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INTRODUCTION 
 

Current evidence suggests that cancer incidence is 

increasing, associated with increased burden on society 

[1]. Despite the clinical success of existing treatments 

(surgery, radiotherapy, chemotherapy, immunotherapy, 

and targeted therapy), patient prognosis and survival 

rates remain low [1, 2]. Therefore, the quest for new 

tumor markers for the diagnosis and treatment of cancer 

is essential. 

 

SPIB is an ETS transcription factor involved in B cell 

receptor-mediated signal transduction [3]. SPIB is 

expressed in pDCs, CD34+ precursor cells, and mature 

B cells [4, 5] and is associated with the differentiation 

of plasmacytoid dendritic cells and intestinal microfold 

cells [6, 7]. An increasing body of evidence from 

recently published studies suggests that SPIB plays an 

important role in tumor development. For instance, 

SPIB reportedly exerts an inhibitory effect in colorectal 

cancer cells by activating NFkB and JNK signaling 

through MAP4K1 [8] and promotes tumor-associated 

macrophage (TAM) recruitment by enhancing the 

expression of CCL4 in lung cancer [9]. Moreover, SPIB 

plays an important role in the abnormal switch 

reorganization of ABC DLBCL [10]. Overwhelming 

evidence from tissue microarray-based studies has 

linked SPIB to ovarian cancer, liver cancer, esophageal 

squamous cell carcinoma, head and neck squamous cell 

carcinoma, gastric cancer, and hepatocellular carcinoma 

[11–16]. Immunotherapy has emerged as a new pillar of 

cancer treatment, mediating tumor regression by 

blocking immune checkpoints [17]. Although SPIB has 

been studied in more than 9 tumors, most studies have 

focused only on specific cancer types. Therefore, a 

deeper understanding of the relationship between SPIB 
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and the immune microenvironment of different tumors 

is essential to provide the basis for exploring new 

immune-related therapeutic targets and clinical 

treatment of cancer. 

 

In this study, we comprehensively analyzed the 

prognostic relationship between SPIB expression levels 

and various cancers based on data mining analysis of 

various databases, including The Cancer Genome Atlas 

(TCGA), Genotype Tissue-Expression (GTEx), Human 

Protein Atlas (HPA), Tumor Immune Estimation 

Resource (TIMER), and cBioPortal. We also explored 

the role of SPIB in the immune response to further 

visualize its prognostic outlook in pan-cancer. Our 

comprehensive analysis revealed that SPIB has 

prognostic value in various cancers and plays an 

important role in tumor immunity by affecting tumor-

infiltrating immune cells, TMB and MSI. In addition, 

potential signaling pathways of SPIB were identified by 

gene set enrichment analysis (GSEA). In conclusion, we 

systematically and comprehensively investigated SPIB 

expression in pan-cancer to screen cancer types with poor 

prognosis and provide the foothold for future studies. 

 

MATERIALS AND METHODS 
 

Data sources and gene transcription expression 

analysis 

 

We obtained the pan-cancer dataset TCGA TARGET 

GTEx (PANCAN, N = 19131, G = 60499) from the 

University of California Santa Cruz (UCSC) Xena 

browser (https://xenabrowser.net/) [18]. The expression 

data of SPIB in each sample was extracted, and log2(x 

+ 0.001) transformed. Finally, tumor types with less 

than 3 samples were excluded, and the expression data 

of 34 tumors were obtained (See Supplementary Table 1 

for further details). Differences in expression between 

normal and tumor samples for each tumor type were 

calculated, and significant differences were analyzed 

using unpaired Wilcoxon Rank Sum and Signed Rank 

Tests. 

 

Genetic alteration analysis 

 

Data on genetic alterations (Mutation, Amplification, 

Deep Deletion) of SPIB in 32 tumors were obtained 

through the cBioPortal database [19]. The cancer type 

summary module in the cBioPortal database was used to 

obtain summary graphs of Mutation, Amplification, and 

Deep Deletion of genes in TCGA tumors. 

 

Protein level analysis 

 

The protein expression levels of SPIB in normal and 

tumor tissues were analyzed in the Human Protein Atlas 

(HPA, https://www.proteinatlas.org/) database. The 

SPIB protein-protein interaction network (PPI) was 

constructed using the String (https://string-db.org/) 

database. 

 

Survival prognosis analysis 

 

Univariate Cox regression analysis was performed using 

the R package survival (version 3.2-7) [20]. The coxph 

function was used to establish a Cox proportional 

hazards regression model and analyze the prognostic 

relationship of SPIB in various tumors, while the 

significance of differences was assessed by the Log-

rank test. The analytical data are shown in 

Supplementary Table 2. 

 

Immune infiltration and immune checkpoint 

analysis 

 

The correlation between SPIB expression and the 

level of immune cell infiltration was analyzed using 

the gene expression module of the TIMER2.0 

database (http://timer.comp-genomics.org/) [21]. 

Immune cell types included B cell, CD4 T cell, CD8 

T cell, neutrophil, macrophage, and dendritic cell 

(DC); the analysis results are shown in 

Supplementary Table 3. Spearman's correlation 

analysis was used to assess the relationship between 

SPIB expression and expression levels of immune 

checkpoint markers. Sixty markers were identified, 

including inhibitory (n = 24) and stimulatory (n = 36) 

markers. In addition, we analyzed the relationship 

between SPIB expression and immune scores, 

including StromalScore, ImmuneScore, and 

ESTIMATEScore. Similarly, scatter plots were used 

to show the top 6 tumors with significant differences, 

respectively (Supplementary Table 4). 

 

Co-expression analysis of immune regulatory genes 

 

Co-expression analysis of SPIB and immunomodulatory 

genes, including chemokine (41), receptor (18), MHC 

(21), Immunoinhibitor (24), and Immunostimulator (46) 

was performed using the R package limma. The co-

expression data are shown in Supplementary Table 5. 

 

Tumor mutation burden and microsatellite 

instability analysis 

 

The dataset for calculating TMB comes from Simple 

Nucleotide Variation at level 4 of all TCGA samples 

processed by MuTect2 software (DOI: 

10.1038/nature08822). The MSI score for each tumor 
was derived from a previous study [22]. The TMB of 

each tumor was calculated using the TMB function of the 

R package maftools (version 2.8.05). The relationship 

https://xenabrowser.net/
https://www.proteinatlas.org/
https://string-db.org/
http://timer.comp-genomics.org/


www.aging-us.com 6340 AGING 

between SAPIB expression and TMB and MSI was 

analyzed using the Pearson correlation coefficient. 

 

Gene enrichment analysis 

 

Using the GO annotations of genes in the R package 

org.Hs.eg.db (version 3.1.0) as the background, the 

genes were mapped to the background set, and gene set 

enrichment analysis was conducted by the R package 

clusterProfiler (version 3.14.3). The minimum number 

of gene sets was set to 5 and the maximum to 5000; P-

value of <0.05 and FDR of <0.1 were considered 

statistically significant. The detailed analysis results are 

shown in Supplementary Table 6. In addition, we 

extracted the top 100 SPIB-related genes in TCGA by 

GEPIA2 and analyzed the expression correlation 

between SPIB and the top 5 targeted genes. 

 

Statistical analysis 
 

Correlations between variables were analyzed using 

Pearson or Spearman analysis. Prognostic survival 

curves were generated using Kaplan-Meier analysis 

while applying the log-rank test to estimate statistical 

significance. The significance level was set at P < 0.05. 

All statistical data analyses were performed using R 

software version 3.6.4. 

 

Data availability statement 

 

All data generated or analyzed during this study are 

included in this published article (and its Supplementary 

Information files). 

 

RESULTS 
 

SPIB expression is upregulated in most cancers 
 

To clarify whether SPIB is associated with cancer, we 

analyzed the mRNA expression of SPIB in normal and 

tumor tissues using TCGA and GTEx databases. The 

results showed that SPIB expression was significantly 

upregulated in 25 out of 33 cancer types compared to 

adjacent normal tissues, including GBM, GBMLGG, 

LGG, BRCA, CESC, LUAD, ESCA, STES, KIRP, 

KIPAN, PRAD, STAD, KIRC, LUSC, LIHC, WT, 

SKCM, THCA, OV, PAAD, TGCT, UCS, ALL, 

LAML and CHOL (Figure 1A, 1B). In contrast, SPIB 

was significantly downregulated in COAD, 

COADREAD, READ, and KICH (Figure 1A, 1B). 

These results suggest that SPIB may function as an 

oncogenic molecule in various cancers. Although gene 

mutation is not a sufficient condition for carcino-
genesis, carcinogenesis depends on the accumulation of 

gene mutations. Therefore, examining genetic 

alterations associated with the SPIB gene in cancer 

patients is essential. We performed a comparative 

analysis of SPIB using the cBioPortal database and 

found that SPIB amplification was one of the most 

important single alterations in Mature B-Cell 

Neoplasms, ACC, BRCA, BLCA, PAAD, and LIHC 

(Supplementary Figure 1). In addition, SPIB exhibited 

the highest mutation frequency in ESCA, UCEC, 

SKCM, Non-Seminomatous Germ Cell Tumors, 

COAD, HNSC, Non-Small Cell Lung Cancer, and 

SARC (Supplementary Figure 1). 

 

Next, we compared the SPIB gene expression from the 

TCGA database with the Immunohistochemistry (IHC) 

results from the HPA database. The results showed 

negative SPIB expression in normal breast and liver 

tissues, while tumor tissues showed moderate IHC 

staining (Figure 2A, 2C). SPIB staining was weak in 

normal colon tissues, while tumor tissues exhibited 

strong IHC staining (Figure 2B). In addition, SPIB 

staining was weak in normal lung tissue, while tumor 

tissue exhibited moderate staining (Figure 2D). Taken 

together, these results illustrate the consistency of the 

TCGA and HPA database results. 

 

The correlation between SPIB and the prognosis for 

different tumor types 

 

We used the coxph function of the R package surv 

(version 3.2-7) to build a Cox proportional hazards 

regression model, analyze the prognostic relationship 

between SPIB expression and prognosis in each tumor, 

and obtain prognostic significance using a statistical test 

by Log-rank test [20]. The results showed that SPIB 

expression affected overall survival (OS) in patients 

with 16 cancer types, including GBMLGG, LGG, 

KIRP, KIPAN, GBM, KIRC, THYM, UVM, LAML, 

BRCA, CESC, LUAD, HNSC, SKCM, SKCM-M, and 

READ (Figure 3A). In addition, Kaplan-Meier survival 

analysis showed that reduced SPIB expression 

correlated with poor OS in LAML, BRCA, CESC, 

LUAD, HNSC, SKCM, SKCM-M, and READ (Figure 

3B). Meanwhile, increased SPIB expression correlated 

with a poor OS in GBMLGG, LGG, KIRP, KIPAN, 

GBM, KIRC, THYM, and UVM (Figure 3C). 

 

In addition, we analyzed the correlation between SPIB 

expression and patient DSS. The results showed that 

SPIB expression affected Disease-Specific Survival 

(DSS) in 15 cancer types, including GBMLGG, LGG, 

KIRP, KIPAN, GBM, KIRC, THYM, UVM, CESC, 

LUAD, HNSC, SKCM, SKCM-M, READ, and OV 

(Figure 4A). Kaplan-Meier analysis indicated that 

decreased SPIB expression correlated with a poor 
prognosis in CESC, LUAD, HNSC, SKCM, SKCM-M, 

READ, and OV, whereas increased SPIB expression 

was associated with poor prognosis in GBMLGG, LGG, 
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KIRP, KIPAN, GBM, KIRC, THYM, and UVM 

(Figure 4B, 4C). 

 

Besides, we analyzed the relationship between SPIB 

expression and patient Disease-Free Interval (DFI). The 

results showed that SPIB expression affected DFI in 

patients with 3 cancer types, including COADREAD, 

OV, and READ (Figure 5A). Kaplan-Meier analysis 

showed that reduced SPIB expression correlated with a 

poor prognosis in COADREAD, OV, and READ 

(Figure 5B). 

 

Finally, we analyzed the correlation between SPIB 

expression and patient Progression-Free Interval (PFI). 

The results showed that SPIB expression affected PFI 

in patients with 12 cancer types, including GBMLGG, 

LGG, KIRP, KIPAN, GBM, UVM, BRCA, LUAD, 

HNSC, SKCM, SKCM-M, and OV (Supplementary 

Figure 2A). Kaplan-Meier analysis showed that 

reduced SPIB expression in GBMLGG, LGG, KIRP, 

KIPAN, GBM, and UVM correlated with a poor 

prognosis, whereas increased SPIB expression was 

associated with poor prognosis in BRCA, LUAD, 

HNSC, SKCM, SKCM-M, and OV (Supplementary 

Figure 2B, 2C). In conclusion, these data suggest that 

SPIB expression determines the prognosis of patients 

with different types of cancers, in terms of OS, DSS, 

DFI or PFI. 

 

 
 

Figure 1. Pan-cancer expression profiling of SPIB. (A, B) Differential expression of SPIB in 34 cancers based on TCGA and GTEx 

databases, blue represents normal tissues, and red represents tumor tissues. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. P-value 
P < 0.05 was considered statistically significant. 
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High SPIB expression is associated with immune 

infiltration of multiple tumors 

 

To elucidate the association between SPIB expression 

and specific immune cell types in pan-cancer, we 

evaluated the correlation between SPIB expression and 

immune cell infiltration in pan-cancer based on the 

TIMER database. We obtained six types of immune cell 

infiltration scores for 9,406 tumor samples from 38 

cancer types and found that high SPIB expression was 

significantly associated with immune infiltration in 35 

tumors (Figure 6A). SPIB expression was associated 

 

 
 

Figure 2. Comparison of SPIB expression in breast, colon, liver, and lung tissues by immunohistochemistry. (A) Breast tissue. 

(B) Colon tissue. (C) Liver tissue. (D) Lung tissue, including lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). For the violin 
plot, red is cancer samples and blue is normal samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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with B cell, CD4 T cell, CD8 T cell, neutrophil, 

macrophage, and DC in 32, 33, 20, 31, 25, and 32 

tumors, respectively (Figure 6A). In addition, we 

selected 60 immune checkpoint genes for analysis, 

including inhibitory (n = 24) and stimulatory (n = 36) 

genes. Interestingly, the results of immune checkpoint 

analysis showed that SPIB expression was positively 

correlated with most immune checkpoint genes (Figure 

6B). In this respect, more than 50 immune checkpoint 

genes were positively correlated with SPIB expression 

in LIHC, KIPAN, PRAD, OV, THCA, BRCA, 

COADREAD, LUAD, BLCA, HNSC, PAAD, and 

COAD (Figure 6B). In addition, in DLBC, the 

expression of SPIB was least correlated with the 

immune checkpoint genes (Figure 6B). To further 

assess the role of SPIB in the tumor immune 

microenvironment, we analyzed the relationship 

between SPIB expression and immune infiltration score 

in tumors using ESTIMATE. The most significant 

positive correlation between SPIB expression and 

immune infiltration was found in UVM, THCA, 

KIPAN, SKCM, BLCA, and SKCM-M (Figure 6C). 

 

In addition, we analyzed the relationship between SPIB 

expression and immune-related genes in different 

tumors, including chemokines, chemokine receptors, 

MHC, immunosuppression, and immune activation. The 

results showed that most immune-related genes were 

co-expressed with SPIB (Supplementary Figure 3). 

Interestingly, most tumors were positively correlated 

with SPIB except for ALL, DLBC, and UCS 

(Supplementary Figure 3). Overall, our results suggest 

that SPIB plays a key role in immune infiltration and 

immune escape in most tumors. 

 

SPIB expression negatively correlates with TMB and 

MSI in a variety of tumors 

 

Tumor Mutational Burden (TMB) and Microsatellite 

Instability (MSI) are well-established as key markers 

 

 
 

Figure 3. Relationship between SPIB expression and overall survival (OS) in pan-cancer. (A) Cox regression analysis of SPIB in 44 

tumors. (B) Kaplan-Meier OS curves of SPIB expression in patients with LAML, BRCA, CESC, LUAD, HNSC, SKCM, SKCM-M, and READ. (C) 
Kaplan-Meier OS curves of SPIB expression in patients with GBMLGG, LGG, KIRP, KIPAN, GBM, KIRC, THYM, and UVM. For (B and C), the 
vertical coordinate is the survival probability, and the horizontal coordinate is the survival time (days). 
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for immunotherapy [23, 24]. Therefore, we evaluated 

the correlation of SPIB expression with TMB and MSI. 

The results showed that SPIB expression was correlated 

positively with TMB of THYM and negatively with 

TMB of LUAD, LIHC, TGCT, PCPG, and CHOL 

(Figure 7A). In addition, SPIB expression correlated 

positively with the MSI of THYM and negatively with 

the TMB of GBMLGG, KIPAN, STAD, PRAD, UCEC, 

HNSC, PAAD, UCS, and DLBC (Figure 7B). 

 

SPIB-related genes mainly mediate immune-related 

pathways 

 

Finally, we investigated the molecular mechanisms 

underlying the occurrence of SPIB in tumors. We 

screened the proteins interacting with SPIB by 

STRING database and generated a PPI interaction 

network (Figure 8A). We found that 10 proteins were 

directly associated with SPIB. The top 100 genes 

related to SPIB expression were then obtained using 

the GEPIA database, and the five genes with the 

highest correlation were selected, including CD19, 

CD79A, IL21R, SP140, and TLR10 (Figure 8D). In 

addition, GO analysis suggested genes associated with 

SPIB expression were significantly enriched in 

immune system process, lymphocyte activation, 

immune response, B cell receptor signaling pathway, 

and regulation of immune system process (Figure 8B). 

KEGG analysis showed that genes associated with 

SPIB expression were enriched in Cytokine-cytokine 

receptor interaction, NF-kappa B signaling pathway, 

Primary immunodeficiency, Human T-cell leukemia 

virus 1 infection, and B cell receptor signaling 

pathway (Figure 8C). In addition, SPIB had a strong 

positive correlation with the above five genes in most 

cancer types (Figure 8E). 

 

 
 

Figure 4. Relationship between SPIB expression and disease-specific survival (DSS) in pan-cancer. (A) Cox regression analysis of 
SPIB in 44 tumors. (B) Kaplan-Meier OS curves of SPIB expression in patients with CESC, LUAD, HNSC, SKCM, SKCM-M, READ, and OV. (C) 
Kaplan-Meier OS curves of SPIB expression in patients with GBMLGG, LGG, KIRP, KIPAN, GBM, KIRC, THYM, and UVM. For (B and C), the 
vertical coordinate is the survival probability, and the horizontal coordinate is the survival time (days). 
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DISCUSSION 
 

SPIB plays a crucial role in the development of B cells 

[4]. There is a rich literature available suggesting that 

SPIB promotes trans-activation of SPI1 to increase 

glycolytic gene expression and drive the glycolytic 

process, proliferation, and invasiveness of colon 

cancer cells [25]. In addition, SPIB is a novel 

prognostic factor in DLBCL, mediating apoptosis 

through the PI3K-AKT pathway [26]. Over the years, 

many studies have linked SPIB to tumors, including 

lung, gastric, and colorectal cancers. Thus a 

comprehensive pan-cancer study of SPIB may present 

a novel perspective on other tumors. 

 

 
 

Figure 5. Relationship between SPIB expression and disease-free interval (DFI) in pan-cancer. (A) Cox regression analysis of 

SPIB in 44 tumors. (B) Kaplan-Meier OS curves of SPIB expression in patients with COADREAD, OV, and READ. The vertical coordinate is the 
survival probability, and the horizontal coordinate is the survival time (days). 
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Our study revealed significant differences in SPIB in 29 

tumors, including high expression in 25 tumors and low 

expression in 4 tumors. We also analyzed the protein 

levels of SPIB expression in breast, colon, liver, and 

lung tissues by IHC experiments based on the HPA 

database and confirmed this trend. The importance of 

identifying tumor-specific targets or features is widely 

acknowledged, given that individualized treatment 

based on their characteristics can increase the chances 

of curing cancer [27]. A pan-cancer analysis is an 

effective method to discover differential expression and 

characteristics of tumors. Therefore, we analyzed the 

relationship between SPIB expression and prognosis in 

various tumors using TCGA and GTEx databases. 

 

 
 

Figure 6. SPIB expression correlates with immune infiltration and immune checkpoint markers. (A) SPIB expression and 

infiltration levels of various immune cells in the TIMER database. (B) Correlation analysis of SPIB expression levels with the levels of 60 
immune checkpoint genes in pan-cancer. (C) SPIB expression in UVM, THCA, KIPAN, SKCM, BLCA, and SKCM-M immune infiltration levels. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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In this study, we found that high SPIB expression 

correlated with poor OS and DSS in patients with 

GBMLGG, LGG, KIRP, KIPAN, GBM, KIRC, 

THYM, and UVM. Low SPIB expression was 

associated with a poor OS in patients with LAML, 

BRCA, CESC, LUAD, HNSC, SKCM, and SKCM-M, 

and poor DSS in patients with CESC, SKCM, and 

SKCM-M. These findings substantiate that SPIB may 

serve as a predictor of tumor prognosis. Although 

these survival analyses have clinical significance and 

provide a foothold for future studies, in vivo or in vitro 

validation experiments are lacking. Therefore, the role 

of SPIB in different types of cancer remains to be 

further investigated. 

 

 
 

Figure 7. Correlation of SPIB expression with tumor mutational load (TMB) and microsatellite instability (MSI) in pan-
cancer. (A) The bar graph represents the correlation between SPIB expression and TMB in pan-cancer. (B) The bar graph represents the 
correlation between SPIB expression and MSI in pan-cancer. P values are from Spearman's correlation analysis. 
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In recent years, immunotherapy has become a new 

pillar in treating tumors. The tumor immune 

microenvironment is an important component of the 

tumor microenvironment, and the mechanism by 

which tumor cells work with the immune 

microenvironment is important for selecting key 

molecules for tumor markers and potential drug targets 

[28, 29]. In addition, tumor-infiltrating lymphocytes, 

namely tumor-associated macrophages and tumor-

infiltrating neutrophils (TIN), play an important role in 

tumor immunity [30, 31]. These findings corroborate 

that tumor-infiltrating immune cells play an important 

role in tumor progression, emphasizing the need to 

analyze the role of SPIB in the immune micro-

environment. We found that SPIB expression was 

significantly associated with six immune infiltrating 

cells in most cancers, except UCS, UVM, and DLBC, 

consistent with previous studies that reported that 

therapeutic targeting of SPIB/SPI1 promotes the 

interaction of cancer cells and neutrophils to inhibit 

aerobic glycolysis and cancer progression [25]. 

Moreover, it has been shown that SPIB overexpression 

in mouse models increased infiltration of TAM, 

especially M2 macrophages, and promoted lung cancer 

progression [9]. In addition, immune checkpoint genes 

can directly affect immune cell function [32]. During 

tumorigenesis, immune checkpoint (IC) signaling is 

activated by tumors to undergo immune escape and 

accounts for tumor aggressiveness. Therefore, 

analyzing the correlation between SPIB expression and 

immune checkpoint markers could provide new targets 

for developing novel immunosuppressive agents. In 

this study, we analyzed more than 50 immune 

checkpoint genes. The results showed that SPIB 

expression was positively correlated with immune 

checkpoints in most tumors, except DLBC, ALL, 

LAML, and UCS. In addition, our study revealed that 

SPIB was co-expressed with genes encoding 

 

 
 

Figure 8. SPIB-related gene enrichment and pathway analysis. (A) SPIB protein network map based on STRING database. (B) GO 

analysis of the top 100 genes associated with SPIB expression. (C) KEGG analysis of the top 100 genes associated with SPIB expression. (D) 
Correlation between the most relevant genes for SPIB expression, including PEZ1, GNA12, MAP4, SEPT7 TPST1, and TBL2 of the GEPIA2 
tool. (E) Heatmap of genes significantly associated with SPIB expression. 
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MHC, immune activation, immune suppression, 

chemokine, and chemokine receptor proteins. These 

results imply an immunological role for SPIB in 

various tumors and highlight its potential as a 

therapeutic target. 

 

TMB is a more accurate and comprehensive potential 

biomarker. Current evidence suggests that TMB is 

associated with the occurrence of mutations and the 

synthesis of abnormal proteins that activate antitumor 

responses [33]. MSI is a predictive biomarker with 

potential significance for ICI responses. It has been 

shown that MSI leads to the accumulation of 

mutations that result in the formation of neoantigens 

and the activation of antitumor immune responses 

[34]. Our study showed that SPIB expression was 

associated with TMB and MS in THYM, LUAD, 

LIHC, TGCT, PCPG, CHOL, BMLGG, KIPAN, 

STAD, PRAD, UCEC, HNSC, PAAD, UCS, and 

DLBC. However, further experimental validation of 

the therapeutic role of SPIB in these cancers is 

warranted. 

 

We also performed an enrichment analysis of genes 

related to SPIB expression. IRF4 and SPI1 identified 

in the SPIB protein interactions network are reportedly 

involved in B cell differentiation and play a critical 

and non-redundant role in the adaptive immune 

response of mature B cells [35, 36]. CREBBP  

and EP300 are associated with DLBCL, and 

CREBBP/EP300 mutations induce H3K27 

deacetylation and activate the NOTCH signaling 

pathway, which is closely associated with B-cell 

malignancies [37]. In addition, the Jun protein family 

members are involved in the constitutive dimer AP-1. 

AP-1 activity is involved in various cellular processes; 

for instance, AP-1 plays a crucial role in several 

aspects of the immune system, such as T cell 

activation, T helper (Th) differentiation, T cell 

incompetence, and failure [38]. MAPKs regulate 

various cellular activities in cancer progression, 

including proliferation, apoptosis, and immune escape, 

and blocking upstream kinases is an important 

therapeutic strategy [39]. An increasing body of 

evidence suggests that TLP (TBP-2), a family member 

of TBP, is a tumor suppressor gene that plays a key 

role in DC-induced T-cell responses [40, 41]. GATA1 

reportedly regulates the basal transcription of mSTING 

genes and plays a key role in the pathogenesis of 

autoimmune diseases and cancer [42]. CSNK2A1 is 

involved in tumorigenesis by phosphorylating various 

proteins, including SIRT1 [43]. In the present study, 

we also performed GO and KEGG analyses of genes 
related to SPIB expression. Overall, the results showed 

that SPIB was enriched in the immune system process, 

lymphocyte activation, immune response, B cell 

receptor signaling pathway, and regulation of the 

immune system process. These results are consistent 

with previous studies that SPIB is essential in 

protective humoral immunity [4]. In addition, SPIB 

has been associated with tumor suppression via NF-

kappa B signaling pathway [8], consistent with our 

study findings. 
 

In a nutshell, our study demonstrates an important role 

for SPIB in cancer that is not limited to specific cancer 

types. We investigated the relationship of SPIB in pan-

cancer with prognosis, immune cell infiltration, tumor 

mutational load, and microsatellite instability and 

comprehensively assessed its potential as a prognostic 

biomarker from multiple perspectives. Despite our 

extensive analytical work, there are many limitations. 

First of all, the heterogeneity associated with different 

databases may affect the robustness of our analysis 

results to a certain extent. Besides, our results are 

based on public database analysis involving at least 33 

cancer types, making experimental validation 

challenging. Although SPIB promotion of cancer 

progression has been experimentally validated in colon 

cancer cells and ABC-DLBCL [25, 44], more clinical 

or animal experiments are still needed to validate it. 

Nonetheless, our pan-cancer study analysis of SPIB 

still provides the basis and novel insights for future 

studies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Mutation of SPIB in pan-cancer. Analysis of genetic alteration type and mutation frequency of SPIB in 

different cancers based on the cBioPortal database. 
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Supplementary Figure 2. Relationship between SPIB expression and progression-free interval (PFI) in pan-cancer. (A) Cox 

regression analysis of SPIB in 44 tumors. (B) Kaplan-Meier OS curves of SPIB expression in patients with GBMLGG, LGG, KIRP, KIPAN, GBM 
and UVM. (C) Kaplan-Meier OS curves of SPIB expression in patients with BRCA, LUAD, HNSC, SKCM, SKCM-M and OV. The vertical 
coordinate is the survival probability and the horizontal coordinate is the survival time (days). 
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Supplementary Figure 3. Co-expression of TREM2 and immune-related genes, including five immune pathways chemokine 
(41), receptor (18), MHC (21), Immunoinhibitor (24), Immunostimulator (46) marker genes. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4 and 6. 

 

Supplementary Table 1. Pan-cancer dataset. 

Supplementary Table 2. Prognosis analysis. 

Supplementary Table 3. Immune cell infiltration. 

Supplementary Table 4. ESTIMATE. 

Supplementary Table 5. Co-expression analysis of immune regulatory genes. 

CODE SampleNum SigCount PositiveCount NegativeCount 

SKCM 102 114 114 0 

KIPAN 884 143 143 0 

UVM 79 123 123 0 

LIHC 369 142 139 3 

BLCA 407 137 136 1 

KIRC 530 139 139 0 

KIRP 288 131 131 0 

OV 419 146 146 0 

PCPG 177 135 135 0 

KICH 66 125 124 1 

THCA 504 140 138 2 

BRCA 1092 140 139 1 

PRAD 495 143 142 1 

HNSC 518 140 129 11 

LUSC 498 130 126 4 

CESC 304 127 123 4 

LUAD 513 138 135 3 

ACC 77 113 110 3 

TGCT 148 111 110 1 

UCEC 180 106 106 0 

CHOL 36 67 66 1 

NB 153 126 123 3 

PAAD 178 137 136 1 

MESO 87 102 102 0 

READ 92 107 106 1 

COAD 288 128 128 0 

COADREAD 380 133 133 0 

ALL 132 33 30 3 

DLBC 47 11 10 1 

THYM 119 112 107 5 

ESCA 181 110 103 7 

STAD 414 115 109 6 

STES 595 130 119 11 
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SARC 258 99 91 8 

UCS 57 37 36 1 

GBM 153 115 115 0 

GBMLGG 662 138 135 3 

LGG 509 128 127 1 

LAML 173 93 90 3 

WT 120 58 57 1 

 

Supplementary Table 6. Enrichment analysis. 


