 expression and 

therapeutic response to PD-L1 blockade immunotherapy 

was examined in BLCA patients. Results showed that 

the response rate in patients with high SAAL1 

expression (73/216) was higher than in those with low 

SAAL1 expression (25/132) (34% vs 19%, χ2=8.939, 

P=0.003) (Figure 10B). Accordingly, KM analyses 

indicated that high SAAL1 expression was associated 

with improved OS in BLCA patients who had received 

PD-L1 immunotherapy (Figure 10C). 

 

SAAL1 drug sensitivity analysis in cancer cell lines 

 

To further investigate the potential correlation between 

SAAL1 expression and anticancer drug sensitivity,  

we accessed the CellMiner database to retrieve  

drug sensitivity and RNA-Seq information for the 

NCI-60 panel of cancer cell lines. Notably, SAAL1 

expression was positively correlated with sensitivity  

to chelerythrine, PX-316, nelarabine, AT-13387, 

ifosfamide, vorinostat, belinostat, and obatoclax 

(Figure 11). Moreover, our results indicated that 

SAAL1 expression was negatively associated with 

sensitivity to everolimus, benzylguanine, LY-294002, 

rapamycin, 5-fluoro deoxyuridine, paclitaxel, cisplatin, 
olaparib, and denileukin diftitox (Ontak) (Figure 11). 

These data indicated that high SAAL1 expression 

might be associated with chemoresistance to common 
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chemotherapeutic agents, including paclitaxel, cisplatin, 

and 5-fluoro deoxyuridine. 

 

SAAL1 depletion inhibits the malignant phenotype 

of lung cancer cells in vitro 

 

Since our analysis of CCLE datasets indicated that 

SAAL1 is overexpressed in lung cancer cell lines, we 

next explored the effect of SAAL1 on the proliferation, 

migration, and invasion of human lung A549 cancer 

cells. Results of EdU and CCK-8 assays indicated that 

siRNA-mediated depletion of SAAL1 significantly 

suppressed proliferation (Figure 12A), as well as 

migration and invasion (Figure 12B). Moreover, 

western blotting confirmed that SAAL1 was highly 

expressed in A549 cells, and its depletion significantly 

reduced both protein and mRNA levels of PD-L1 

(Figure 12C). 

 

 
 

Figure 9. Correlation analysis of SAAL1 with immune checkpoint genes, microsatellite instability, tumor mutational burden, 
and neoantigen load. (A) Immune checkpoint genes. (B) Microsatellite instability. (C) Tumor mutational burden. (D) Neoantigen load. 
*P<0.05; **P<0.01; ***P<0.001. 
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Figure 10. Correlation analysis of SAAL1 expression and TME-relevant signatures and immune checkpoint blockade 
therapy in BLCA. (A) Correlation analysis of SAAL1 expression and TME-relevant signatures. (B) Correlation between high and low 

SAAL1 expression and therapeutic response to PD-L1 blockade immunotherapy in BLCA patients. (C) SAAL1 expression-based Kaplan-
Meier OS curves for BLCA patients who had received anti-PD-L1 immunotherapy. *P<0.05; **P<0.01; ***P<0.001; ns, not significant. 
Hexp, high SAAL1 expression; Lexp, low SAAL1 expression. Response: CR, complete response; PR, partial response. No response: PD, 
progressive disease; SD, stable disease. 
 

 
 

Figure 11. Analysis of SAAL1 drug sensitivity. The expression of SAAL1 was associated with the sensitivity of chelerythrine, PX-316, 

nelarabine, AT-13387, ifosfamide, vorinostat, belinostat, obatoclax, everolimus, benzylguanine, LY-294002, rapamycin, 5-fluoro deoxyuridine, 
paclitaxel, cisplatin, olaparib, and denileukin diftitox (Ontak). Cor, correlation coefficient. 
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DISCUSSION 
 

A recent study identified a novel oncogenic role for 

SAAL1, a ubiquitously expressed protein associated 

with cell cycle and liver inflammation, in HCC [15]. 

Since apart from the mentioned study the role of 

SAAL1 in other cancer types has not been clarified, we 

undertook a comprehensive pan-cancer analysis of 

SAAL1 expression and its association with tumor-

related features. 

 

Our data indicated that SAAL1 was expressed at low 

levels in almost all normal human tissues, which 

suggests an important role in embryonic development 

and/or essential cell processes. In turn, analysis of the 

GTEx database and the HPA repository indicated that 

 

 
 

Figure 12. SAAL1 silencing inhibits proliferation, migration, and invasion and downregulates PD-L1 expression in lung cancer 
cells. A549 cells were transfected with control or SAAL1-targeting siRNAs (siRNA1 and siRNA2). (A) EdU and CCK-8 proliferation assay results. 

(B) Transwell migration and invasion assay results. (C) Western blotting and RT-qPCR analysis of SAAL1 and PD-L1 expression. GAPDH was 
used as the loading control. *P<0.05, **P<0.01 vs. Con group. 
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the expression of SAAL1 was the highest in normal 

liver. These results are thus consistent with previous 

finding indicating that SAAL1 is mainly synthesized by 

hepatocytes, where it acts as an acute-phase protein 

during acute inflammation [12]. Analysis of CCLE 

datasets indicated that SAAL1 was expressed in most 

cancer cell lines, which suggested an important role in 

the development of multiple cancer types. In addition, 

most of the 19 cancer types examined in the present 

study exhibited higher SAAL1 expression than their 

corresponding normal tissues in TCGA datasets. 

Furthermore, when normal tissue data from GTEx 

database was combined with tumor tissue data from 

TCGA, SAAL1 mRNA was found to be significantly 

upregulated in 29/33 tumor types. In turn, assessment of 

proteomic data from the CPTAC database indicated that 

SAAL1 protein levels were significantly upregulated in 

eight types of cancer, compared with their normal 

counterparts. These results suggested that SAAL1 

expression might be used as a diagnostic biomarker in 

selected tumors. 

 

Smoking is closely associated with lung cancer. Our 

results showed that the expression of SAAL1 in patients 

with LUAD and LUSC who smoked was significantly 

higher than in those who did not smoke, suggesting that 

smoking may lead to high SAAL1 expression in LUAD 

and LUSC. Moreover, SAAL1 expression declined with 

age in LUSC, but not in LUAD. These results suggest 

that SAAL1 has heterogeneous biological functions in 

different types of tumors. We further observed that 

SAAL1 expression increased with tumor stage in ACC; 

this result suggested that SAAL1 may play an important 

role in the development of ACC. 

 

According to uniCox analysis and KM curves of OS 

and PFI, high expression of SAAL1 was significantly 

associated with poor prognosis in ACC, ESCA, KICH, 

KIRC, LGG, LIHC, LUAD, MESO, PCPG, UVM, 

KIRP, PRAD, and UCS. Thus, SAAL1 was not only 

upregulated in multiple tumor types but also associated 

with their prognosis, which suggested that SAAL1 may 

represent a diagnostic biomarker and a prognostic 

indicator for some tumors. In this regard, because high 

SAAL1 levels are present in blood [12], and 

overexpression occurs in many malignant tumors, 

blood-based SAAL1 testing may constitute an easily 

available strategy for tumor diagnosis. 

 

Subsequently, we accessed the cBioPortal database to 

examine the record of known alterations in the SAAL1 

gene in different tumors. The results indicated that 

mutations were the main type of alterations in the 
SAAL1 gene in most cancer types evaluated. Therefore, 

it may be hypothesized that mutations in the SAAL1 

gene mainly account for its abnormal expression in a 

variety of tumor tissues. Moreover, we found that cancer 

patients with SAAL1 gene alterations had better OS than 

those without alterations in this gene. DNA methylation 

is one of the most studied epigenetic modifications in 

mammals, and a major mechanism of transcriptional 

silencing. In tumor cells, DNA demethylation was 

shown to promote the expression of diverse oncogenes 

[18]. The present study showed that SAAL1 was 

overexpressed in LUAD and LUSC. Consistent with this 

observation, SAAL1 promoter methylation levels were 

significantly reduced in these tumor types. This 

suggested that promoter hypomethylation may be 

another reason for the high expression of SAAL1 in 

tumor tissues. 

 

The TME shapes tumor development and progression 

through the interaction between tumor cells and 

surrounding stromal cells (e.g., fibroblasts, vascular and 

immune cells) that have distinct structural and 

immunological functions [19]. In the present study, 

SAAL1 expression correlated positively with favorable 

tumor-infiltrating immune cells such as activated CD4+ 

memory T cells, activated NK cells, M1 macrophages, 

and CD8+ T cells, and negatively with unfavorable 

tumor-infiltrating immune cells such as Tregs, resting 

mast cells, and resting CD4+ memory T cells. These 

results suggest that high expression of SAAL1 is 

conducive to the formation of an immune-inflamed 

phenotype in most human solid tumors. Noteworthy, 

many studies have suggested that this phenotype is most 

responsive to ICB therapies [20–22]. Moreover, with 

the exception of THYM, LAML, LUSC, OV, TGCT, 

and DLBC, in the other tumors analyzed the expression 

of SAAL1 was positively correlated with immune and 

mismatch signatures and negatively correlated with 

stromal signatures. These results suggest that ICB 

therapies might be more effective in high-SAAL1-

expressing tumors. In addition, there was a marked 

correlation between the expression of SAAL1 and that 

of immune-relevant (e.g., immunostimulatory, 

chemokine-related, and MHC-related) genes in most 

tumors. Most notably, a positive correlation was noted 

for CHOL, THCA, LIHC, and STAD, whereas a 

negative correlation was observed for THYM, TGCT, 

DLBC, and LUSC. Supporting the observed 

correlations between tumoral SAAL1 expression and 

immune-relevant genes, functional enrichment analysis 

showed differential enrichment in various immune-

relevant pathways for tumors with high and low SAAL1 

expression. These findings strongly suggest that high 

and low SAAL1 expression promote and inhibit, 

respectively, antitumor immunity. However, the impact 

of SAAL1 on tumorigenesis may not be restricted to 
modulation of immunological responses, as significant 

associations between tumoral SAAL1 expression and 

various cellular processes, including cell cycle, MAPK 
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signaling, regulatory protein phosphorylation, and cell 

adhesion, were further observed in the present study. 

 

There was overall a significantly positive correlation 

between the expression of SAAL1 and that of PD-L1, 

CTLA-4, and LAG-3, three major immune checkpoint 

targets of immunotherapy. Moreover, SAAL1 

expression was also positively correlated with MSI in 

13 cancer types, with TMB in 12 cancer types, and with 

neoantigen load in 4 cancer types. Therefore, SAAL1 

might be a pan-cancer biomarker of favorable prognosis 

for ICB therapy. We tested this hypothesis in a cohort 

of BLCA patients who had received immunotherapy. 

The results demonstrated that patients with high SAAL1 

expression had higher response rates and longer OS 

after receiving PD-L1 blockade therapy. These findings 

would suggest that stimulation of SAAL1 expression in 

low-SAAL1-expressing tumors by pharmacological or 

biological agents may be effective to render them 

sensitive to immunotherapy. Thus, both cell-based and 

animal studies are needed to confirm these hypotheses 

in future studies. 

 

A previous study showed that suppression of SAAL1 

increased the chemosensitivity of HCC cells to 

sorafenib and foretinib treatments [15]. In our study, 

data from the CellMiner database suggested that 

SAAL1 expression is associated with chemoresistance 

to certain chemotherapeutic agents commonly used 

clinically. Lastly, the contribution of SAAL1 to 

tumorigenesis was suggested by our in vitro 

experiments, which showed that depletion of SAAL1 

significantly inhibited proliferation, migration, and 

invasion, and reduced protein and mRNA expression of 

PD-L1 in lung cancer A549 cells. Overall, our findings 

suggest that SAAL1 not only contributes to the tumor 

onset and development but is also closely related to 

their response to chemotherapy and immunotherapy. 

 

In summary, our study comprehensively analyzed the 

landscape of SAAL1 expression in different types of 

cancer. In general terms, our findings indicated that 

different mutations are associated with SAAL1 

overexpression and pro-oncogenic activity in many 

solid tumors. Interestingly, our data indicate that 

SAAL1 may facilitate either resistance or sensitivity to 

chemotherapy and immunotherapies, depending on 

tumor type and expression levels. Our study has, 

however, some limitations. Most of our data were 

mined using public databases, and lack experimental 

verification. In this regard, and because lung cancer is 

by far the most prevalent tumor, we limited our in vitro 

studies addressing the tumorigenic role of SAAL1 to the 
A549 cell line, in which SAAL1 is overexpressed. 

Nevertheless, we expect our findings to be useful for 

guiding future research on the role of SAAL1 in other 

types of tumors and to help design novel strategies to 

improve cancer treatment. 

 

MATERIALS AND METHODS 
 

Expression analysis of SAAL1 

 

SAAL1 expression in normal tissues was assessed via 

the Genotype-Tissue Expression database (GTEx; 

https://gtexportal.org) [23]. In addition, data downloaded 

from the Cancer Cell Line Encyclopedia (CCLE; 

https://sites.broadinstitute.org/ccle/) were used to analyze 

the expression of SAAL1 in cancer cell lines from 30 

types of cancer. Then, RNA-seq datasets from 33 types 

of cancer in The Cancer Genome Atlas (TCGA; 

https://portal.gdc.cancer.gov/) [24] were used to analyze 

the differences in SAAL1 expression between tumor  

and paired normal tissue samples. Moreover, considering 

the small number or absence of normal samples for  

some tumor types in TCGA, normal tissue data from 

GTEx database were combined with the TCGA tumor 

tissue data to investigate the differential expression of 

SAAL1 in 33 cancerous tissues. The Human Protein 

Atlas database (HPA; https://www.proteinatlas.org/) was 

used to visually display the protein expression of 

SAAL1 in the form of immunohistochemical (IHC) 

staining. Furthermore, we used UALCAN portal 

(http://ualcan.path.uab.edu/index.html) [25] to conduct a 

protein expression analysis of SAAL1 between different 

tumors, using the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) dataset. In addition, the 

clinicopathological characteristics of the patients 

(smoking, age, and 8th World Health Organization 

[WHO] pathological stages) were obtained from TCGA 

and assessed for their association with SAAL1 

expression. All data were obtained in January 2022. 

 

Survival analysis of SAAL1 in different types of 

cancer 

 

Overall survival (OS) and progression-free interval 

(PFI) outcomes were obtained from the UCSC Xena 

database (https://xena.ucsc.edu/) and examined to assess 

the relationship between SAAL1 expression and patient 

prognosis. A univariate Cox model was used to evaluate 

the relationships between SAAL1 expression and 

various survival outcomes in a pan-cancer analysis. 

Data were visualized as forest plots using the 

“forestplot” (version 1.10.1) R package. The median of 

SAAL1 expression in each tumor was used as cutoff 

value to divide patients into high and low expression 

subgroups. The survival data of each cancer type were 

assessed by the Kaplan-Meier survival method, and 
survival curves were drawn using the R packages 

“survminer” (version 0.4.9) and “survival” (version 

3.210). P<0.05 was considered significant. 

https://gtexportal.org/
https://sites.broadinstitute.org/ccle/
https://portal.gdc.cancer.gov/
https://www.proteinatlas.org/
http://ualcan.path.uab.edu/index.html
https://xena.ucsc.edu/
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Analysis of SAAL1 gene alterations and promoter 

methylation status 

 

The alteration status (alteration frequency and type) of 

the SAAL1 gene was analyzed in TCGA tumor datasets 

from cBioPortal (https://www.cbioportal.org/). This 

platform was further used to display mutated sites, using 

the Mutation-Mapper module, and to retrieve pan-cancer 

(with or without SAAL1 genetic alteration) OS data, 

using the Comparison module. Kaplan-Meier plots with 

Renyi-type tests and P-value were acquired as well. 

Data on the promoter methylation status of SAAL1 in 

LUAD and LUSC were obtained from the UALCAN 

database (http://ualcan.path.uab.edu/index.html). DNA 

methylation data were presented as β values ranging from 

0 (unmethylated) to 1 (fully methylated). 

 

Correlation analysis of SAAL1 expression and 

immunological characteristics 

 

The Cell type Identification by Estimating Relative 

Subsets of RNA Transcripts (CIBERSORT) portal 

(https://cibersort.stanford.edu) [26] was used to analyze 

the relationship between SAAL1 and 22 types of tumor-

infiltrating immune cells in TCGA datasets, based on 

TME scores and gene sets related to three tumor 

microenvironment (TME)-relevant signatures: immune 

signatures (Antigen-processing-machinery, Immune-

Checkpoint, CD8-T effector, TMEscoreA, and 

TMEscore), mismatch signatures (Mismatch-Repair, 

Nucleotide-excision-repair, DNA-damage-response, 

DNA-replication and Base-excision-repair), and stromal 

signatures (epithelial-to-mesenchymal transition (EMT) 

1, EMT2, EMT3, pan tissue fibroblast TGF-β response 

signature (Pan-F-TBRs) and TMEscoreB). These 

signatures represent three core tumor immune biological 

pathways: (I) pre-existing T-cell immunity and (II) 

tumor mutation burden (TMB) is positively associated 

with immunotherapy outcome, whereas (III) TGF-β is 

associated with lack of immunotherapy response and 

reduced survival [27–29]. 

 

In addition, the relationship between SAAL1 expression 

and immune-related (e.g., immunostimulatory, immune 

checkpoint, major histocompatibility complex (MHC), 

chemokine and chemokine receptor) genes was examined 

using the TISIDB website (http://cis.hku.hk/TISIDB/) 

[30] through estimation of Pearson’s correlation 

coefficients. 

 

Functional enrichment analysis of SAAL1 in different 

types of cancer 

 
To explore the involvement of SAAL1 in signal 

transduction pathways, gene set enrichment analysis 

(GSEA) [31] was performed on high and low SAAL1-

expressing cancer types, using the median SAAL1 

expression level as threshold. The top five terms for the 

gene sets in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Gene Ontology (GO) signatures 

were obtained from GSEA (https://www.gsea-

msigdb.org/gsea/downloads.jsp). Pathways were 

considered significantly enriched based on NES>1, 

P<0.05, and FDR<0.25. The R packages ‘limma’ 

(version 3.44.3), ‘org.Hs.eg.db’ (version 3.11.4), 

‘enrichplot’ (version 1.8.1), and ‘clusterProfiler’ (version 

3.16.1) were applied for GSEA. 

 

Analysis of the association of SAAL1 with 

microsatellite instability (MSI), tumor mutational 

burden (TMB), and neoantigen load 

 

MSI arises in tumors with deficient DNA mismatch 

repair and denotes hypermutability due to changes in 

genomic short tandem repeat sequences known as 

microsatellites [32]. TMB is defined as the total number 

of somatic mutations present in defined coding regions of 

the tumor genome [33]. Tumor neoantigens load arising 

from cancer-specific mutations generate a molecular 

fingerprint that has a definite specificity for cancer [34]. 

The genome-wide neoantigen landscape for each sample 

was predicted by NetMHCpan (version 3.0) [35]. MSI, 

TMB, and neoantigen load status impact the development 

of cancers and represent useful biomarkers for evaluating 

the therapeutic efficacy of immune checkpoint inhibitors. 

The analysis of the association between SAAL1 

expression and MSI, TMB, and neoantigen load was 

carried out using Spearman’s correlation coefficient. The 

‘fmsb’ (version 0.7.2), ‘limma’ (version 3.28.14), and 

‘dplyr’ (version 0.7.8) R packages were used to analyze 

somatic data from different types of cancers in TCGA. 

 

Cohort validation of the prognostic effect of SAAL1 

on immunotherapy 

 

A systematic study of immune checkpoint gene 

expression profiles was performed by retrieving  

gene expression and immunotherapeutic effect data 

from the IMvigor210 cohort [27] using the 

‘IMvigor210CoreBiologies’ package in R. Based on 

cohort data, the influence of SAAL expression (by 

RNA-Seq) on immunotherapy response (response; 

complete response (CR), partial response (PR); no 

response; progressive disease (PD); stable disease 

(SD)) was investigated using Chi-square tests. 

Furthermore, according to the correlation between 

SAAL1 expression and patient survival, the ‘surv-

cutpoint’ function of the ‘survminer’ (version 0.4.9) R 

package was used to divide patients into high and low 
SAAL1 expression groups according to the median of 

the cohort. The Kaplan-Meier method and log-rank 

tests were used to analyze patient OS. 

https://www.cbioportal.org/
http://ualcan.path.uab.edu/index.html
https://cibersort.stanford.edu/
http://cis.hku.hk/TISIDB/
https://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.gsea-msigdb.org/gsea/downloads.jsp
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Analysis of drug sensitivity of SAAL1 

 

To evaluate the sensitivity of SAAL1 to anticancer 

drugs, Spearman’s correlation was applied to examine 

drug activity data and RNA-seq expression profiles 

from the NCI-60 panel of human cancer cell  

lines available in the CellMiner™ database 

(https://discover.nci.nih.gov/cellminer/home.do) [36]. 

Drugs approved by the FDA or used in clinical trials 

were selected for analysis, which was conducted using 

the ‘impute’ (version 1.46.0), ‘limma’ (version 3.28.14), 

‘ggplot2’ (version 3.3.3), and ‘ggpubr’ (version 0.4.0) 

packages in R. 

 

Cell culture and small interfering RNA (siRNA) 

transfection 

 

The human LUAD cell line A549 was purchased from 

the Cell Culture Center (Chinese Academy of Medical 

Sciences, Shanghai, China). The cell line was verified by 

STR profiling and was free of mycoplasma infection. 

A549 cells were cultured in 6-well plates in RPMI-1640 

medium containing 10% fetal bovine serum (both from 

Hyclone|Cytiva, Logan, UT, USA) in a 37° C/5% CO2 

incubator. When the cells reached 30%-50% confluence, 

SAAL1-targeting siRNAs, and corresponding control 

siRNAs (designed and synthesized by Shanghai 

GenePharma Co., Ltd., Shanghai, China) were 

introduced using Lipofectamine® 3000 reagent 

(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, 

MA, USA) according to the manufacturer’s protocols. 

The transfected cells were incubated at 37° C and 5% 

CO2 for 48 h prior to experiments. The siRNAs 

sequences were: SAAL1-targeting siRNA1: sense: 5’-

CCACCUACUCUGCUGGAAATT-3’; anti-sense: 5’-U 

UUCCAGCAGAGUAGGUGGTT-3’. SAAL1-targeting 

siRNA2: sense: 5’-GGUUGUGGACAAGCUCUUUTT-

3’; anti-sense: 5’-AAAGAGCUUGUCCACAACCTT-

3’. Control siRNA: sense: 5’-UUCUCCGAACGUGU 

CACGUTT-3’; anti-sense: 5’-ACGUGACACGUUCGG 

AGAATT-3’. 

 

Cell proliferation assays 

 

Cell proliferation was evaluated using an EdU Cell 

Proliferation Assay kit (Cat. C0071S; Beyotime, 

Shanghai, China). Cells were seeded into 6-well plates 

at a density of 5×103 cells/ml. Following incubation 

with 50 μM EdU solution for 12 h, cells were fixed in 

4% paraformaldehyde for 30 min, and further incubated 

in 5% glycine for 5 min at room temperature. The cells 

were then washed in 1× PBS, followed by treatment 

with 0.5% Triton X-100 at room temperature for 30 
min. Thereafter, 100 µl Apollo® mixture (Cat. C0071S; 

Beyotime) was added to each well for 30 min at room 

temperature. Cell nuclei were then stained using 

Hoechst 33342 solution (25° C, 25 min) and images 

were captured using a fluorescence microscope 

(Observer A1; ZEISS, Germany). The number of EdU-

positive cells was counted using ImageJ software 

(version 1.8.0-172, National Institutes of Health). 

 

Cell viability was evaluated using a CCK-8 kit 

(Beyotime Institute of Biotechnology). Transfected 

A549 cells were seeded in 96-well plates at a density of 

5×103 cells/well and viability examined at 6, 24, 48, 72, 

and 96 h post-transfection after 2-h incubation in CCK-

8 solution, according to the manufacturer’s protocol. 

Absorbance was measured at 450 nm using a microplate 

reader (Tecan Infinite M200PRO; Tecan Group Ltd). 

 

Transwell migration and invasion assays 

 

Transwell assays were done as reported in the previous 

study [37]. For cell invasion assays, Matrigel (Corning, 

NY, USA) was diluted at a 1:3 ratio and spread evenly 

onto the bottom of 24-well transwell inserts. Uncoated 

inserts were used for migration assays. Non-transfected 

A549 cells, as well as control siRNA-, siRNA1-, and 

siRNA2-transfected A549 cells were harvested and 

counted during the logarithmic growth phase, and a cell 

suspension (1×106 cells/ml) was prepared with serum-

free RPMI 1640 medium. Cell suspension (150 µl) was 

added to each chamber in a 24-well transwell plate 

(Corning, NY, USA), and 600 µl RPMI 1640 medium 

containing 20% FBS was added to each lower chamber. 

Subsequently, the upper chambers were inserted into the 

lower chambers and placed in a 5% CO2 incubator at 

37° C for 24 h. The inserts were then removed and fixed 

in 4% paraformaldehyde prior to crystal violet staining. 

Cells were counted using ImageJ software in randomly 

selected visual fields at 100× magnification using a 

fluorescence microscope (Observer A1; ZEISS). 

 

Western blotting 

 

Cells were lysed using lysis buffer (Cat. 9803S; Cell 

Signaling Technology Inc., Danvers, MA, USA) 

supplemented with a protease inhibitor cocktail  

(Cat. 11697498001; Roche Diagnostics, GmbH) for  

30 min at 4° C. Protein concentration was measured by 

bicinchoninic acid (BCA) assay (Thermo Fisher 

Scientific, Inc.). A total of 30 µg of protein per lane 

were separated using 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) (Bio-

Rad Laboratories, Inc., Hercules, CA, USA) and 

transferred to PVDF membranes (Merck Life Sciences, 

Inc., Australia). After blocking for 2 h with 5% 

skimmed dried milk, the membranes were washed with 
1×TBST (1×Tris-Buffered Saline, 0.1% Tween 20) and 

incubated at 4° C overnight with rabbit polyclonal 

primary antibodies (1:1000 dilution; Novus Biologicals 

https://discover.nci.nih.gov/cellminer/home.do
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Inc., UK) against SAAL1 (Cat. NBP1-83447), PD-L1 

(Cat. NBP1-76769), and GAPDH (Cat. NB300-327). 

After 1×TBST wash, the membranes were incubated 

with an anti-rabbit IgG secondary antibody (Cat. NBP1-

75293; 1:3000 dilution; Novus Biologicals, Inc.) at 

room temperature for 2 h. Immunoreactive bands were 

detected using an ECL western blotting system (Clarity 

Western ECL Substrate; Bio-Rad Laboratories, Inc.). 

Band densities were measured using ImageJ software, 

and normalized to those of GAPDH. 

 

Quantitative reverse transcription PCR (RT-qPCR) 

analysis 

 

Total RNA was extracted from A549 cells 48 h after 

transfection using TRIzol (Invitrogen; Thermo Fisher 

Scientific, Inc.). Reverse transcription was performed 

using a PrimeScript RT Kit with gDNA Eraser (Cat. 

RR047A; Takara Bio, Inc., Japan) according to the 

manufacturer’s protocol. RT-qPCR was done using 

SYBR Green reagent (Takara Bio, Inc.) as reported in 

our previous study [38]. Relative SAAL1 and PD-L1 

expression was analyzed using the 2-ΔΔCq method, with 

GAPDH as internal reference. The primer sequences 

were: SAAL1, 5’-GGAGTACTGGCCAAGTCCAAG 

TG-3’ (forward) and 5’-CCAGCAGAGTAGGTGGGT 

CTGAA-3’ (reverse); PD-L1, 5’-GTGGCATCCAAGA 

TACAAACTCAA-3’ (forward) and 5’-TCCTTCCTCT 

TGTCACGCTCA-3’ (reverse); and GAPDH, 5’-ATGT 

TCCAGTATGACTCCACTCACG-3’ (forward) and 5’-

GAAGACACCAGTAGACTCCACGACA-3’ (reverse). 

 

Statistical analysis 

 

All statistical analyses were performed using R 

statistical software (version 4.0.3). In bioinformatics 

analyses, Kruskal-Wallis tests were performed to 

examine differences in SAAL1 expression between 

different tissue types and cancer cell lines. The 

significance of the difference in gene expression 

between cancerous and para-cancerous normal tissues 

was determined using Wilcoxon’s tests. Patient 

prognosis was evaluated using univariate Cox 

regression, and results are presented as hazard ratio 

(HR), 95% confidence interval (CI), and P-values. The 

KM method with log-rank tests was used to estimate 

survival probability against time. When late-stage 

crossover was observed between groups, Renyi-type 

tests were applied and results presented as P-values. 

The correlation between SAAL1 expression and 

immunological characteristics was evaluated using 

Pearson’s or Spearman’s correlation tests. P<0.05 

indicated a statistically significant difference. 
 

All data obtained from in vitro experiments were 

expressed as the mean ± SD. Comparisons between 

groups were performed using one-way ANOVA (CCK-

8 assay, EdU assay, western blotting, and RT-qPCR) 

followed by Tukey’s post hoc tests. P<0.05 was 

considered significant. All experiments were performed 

in triplicate. 

 

Availability of data and materials 

 

The datasets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 
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