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INTRODUCTION 
 

Colon cancer (CC) is the third most common 

gastrointestinal malignant tumor derived from glandular 

epithelial cells, with a high mortality and increasing 

incidence [1]. Despite recent improvements in the 

diagnosis and treatment of CC, including surgery, 
radiotherapy, chemotherapy, neoadjuvant chemotherapy, 

and immunotherapy, the 5-year relative survival rate 

remains poor, and distant metastasis remains the main 

cause of CC-associated death [2, 3]. Therefore, there is 

an urgent need to explore potentially useful diagnostic 

and prognostic biomarkers for CC patients. 

 

Glycometabolism, a vital pathway in living cells, differs 

significantly between normal cells and tumor cells. The 

transformation of glucose utilization from oxidative 
phosphorylation to glycolysis is now regarded as a major 

feature of cancer. This kind of change in energy 

metabolism is regulated by genetic changes and tumor 
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ABSTRACT 
 

Colon cancer (CC) is one of the most common gastrointestinal malignant tumors with a high mortality rate. 
Glycolysis is an important pathway for tumors to obtain energy. However, its role in CC remains largely 
unknown. In present study, we analyzed glycolysis-related gene expression to depict clinical characteristics and 
its relationship with tumor immunity in CC to find potential target treatments. A prognostic model based on 13 
glycolysis-related genes was established by univariate and multivariate Cox regression analyses. The efficacy of 
the gene model was tested via survival analysis, receiver operating characteristic analysis, and principal 
component analysis. Furthermore, our findings revealed and validated 13 glycolysis-related genes (NUP107, 
SEC13, ALDH7A1, ALG1, CHPF, FAM162A, FBP2, GALK1, IDH1, TGFA, VLDLR, XYLT2, and OGDHL), which 
constituted a prognostic prediction model. The model exhibited clinical implication potential, had a relatively 
high accuracy, and was closely associated with the patients’ clinical features. In particular, the tumor stage 
could be clearly distinguished by glycolysis-related gene signatures. Finally, a significant difference between 
glycolysis-related gene colon cancer immunity and sensitive immune drugs was observed. Our glycolysis-related 
gene model could provide the basis for potential early individualized treatment. The 13 glycolysis-related gene 
signature was a reliable predictive tool for the prognosis of colon cancer. Our findings could help patients select 
targets for individualized treatment and immunotherapy strategies. The study findings advance our 
understanding of the potential mechanism of glycolysis in colon cancer. 
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microenvironment pressure, causing an increase in the 

cell proliferation rate and conferring resistance on cells 

[4]. The activation of glycolysis can affect other 

phenotypic processes, such as epithelial-to-mesenchymal 

transition (EMT) [5], which is closely associated  

with glycolysis. Zhao et al. reported that activated 

glycolysis promotes pancreatic cancer cell stemness and 

EMT [6]. Numerous studies have reported that the 

disturbance of immune regulation is closely associated 

with cancer, whereas the relationship between tumor 

immunity and CC glycolysis has not been explored. 

Hence, understanding the underlying interplay between 

glycolysis and cancer progression is a critical goal in 

cancer research that can clarify cancer pathogenesis and 

facilitate the development of effective therapeutic 

approaches. 

 

In our study, gene set enrichment analysis (GSEA) of 

glycolysis-related pathways was conducted using 566 

CC and 19 normal control array data from the Gene 

Expression Omnibus (GEO) to identify differentially 

expressed glycolysis genes in CC patients. Then, 

following Cox regression analysis, the patients were 

classified into low- and high-risk groups according to 

glycolysis-related expression and risk score. A signature 

consisting of 13 genes was constructed, which was 

closely associated with poor overall survival (OS), older 

age, high tumor grades, high EMT, different immune 

cell infiltration and targeted sensitive immune drugs. 

The risk score could serve as an independent 

pathological factor. Finally, the expression of the 13 

signature genes was validated in our patient samples. 

Overall, our data revealed a strong association between 

glycolysis metabolism and clinical prognosis in CC. 

 

RESULTS 
 

Clinical characteristics of CC patients 

 

Overall, 566 CC and 19 normal control data stored on 

the Affymetrix Human Genome U133 Plus 2.0 Array 

platform were downloaded from a GEO dataset. The 

clinical characteristics of the samples, including sex, 

age, survival status, survival time, clinical TNM stage, 

clinical T stage, clinical N stage, and clinical M stage, 

are shown in Table 1. 

 

Differentially expressed glycolysis genes between the 

CC and normal control samples 

 

Six glycolysis-related gene sets were obtained from 

the Molecular Signatures Database: REACTOME_ 

GLYCOLYSIS, WP_COMPUTATIONAL_MODEL_ 

OF_AEROBIC_GLYCOLYSIS, WP_GLYCOLYSIS 

IN_SENESCENCE, REACTOME_REGULATION_OF 

GLYCOLYSIS_BY_FRUCTOSE_2_6_BISPHOSPH

ATE_METABOLISM, HALLMARK_GLYCOLYSIS, 

and GO_GLYCOLYTIC_PROCESS. A total of 301 

glycolysis-related genes were selected from the six 

gene sets for additional research, and 217 glycolysis-

related genes were found to be significantly and 

differentially expressed in the CC samples compared 

with the controls (Figure 1). 

 

Construction of the glycolysis-related gene prognostic 

prediction model for CC patients 

 

UniCox and multiCox regression analyses were 

performed on the differentially expressed glycolysis-

related genes to construct a novel biomarker model for 

predicting the prognosis of CC patients. Thirteen risk 

genes (NUP107, SEC13, ALDH7A1, ALG1, CHPF, 
FAM162A, FBP2, GALK1, IDH1, TGFA, VLDLR, 

XYLT2, and OGDHL) were identified (P < 0.05,  

Table 2). Then, the prognostic gene model based on  

the 13 glycolysis-related genes was used to divide 

patients into low- and high-risk groups as follows: Risk 

score = (-0.29×NUP107 Expression + [-0.35×SEC13 

Expression] + 0.30×ALDH7A1 Expression + [-0.29× 

ALG1 Expression] + 0.45×CHPF Expression + [-0.46× 

FAM162A Expression] + 0.91×FBP2 Expression + [-

0.65×GALK1 Expression] + [-0.34×IDH1 Expression]  

+ 0.36×TGFA Expression + 0.18×VLDLR Expression 

+ [-1.28×XYLT2 Expression] + [-0.41×OGDHL 

Expression]). The alterations in the 13 genes in the CC 

tissues were analyzed, and the results showed that the 

alteration rates in NUP107, SEC13, ALDH7A1, ALG1, 

CHPF, FAM162A, FBP2, GALK1, IDH1, TGFA, 
VLDLR, XYLT2, and OGDHL were 3%, 0.8%, 1.9%, 

1%, 1.9%, 0.2%, 2.3%, 1.5%, 1.7%, 0.4%, 4%, 4%, and 

4%, respectively (Figure 2A). Many mutations occurred 

in the gene domains, and the specific mutation sites are 

presented in Figure 2B. Finally, the expression of the 13 

genes in the CC patient and normal tissues was further 

analyzed. NUP107, SEC13, ALDH7A1, ALG1, CHPF, 
GALK1, XYLT2, and OGDHL were highly expressed in 

CC tissues, while FAM162A, FBP2, IDH1, TGFA, and 

VLDLR were downregulated (P < 0.05, Figure 2C). 

 

Efficacy of the risk score in CC patients 

 

Based on the gene model, 280 CC patients and 281 CC 

patients were classified into high- and low-risk groups 

by the median risk score (Figure 3A). KM analysis was 

carried out between the low- and high-risk groups, and 

the high-risk group had a significantly poorer prognosis 

(P < 0.05, Figure 3B). ROC analysis was carried out, 

and the AUC was calculated to be 0.716, which showed 

a good prediction effect (Figure 3C). The expression of 
the 13 genes was calculated; TGFA FBP2, CHPF, and 

VLDLR were significantly higher in the high-risk 

group, and NUP107, OGDHL, SEC13, IDH1, GALK1, 
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Table 1. Clinical information of CC patients. 

Variables 
GSE39582  

Patients (566) 

TCGA  

Patients (385) 

Fustat   

Alive 370 314 

Death 191 71 

unknown 5  

Age (year)   

<=65 222 159 

>65 344 226 

Gender   

Male 256 205 

Female 310 180 

TNM Stage   

I 33 66 

II 264 151 

III 205 103 

IV 60 54 

0 4 11 

T stage   

T1 11 9 

T2 45 68 

T3 367 263 

T4 119 44 

Tis 3 1 

T0 1 0 

unknown 20 0 

M stage   

M0 482 286 

MI 61 54 

MX 0 39 

unknown 23 6 

N stage   

N0 302 231 

N1 134 88 

N2 98 66 

N3 6 0 

unknown 26 0 

 

FAM162A, ALG1, and XYLT2 ALDH7A1 were 

downregulated (P < 0.05, Figure 3D). The risk plot 

indicates that the high-risk group was closely related to 

poor prognosis (Figure 3E). PCA showed that high- and 

low-risk groups could be significantly distinguished 

using our model, which reduced the dimension of the 

expression of multiple genes (Figure 3F). All the 

analysis results indicated that our gene model had good 

efficacy based on the risk score. 

Independent risk factor for risk score in CC patients 

and its relationship with clinical characteristics of 

the patients 

 

Univariate and multivariate independent prognostic 

analyses were carried out to identify independent 

prognostic factors, including age, sex, TNM stage, and 

risk score. The results showed that age, TNM stage, and 

risk score were independent prognostic factors in CC 
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patients, and they were all positively correlated with 

poor survival prognosis (P < 0.05, Figure 4A, 4B). For a 

more accurate analysis of the relationship between risk 

factors and patient OS, a series of Kaplan–Meier curve 

analyses was carried out. The results revealed that an 

age of > 65 years, TNM III–IV, T3-4, N1–3 and M1 

were positively related to poor OS (P < 0.05, Figure 

4C). The relationship between patients’ clinical 

characteristics and OS in the low- and high-risk groups 

was determined, and high-risk patients were positively 

associated with a poor OS when age ≤ 65 years, age>65 

years, female sex, male sex, TNM I–II, TNM III–IV, 

T1–2, T3–4, M0, M1, N0, and N1-3 subgroups (P < 

0.05, Figure 4D). These results demonstrate that our 

glycolysis-related gene model could distinguish clinical 

features and show the reliability of our glycolysis-

related gene model in CC. 

 

Role of EMT in a high glycolysis tumor environment 

 

Studies have demonstrated that glycolysis can promote 

EMT in cancers. To explore the role of EMT in CC, we 

analyzed the expression of EMT biomarkers (SNAI1, 

SNAI2, TWIST1, TWIST2, and ZEB2) in our study. 

SNAI1 and TWIST1 showed significantly higher 

expression in CC tissues (P < 0.05, Figure 5A). 

Moreover, SNAI1, SNAI2, TWIST1, TWIST2, and 

ZEB2 expression was upregulated in the high-risk 

group (P < 0.05, Figure 5B). This suggests that EMT 

plays a role in the high-glycolytic tumor environment of 

CC patients. The relationship between glycolysis and 

EMT in CC requires further research. 

 

Tumor immunity microenvironment between the low- 

and high-risk groups 

 

We investigated the fractions of 22 types of infiltrated 

immune cells in every single cancer among all 561 CC 

samples (Figure 6A). The results showed that every 

sample had its own immune cell infiltration 

characteristics. The heatmap and vioplot of infiltrated 

immune cells were performed between the low- and 

high-risk groups according to the glycolysis-related 

gene model (Figure 6B, 6C). In low-risk group tissues, 

the top five most abundant fractions of infiltrating 

immune cells were M2 macrophages, CD8 T cells, 

plasma cells, follicular helper T cells, and resting 

memory CD4 T cells, and this was also true for the 

high-risk group (Figure 6B, 6C). However, no 

significant fractions of memory B cells, CD8 T cells, 

naïve CD T cells, resting CD4 memory T cells, 

activated CD4 memory T cells, follicular helper T cells, 

 

 
 

Figure 1. Significantly differentially expressed glycolysis-related genes between CC and normal controls. 
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Table 2. Thirteen genes were selected via uniCox regression analysis. 

ID HR HR.95 L HR.95H CoxPvalue 

NUP107 0.64 0.49 0.85 0.00 

SEC13 0.64 0.43 0.95 0.03 

ALDH7A1 0.70 0.50 0.97 0.03 

ALG1 0.60 0.44 0.82 0.00 

CHPF 1.38 1.03 1.85 0.03 

FAM162A 0.59 0.40 0.88 0.01 

FBP2 2.41 1.33 4.38 0.00 

GALK1 0.38 0.24 0.60 0.00 

IDH1 0.54 0.36 0.80 0.00 

TGFA 1.75 1.26 2.43 0.00 

VLDLR 1.17 1.02 1.35 0.03 

XYLT2 0.28 0.13 0.61 0.00 

OGDHL 0.56 0.41 0.75 0.00 

 

activated NK cells, monocytes, M0 macrophages, 

resting dendritic cells, activated mast cells, or 

eosinophils were observed in either the low- or high-

risk group. (P > 0.05, Figure 6C). Naïve B cells, M1 

macrophages, M2 macrophages, resting mast cells, and 

neutrophils were significantly higher in the high-risk 

group than in the low-risk group (p < 0.05, Figure 6C). 

Plasma cells, Tregs, gamma delta T cells, resting NK 

cells, and activated dendritic cells were higher in the 

low-risk group (p < 0.05, Figure 6C). 

 

Finally, the correlation of immune cells in CC tissues in 

both the low- and high-risk groups was analyzed. In the 

low-risk group, a moderate to high negative correlation 

was observed between the T cells CD4 memory resting 

and T cells CD8, M1 macrophages and activated mast 

cells, T cells follicular helper and Tregs, activated mast 

cells and resting mast cells, and resting dendritic cells 

and M0 macrophages; however, a positive correlation 

was observed between the T cells follicular helper and 

M1 macrophages, activated T cells CD4 memory and 

M1 macrophages, T cells CD8 and activated NK cells, 

activated NK cells and resting mast cells, resting NK 

cells and activated mast cells, and M0 macrophages and 

neutrophils (Figure 6D). In the high-risk group, a 

moderate to high negative correlation was observed 

between the resting memory CD4 T cells and CD8 T 

cells, M1 macrophages and activated mast cells, 

follicular helper T cells and Tregs, resting mast cells 

and activated mast cells, and neutrophils and plasm 

cells. However, a naïve positive correlation was 

observed between neutrophils and M0 macrophages, 

resting NK cells and activated mast cells, follicular 

helper T cells and M1 macrophages, activated M1 

macrophages and CD4 memory T cells, and activated 

mast cells and CD4 T cells (Figure 6E). A negative 

correlation was observed between resting memory CD4 

T cells and CD8 T cells, M1 macrophages and activated 

mast cells, follicular helper T cells and Tregs, resting 

mast cells and activated mast cells, and resting dendritic 

cells and M0 macrophages. However, a positive 

relationship was observed in all CC patients between 

M1 macrophages and follicular helper T cells, M1 

macrophages and activated memory CD4 T cells, 

activated mast cells and resting NK cells, CD8 T cells 

and activated NK cells, and activated NK cells and 

resting mast cells (Figure 6F). In the low-risk group, 

high-risk group, and all cancer samples, a negative 

correlation was observed between resting memory CD4 

T cells and CD8 T cells, M1 macrophages and activated 

mast cells, follicular helper T cells and Tregs, and 

activated mast cells and resting mast cells; however, a 

positive correlation was observed between follicular 

helper T cells and M1 macrophages and activated 

memory CD4 T cells and M1 macrophages. 

 

Validation of glycolysis-related gene prognostic 

prediction model in TCGA dataset 

 

RNA-seq and corresponding clinical data of 437 colon 

cancer patients (Tumor=398, Normal=39) were 

downloaded from TCGA GDC (https://portal. 

gdc.cancer.gov/). Matching with clinical information, 

189 patients and 190 patients were classified into high- 

and low-risk groups according to the above glycolysis-

related gene prognostic prediction model, respectively 

(Figure 7A). The high-risk group had a significantly 

poorer prognosis than the low-risk group by KM 

analysis (P < 0.05, Figure 7B). Then, ROC analysis 

showed that the AUC of our model was 0.660 (Figure 

7C). The risk plot showed that a higher risk score  

was related to poor prognosis (Figure 7D). Our model 

could significantly distinguish high- and low-risk  

  group samples through PCA (Figure 7E). 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


www.aging-us.com 8705 AGING 

 
 

Figure 2. Mutations and expression levels of model genes in CC. (A) Mutation frequency of model genes. (B) Model gene-specific 

mutation domains. (C) Model gene expression between CC and normal control samples. 



www.aging-us.com 8706 AGING 

These results indicated that our gene model also had 

good efficacy in the TCGA validation dataset. Finally, 

the relationship between clinical characteristics and 

patient OS was examined. The results revealed that an 

age of > 65 years, M1, N1-3 and Stage III-IV were 

positively related to poor OS in the validation dataset  

(P < 0.05, Figure 8A). Then, the relationship between 

patients’ clinical features and OS in the low- and high-

risk groups was analyzed, and the results indicated that 

high-risk patients were positively associated with poor 

 

 
 

Figure 3. Text efficacy of the gene model in CC patients. (A) CC patient distribution according to the median risk score. (B) Kaplan–
Meier analysis between the low- and high-risk groups. (C) ROC analysis of the risk score. (D) Model gene expression in the low- and high-risk 
groups. (E) The relationship between patient survival status and risk score. (F) PCA between the low- and high-risk groups. 
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Figure 4. Analysis of risk factors. Univariate (A) and multivariate Cox regression analyses (B) of the relationship between risk core and 

other clinical features. (C) Kaplan–Meier analysis of clinical features, including age, sex, TNM stage, T stage, N stage, and M stage. (D) Kaplan–
Meier analysis of clinical features in low- and high-risk subgroups. 
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OS when age ≤ 65 years, male sex, TNM stage I-II, T1-

2 and N0 subgroups (P < 0.05, Figure 8B). These results 

showed that our genetic model could distinguish some 

clinical features and showed good efficacy. Although 

not all clinical features could be distinguished, this may 

be because TCGA colon cancer data were not as rich as 

GSE39582. It is also a vital reason that we used the 

GSE39582 dataset as a training cohort to construct the 

glycolysis-related gene prognostic prediction model. 

 

Tumor immune sensitive drug prediction 

 

These studies have confirmed that glycolysis is closely 

related to colon cancer immunity. To further study 

colon cancer-sensitive tumor immune drugs in the 

glycolytic microenvironment, the top 400 genes of the 

absolute value of significantly differential expression 

multiples between the high- and low-risk groups were 

screened (P < 0.05, Figure 9A). GO function analysis 

of the differentially expressed genes suggested that the 

functions of the differentially expressed genes were 

enriched in DNA replication, rRNA metabolic process, 

mitochondrial matrix, mitochondrial inner membrane, 

catalytic activity and acting on RNA and tubulin 

binding, which are related to cell metabolism  

(P < 0.05, Figure 9B). The KEGG results demonstrated 

that the differentially expressed genes were enriched  

in metabolism-related pathways such as carbon 

metabolism, the cell cycle, apoptosis, DNA replication 

and the proteome (P < 0.05, Figure 9C). We screened 

tumor immune-related drugs through Dreimt [7],  

and the top 400 genes were input into the software. 

 

 
 

Figure 5. Expression of EMT biomarkers. (A) SNAI1 and TWIST1 expression in CC patients and normal controls. (B) SNAI1, SNAI2, 
TWIST1, TWIST2, and ZEB2 expression in the low- and high-risk groups. 
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Figure 6. Immune infiltration between the low- and high-risk groups. (A) Fractions of immune cells in every single CC sample.  
(B, C) Heatmap and vioplot of immune cells between the low- and high-risk groups. Correlation between immune cells in low-risk samples 
(D), high-risk samples (E), and all colon cancer samples (F). 
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The results showed that the top 3 drug types were 

topoisomerase inhibitors, dopamine receptor antagonists 

and regenerative receptor antagonists (Figure 9D). The 

drugs were further screened (tau absolute value > 90, top 

15 of drug specificity score > 0.7), and pirarubicin/ 

mitoxantrone (topoisomerase inhibitor), daunorubicin 

(topoisomerase inhibitor, RNA synthesis inhibitor), 

BMS-387032/CGP-60474/JNJ-7706621/AT-7519/ 

alvocidib/purvalanol-a/PHA-793887/AZD-5438 (CDK 

inhibitor), bisindolylmaleimide-ix (PKC inhibitor), 

dactinomycin RNA (polymerase inhibitor), fludarabine 

(ribonucleotide reductase inhibitor) and PF-562271 (focal 

adhesion kinase inhibitor) were filtered out. Our data 

provide a theoretical basis for tumor immune targeted 

therapy related to glycolysis in patients with colorectal 

cancer. 

 

 
 

Figure 7. Validation of the efficacy of the gene model in TCGA samples. (A) CC patient distribution according to the median risk 
score. (B) Kaplan–Meier analysis between the low- and high-risk groups. (C) ROC analysis of the risk score. (D) The relationship between 
patient survival status and risk score. (E) PCA between the low- and high-risk groups. 
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Figure 8. Clinical features and risk factors in the validation cohort. (A) Kaplan–Meier analysis of clinical features, including age, sex, 

TNM stage, T stage, N stage, and M stage. (B) Kaplan–Meier analysis of clinical features in low- and high-risk subgroups. 
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Validation of model gene expression in CC patient 

samples 

 

To lay the foundation for the next step of our basic 

research, we validated the expression of all the model 

genes through western blotting. Our results showed  

that NUP107, SEC13, ALDH7A1, ALG1, CHPF, 

GALK1, XYLT2, and OGDHL were highly expressed, 

whereas FAM162A, FBP2, IDH1, TGFA, and VLDLR 

were expressed at low levels in CC patients (P < 0.05, 

Figure 10). These gene expression levels were 

consistent with the gene expression in GSE39582. 

 

DISCUSSION 
 

CC is a common gastrointestinal carcinoma that affects 

human health and was responsible for 1,148,515 new 

cases and 576,858 deaths globally in 2020 [8]. In recent 

years, there have been several advancements in the 

treatment of CC patients, including surgery, radiation, 

chemotherapy, adjuvant chemotherapy, and immuno-

therapy; however, the mortality of CC patients remains 

high [8, 9]. Thus, it is necessary to discover novel 

biomarkers as potential therapeutic targets to improve 

the prognosis of CC. Glycolysis is highly activated in 

tumor cells, and increasing evidence has revealed that 

reprogramming of glycolysis metabolism is closely 

related to the occurrence and development of tumors 

[10]. 

 

In this study, we collected six glycolysis-related gene 

sets from the GSEA database, from which we selected a 

total of 301 mRNAs in 566 CC patients for further 

analysis. Then, 217 differentially expressed glycolysis-

related genes were screened for the construction of a 

prognostic gene model. After Cox regression analyses, 

 

 
 

Figure 9. Tumor immune sensitive drug prediction. (A) Top 200 up- and downregulated significantly expressed genes between the 
high- and low-risk groups. (B, C) GO and KEGG enrichment analyses of differentially expressed genes. (D) Pie chart of tumor immune-sensitive 
drug types. 
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Figure 10. Model gene expression confirmed using western blotting. 
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a signature of 13 glycolysis-related genes (NUP107, 
SEC13, ALDH7A1, ALG1, CHPF, FAM162A, FBP2, 

GALK1, IDH1, TGFA, VLDLR, XYLT2, and OGDHL), 

all of which were independent risk factors for OS, was 

established between CC patient and normal tissues. This 

signature may be considered as a novel potential 

therapeutic target. Previous studies have reported that 

NUP37 promotes lung cancer cell proliferation and 

inhibits apoptosis [11], while the overexpression of 

TGFA and HPF induces cell proliferation and invasion 

in lung cancer [11, 12]. The downregulation of 

ALDH7A1 increases cell migration and invasiveness in 

hepatocellular and renal clear carcinomas [12]. 

Furthermore, FBP2 overexpression inhibits sarcoma 

cell growth [13], VLDLR overexpression inhibits CC 

cell proliferation and migration [14], OGDHL silencing 

contributes to the survival of HCC patients via the 

regulation of glutamine metabolic pathways [15], and 

IDH1 mutation promotes glioma cell proliferation and 

migration via EMT [16]. However, the specific roles of 

SEC13, ALG1, FAM162A, GALK1, and XYLT2 in 

cancer remain unclear. 

 

The prediction capability of the model was assessed 

through PCA, Kaplan–Meier curve analysis, and ROC 

analysis. The clinical variables and risk scores were also 

analyzed. The PCA results showed that our model 

specifically divided samples into low- and high-risk 

groups based on the risk score. Kaplan–Meier curve 

analysis revealed that a high-risk score was related to 

poorer patient prognosis. The expression of the 

signature genes was validated via PCR and western 

blotting, and the results were consistent with the gene 

expression in GSE39582. These results suggest that our 

model might be useful for predicting the prognosis of 

patients with CC based on the risk score. Our gene 

expression signature might serve as a workable tool for 

the classification of CC patients and may provide the 

basis for personalized treatment. 

 

Among the clinical variables, age > 65 years, TNM 

III–IV, T3-4, N1-3, M1, and a high-risk score were 

identified as independent prognostic risk factors. To 

evaluate the clinical efficacy of the model, the 

relationships between the risk score and clinical 

features were analyzed. We found that high-risk scores 

in the age ≤ 65 years, age> 65 years, female sex, male 

sex, TNM I-II, TNM III-IV, T1-2, T3-4, M0, M1, N0, 

and N1-3 subgroups were highly correlated with poor 

OS in patients. These results established the reliability 

of the gene model for CC. Although not all clinical 

features could be distinguished in the TCGA dataset, it 

may be because TCGA colon cancer data were not  
as rich as GSE39582, which was the vital reason that 

we used the GSE39582 dataset to construct our 

prediction model. Moreover, our glycolysis-related 

gene signatures could clearly distinguish the tumor 

stage and provide the basis for potential early 

individualized treatment. 

 

A study reported that EMT promotes CC cell invasion 

and migration and is involved in the invasion  

and metastasis of CC [17]. However, glycolysis is 

closely related to EMT in cancers [5]. In this study, the 

risk score was positively associated with the 

expression of EMT biomarkers (SNAI1, SNAI2, 

TWIST1, TWIST2, and ZEB2). These results suggest 

that high glycolysis metabolism is accompanied by 

changes in other regulatory pathways in the tumor 

microenvironment. 

 

A previous study reported differences in immune 

infiltration between CC and normal tissues [18]; 

however, the role of tumor immunity in colon cancer 

glycolysis remains unclear. Our data showed that M1 

macrophages and plasma cells were more and less 

infiltrated in the high-risk group, respectively; however, 

Ge et al. reported that M1 macrophages and plasma 

cells infiltrated significantly more in CC than in normal 

tissues [18]. Through immune cell correlation analysis, 

a moderate to high negative correlation was observed 

between the M1 macrophages and activated mast cells 

and the activated mast cells and resting mast cells in the 

high-risk group, low-risk group, and all cancer samples. 

Moreover, a positive correlation was observed between 

follicular helper T cells and M1 macrophages and 

activated memory CD4 T cells and M1 macrophages, 

which is consistent with the results of Ge et al. in CC 

compared to normal tissues. According to the above 

results, M1 macrophages could be a potential target for 

therapy and may play an important role in CC and CC 

glycolysis; however, the specific mechanisms remain 

unknown and need further research. Then, tumor 

immune-sensitive drugs were predicted, and pirarubicin/ 

methoxantrone (topoisomerase inhibitor), daunorubicin 

(topoisomerase inhibitor, RNA synthesis inhibitor), and 

fludarabine (ribonucleotide reductase inhibitor) were 

approved for use in related clinical cancer patients. Our 

data provide a theoretical basis for tumor immune 

targeted therapy related to glycolysis in patients with 

colorectal cancer. 

 

In summary, we identified and validated a prognostic 

model based on 13 glycolysis-related genes, including 

NUP107, SEC13, ALDH7A1, ALG1, CHPF, FAM162A, 

FBP2, GALK1, IDH1, TGFA, VLDLR, XYLT2, and 

OGDHL, for CC. This model could be positively related 

to poor prognosis in CC, EMT activation, and CC 

microenvironment immunity. The final related tumor 
immune-sensitive drugs were filtered. These findings 

could be used for the prognosis of CC patients and 

identifying novel biomarkers for CC therapy. 
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MATERIALS AND METHODS 
 

Patient and control data 

 

The Affymetrix Human Genome U133 Plus 2.0 array 

gene expression profile and corresponding clinical 

information data of 566 CC patients and 19 normal 

control tissues were downloaded from a GEO dataset 

(GSE39582). The clinical information included survival 

time, survival status, sex, age, tumor-node-metastasis 

(TNM) stage, clinical T stage, clinical N stage, and 

clinical M stage. 

 

Identification of differentially expressed glycolysis-

related genes 

 

A total of 301 mRNAs of six glycolysis-related  

gene sets were selected from the GSEA database 

(WP_COMPUTATIONAL_MODEL_OF_AEROBIC_G

LYCOLYSIS, WP_GLYCOLYSIS_IN_SENESCENCE, 

REACTOME_REGULATION_OF_GLYCOLYSIS_BY

_FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM, 

REACTOME_GLYCOLYSIS, HALLMARK_ 

GLYCOLYSIS, and GO_GLYCOLYTIC_PROCESS). 

The Wilcoxon test was used to determine the 

differentially expressed genes. Then, a prognostic gene 

model was constructed based on the 217 differentially 

expressed glycolysis-related genes. The cutoffs were set 

as Log2(fold change) > 1 and p value< 0.05. Heatmaps 

were generated using the Pheatmap package. 

 

Construction of a glycolysis-related gene risk  

model 

 

Based on the 217 differentially expressed glycolysis-

related genes in GSE39582, uniCox and multiCox 

analyses were conducted to identify the model genes. 

The risk score was obtained from the results of 

multiplication of the Cox coefficient of multiCox 

analysis and gene expression values. The following 

formula was used for the calculation of the risk score: 

Risk score = (Cox coefficient of model gene A* A gene 

expression + Cox coefficient of model gene B* B gene 

expression+……). Then, all patients were divided into 

low- and high-risk subgroups based on the median risk 

score. CBioPortal (http://www.cbioportal.org/) was 

used to screen the model gene mutation status and gene 

mutation sites. Survival and survminer packages were 

used for survival analysis. Receiver operating 

characteristic (ROC) analysis was performed using the 

survival ROC package. An area under the curve value 

of > 0.65 was regarded as an acceptable cutoff value. 

The risk score, principal component analysis (PCA), 

and survival status plots were generated to establish a 

prediction model between the low- and high-risk 

groups. 

Independent prognostic value of risk score 

 

To assess the prognostic value of the model, we used 

univariate and multivariate Cox regression analyses to 

determine the prognostic factors. The factors (age, sex, 

TNM stage, and risk score) with p values less than 0.05 

in univariate and multivariate Cox regression analyses 

were considered as independent factors. 

 

Clinical application of the gene model 

 

To examine the efficiency of our model in CC, we 

analyzed the correlation between the gene model and 

clinical features (age, sex, clinical TNM stage, clinical 

T stage, clinical N stage, and clinical M stage). All 

patients were classified into two subgroups based on 

age (> 65 and ≤ 65 years old), sex (female and male), 

TNM stage (TNM stage I-II and TNM stage III-IV), 

clinical T stage (T1-2 and T3-4), clinical M stage (M0 

and M1), and clinical N stage (N0 and N1-3). Survival 

analyses were performed between the two groups. 

 

Immune cell infiltration between low- and high-risk 

patients 

 

Subsequently, CIBERSORT, including 22 immune cells 

(seven kinds of T cells, naïve B cells, memory B cells, 

plasma cells, resting NK cells, activated NK cells, 

monocytes, M0–M2 macrophages, resting dendritic 

cells, activated dendritic cells, resting mast cells, 

activated mast cells, eosinophils, and neutrophils), was 

used for immune cell infiltration evaluation. 

 

Functional enrichment analyses between low- and 

high-risk groups 

 

Gene ontology (GO) analysis and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) analyses were 

conducted using the org.Hs.e.g..db R package and 

clusterProfiler R package. A P value of < 0.05 was 

identified as statistically significant. 

 

Model validation using western blot analysis 

 

CC patient and control tissues were collected  

from the Affiliated Kunshan Hospital of Jiangsu 

University. The patient tissues were preserved in 

liquid nitrogen and lysed using RIPA lysis buffer 

(Strong) (MedChemExpress, China). A BCA Protein 

Quantification Kit (Vazyme, China) was used to 

measure the protein concentration. Proteins were 

transferred to nitrocellulose membranes (Millipore, 

Billerica, MA, USA) after separation through  

10% sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis. Then, the membranes were incubated 

with primary antibodies against the following: 

http://www.cbioportal.org/
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NUP107/SEC13/ALDH7A1/ALG1/CHPF/FAM162A/

FBP2/GALK1/IDH1/TGFA/VLDLR/XYLT2/OGDHL 

(Abcam, USA, 1:1000) and GAPDH (Abcam, USA, 

1:3000). The membranes were washed and incubated 

with horseradish peroxidase-labeled goat anti-rabbit 

IgG (1:5000; Sigma). The signals were visualized 

using BIO-RADXR. 

 

Statistical analysis 

 

Statistical analysis was performed using SPSS 21.0 

software (SPSS, Chicago, IL, USA). Data were 

presented as the means ± standard deviation (SD). The 

difference between the groups was determined using 

ANOVA with repeated measures. To compare the 

difference between the two groups, the independent 

sample t test was used. P<0.05 was considered as 

significant. 
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