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INTRODUCTION 
 

Laryngeal squamous cell carcinoma (LSCC), a frequent 

and invasive malignancy of head and neck squamous cell 

carcinoma (HNSCC), is the eighth largest cause of 

cancer-associated death in the world [1]. The morbidity 

of LSCC is higher in men than in women and the leading 

pathogenic risk factors includes smoking and alcohol 

drinking [2]. As the proportion of people over 70 years of 

age rises in the past twenty years, the incidence of LSCC 

is growing globally and the burden may continue to 

ascend in the future [3, 4]. Conventional management 

approaches to laryngeal cancer include radical surgery, 

radiation therapy, and chemotherapy. However, to date, 

there is still a poor prognosis for laryngeal cancer. 

RNA-binding proteins (RBPs) [5] participate in many 

biological activities, such as the modulation of pre–

messenger RNA (mRNA) splicing and RNA 

modification, translation, stability, and localization [6]. 

RBPs identify targets and regulate co-transcriptional 

RNA, post-transcriptional processes by RNA-binding 

domains [7]. Thus far, some RBPs have been identified 

in human cell lines and tumors through genome-wide 

analysis [8]. Statistically, approximately half of these 

RBPs can be grouped according to their mRNA targets, 

while others can interact with different RNA types. 

Moreover, about one third of the RBPs can combine 
with DNA and RNA [9]. The abnormal expression of 

RBPs has been detected in multiple human tumor types, 

and different RBPs can control different processes in 
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ABSTRACT 
 

RNA-binding proteins (RBPs) have been suggested as important prognostic indicators in different human 
cancers. This study was designed to search the prognostic value of RBPs of laryngeal squamous cell carcinoma 
(LSCC). Differentially expressed RBPs (DERBPs) were screened via The Cancer Genome Atlas (TCGA). 
Bioinformatics methods were used to identify prognostic DERBPs. Expression profiling of training cohort were 
calculated to develop a transcriptomic signature, which was validated by three independent cohorts (TCGA 
cohort, GSE65858 cohort and GSE27020 cohort). We identified DERBPs and a set of signatures (GTPBP3, 
KHDRBS3 and RBM38) were confirmed as prognosis-related hub DERBPs in LSCC, which was also tested and 
verified by bioinformatics method and molecular biology experiment. The role of immune cell infiltration and 
drug resistance between subgroups was explored. Furthermore, the risk score based on transcriptomic 
signature was turned out to be an independent prognostic indicator for LSCC. Finally, a nomogram for further 
clinical application was established. Our study demonstrated that the transcriptomic signature we constructed 
could serve as a novel therapeutic target and biomarker for LSCC from the perspective of RBPs. 
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RNA metabolism of the target genes [10]. For example, 

RNA-binding motif protein 47 (RBM47) can suppress 

progression and metastasis in breast cancer cells [11]. 

 

RBPs are known to be linked to the development, and 

metastasis of urothelial carcinoma of bladder [12]. 

MSI1, a RBP of the Musashi family, is associated with 

oral squamous cell carcinoma [13], gastric carcinoma 

[14], and carcinoma of the lungs [15]. However, the 

prognostic value of RBPs for laryngeal cancer is rarely 

reported so far. In our study, we intended to establish 

and verify a novel prognostic signature in view of RBPs 

expression profile for LSCC patients by integrating 

different independent cohorts. 

 

MATERIALS AND METHODS 
 

Detection of DERBPs 

 

Transcript data were obtained from TCGA 

(https://portal.gdc.cancer.gov), which containing 111 

LSCC samples and 12 paired samples. In Supplementary 

Table 1, detailed clinical information is presented. The 

RNA-seq data were processed by using “limma” 

package of the R software. | log (FC) | ≥ 0.5 and an 

adjusted p-value < .05 were defined as the screening 

criteria for detecting DERBPs between healthy laryngeal 

tissues and LSCC tissues from TCGA. 

 

Pathway enrichment analysis 

 

To identify the predominant biological processes of the 

DERBPs, gene ontology (GO) [16] and Kyoto 

encyclopedia of Genes and Genomes (KEGG) pathway 

analysis [17] were performed. An adjusted p-value < .05 

was considered as a screening criterion. 

 

PPI network establishment 

 

To screen hub genes that were tightly linked to each 

other, DERBPs were introduced into the String database 

(https://string-db.org/) and Cytoscape software (version: 

3.7.1). The plug-in unit “MODE” was used for sub-

network construction. We then performed pathway 

enrichment and visualized the sub-networks. 

 

GEO cohorts 

 

To increase the reliability of the prognostic signature, 

we integrated GSE27020 dataset (109 patients) from 

GEO database for DFS analysis. Thirty-four recurrent 

and seventy-five non-recurrent LSCC patients were 

collected as external cohorts for further validation. 

GSE27020 dataset was derived from the GPL96 

platform (Affymetrix Human Genome U133A Array). 

Moreover, GSE65858 dataset including 270 HNSCC 

patients was further screened out and selected for 

validation of OS, which was derived from GPL10558 

platform. 

 

Identification and validation of the transcriptomic 

signature 

 

To develop a RBPs-related prognostic signature with 

good predictive performance, 111 LSCC patients were 

randomly assigned to training (56 patients) and test 

cohort (55 patients). The univariate Cox regression 

analysis was served to select the prognostic DERBPs in 

training cohort, and LASSO analysis method was 

performed to avoid overfitting. Multivariate Cox 

regression analysis was applied to determine the 

prognostic signature. The DERBPs with a p-value < .05 

were considered as hub prognosis-related DERBPs. The 

calculation formula of the risk score based on training 

cohort was described below: 

 

Risk score = coef A * A Expression + coef B * B 

Expression + coef i * i Expression [18–20] 

 

On the basis of the median risk score, all samples were 

sorted into either the low- or high-risk group in training 

cohort. We compared the overall survival rate of the 

two groups by Kaplan-Meier methods, and evaluated 

the transcriptomic signature by plotting the receiver 

operating characteristic (ROC) curves for training, test, 

entire, GSE65858 and GSE27020 cohort. 

 

Immune infiltration and drug sensitivity analysis 

 

In this study, cell-type identification by estimating 

relative subsets of RNA transcripts (CIBERSORT) 

algorithm [21] and single sample gene set enrichment 

analysis (ssGSEA) algorithm [22] were carried out on 

LSCC patients of TCGA cohort. The Wilcoxon test 

was applied to compare the immune cell infiltration of 

LSCC patients in different groups with the p value  

< .05 as statistically significant. Further, the RBPs 

expression of TCGA cohort were uploaded to  

Tumor Immune Dysfunction and Exclusion (TIDE) 

website (http://tide.dfci.harvard.edu/) in order to 

predict the immunotherapy response of the two 

different groups. Also, with the p value < .01 as 

statistically significant, effective chemotherapeutic 

drugs targeting low- or high-risk group were screened 

out via using Drug Sensitivity in Cancer (GDSC) 

database (https://www.cancerrxgene.org/) [23]. 

 

Cell culture 

 
Three LSCC cell lines and HuLa-PC were used to 

verify the gene expression. As described before [24], 

cell culture assays were performed. Moreover, a normal 
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epithelial cell (HuLa-PC) was purchased from ATCC 

(Gaithersburg, MD, USA) and cultured in BEGM (CC-

3170 Lonza). 

 

qRT-PCR 

 

We performed real-time quantitative reverse transcriptase 

PCR (qRT-PCR) as described in our previous study [24]. 

The primers were synthesized by Sangon Biotech Co., 

Ltd. (Shanghai, China) Primer sequences are detailed in 

Supplementary Table 2. 

 

Independent prognosis analysis 

 

Based on the entire cohort, we tried to judge whether 

the risk score that calculated by our prognostic signature 

was an independent prognostic factor for LSCC by 

univariate and multivariate Cox regression analyses. 

 

Nomogram construction 

 

To better connect with the clinical application, we 

developed a nomogram by “rms” package of R software 

according to the result of independent prognosis 

analysis. Nomogram can assess the overall survival rate 

of patients with LSCC at different time points according 

to the scoring of independent prognostic factors. Time-

dependent calibration curves were plotted to verify the 

effectiveness of nomogram internally. 

 

Statistical analysis 

 

R software (version: x64 3.6.1) and GraphPad Prism7 

were used for all statistical analyses in this study. The 

results of qRT-PCR were subjected to GraphPad Prism7 

software by the Student’s t-test. A p-value < .05 was 

regarded as statistically significant. 

 

RESULTS 
 

Identification of DERBPs 

 

The research design is illustrated in Figure 1. 

According to the screening criteria (adjusted  

p-value < .05, | log (FC) | ≥ 0.5), 285 DERBPs were 

identified (Supplementary Table 3). Among them, 111 

 

 
 

Figure 1. Flowchart of this study. 
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down-regulated and 174 up-regulated DERBPs were 

identified (Figure 2). 

 

GO and KEGG analysis of DERBPs 

 

The results indicated that down-regulated DERBPs were 

significantly enriched in the biological processes 

including mRNA processing, translation regulation, 

cellular amide regulation, metabolic processes, mRNA 

catabolic processes, and RNA catabolic processes 

(Table  1). The up-regulated DERBPs were significantly 

enriched in the non-coding RNA (ncRNA) metabolic 

processes, mRNA processing, RNA splicing, ncRNA 

processing, RNA splicing, and transesterification 

reactions (Table 1). According to the analysis of cellular 

component, down-regulated DERBPs were enriched  

in the ribosomal subunit, ribonucleoprotein granule, 

cytosolic ribosome, ribosome, and cytoplasmic 

ribonucleoprotein granule. On the other hand, the up-

regulated DERBPs were mainly enriched in the 

spliceosomal complex, U2-type precatalytic spliceosome, 

precatalytic spliceosome, cytoplasmic ribonucleoprotein 

granule, and ribonucleoprotein granule (Table 1). 

According to the molecular function analysis, the down-

regulated DERBPs were enriched during catalytic 

activity, acting on the RNA, AU-rich element binding, 

mRNA 3’-UTR AU-rich region binding, mRNA 3’-UTR 

binding, and ribonucleoprotein complex binding  

(Table 1), while the up-regulated DERBPs were 

significantly enriched during catalytic activity, acting on 

the RNA, nuclease activity, ribonuclease activity, transfer 

(tRNA), and tRNA binding (Table 1). Moreover, we 

found that down-regulated DERBPs were mainly 

enriched in mRNA surveillance pathway, ribosomes, 

RNA transport, and progesterone-mediated oocyte 

maturation; while up-regulated RBPs were significantly 

enriched in spliceosome, RNA transport, RNA 

degradation, mRNA surveillance pathway, and 

cytosolic DNA-sensing pathway (Table 1). 

 

PPI network construction 

 

As shown in Figure 3A, 3B, PPI network was established 

to further screen the hub DERBPs in LSCC. The most 

three important modules were screened out and shown in 

Figure 3C–3E. Pathway enrichment analysis of the three 

key modules showed that the hub DERBPs were related 

to RNA activities, such as RNA splicing, RNA transport 

and RNA binding (Supplementary Table 4). 

 

Identification of a RBPs-associated prognostic 

signature 

 

In training cohort, ten RBPs related to prognosis were 

obtained for the LASSO analysis (Table 2). Next, the 

LASSO analysis was performed, and the coefficients 

of five DERBPs are shown in Figure 4. Subsequently, 

through multivariate Cox regression, three RBPs 

(GTPBP3, KHDRBS3 and RBM38) were selected to 

develop the transcriptomic signature for LSCC  

(Figure 4C and Table 3). The calculation formula of 

the risk score based on training cohort was described 

below: 

 

Risk score = (-2.421 * Exp GTPBP3) + (2.022 * Exp 

KHDRBS3) + (-1.071 * Exp RBM38). 

 

 
 

Figure 2. The differentially expressed RNA-binding proteins from TCGA. (A) Volcano plot; (B) Heat map. 
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Table 1. Gene ontology pathway and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of 
differentially expressed RNA-binding proteins. 

 Description p value p.adjust 

Down-regulated RBPs    

BP 

mRNA processing 3.32E-17 4.98E-14 

regulation of translation 7.43E-13 5.58E-10 

regulation of cellular amide metabolic process 7.23E-12 3.62E-09 

mRNA catabolic process 6.79E-11 2.55E-08 

RNA catabolic process 2.38E-10 7.14E-08 

CC 

ribosomal subunit 2.89E-07 2.14E-05 

ribonucleoprotein granule 5.84E-07 2.14E-05 

cytosolic ribosome 6.23E-07 2.14E-05 

ribosome 7.51E-07 2.14E-05 

cytoplasmic ribonucleoprotein granule 3.75E-06 8.56E-05 

MF 

catalytic activity, acting on RNA 1.15E-11 2.39E-09 

AU-rich element binding 8.77E-09 4.78E-07 

mRNA 3'-UTR AU-rich region binding 8.77E-09 4.78E-07 

mRNA 3'-UTR binding 9.19E-09 4.78E-07 

ribonucleoprotein complex binding 2.40E-08 1.00E-06 

KEGG 

mRNA surveillance pathway 0.000158718 0.007591248 

Ribosome 0.00025733 0.007591248 

RNA transport 0.000518043 0.010188172 

Progesterone-mediated oocyte maturation 0.002382425 0.03514077 

Up-regulated RBPs    

BP 

ncRNA metabolic process 2.31E-32 3.98E-29 

mRNA processing 1.08E-26 8.80E-24 

RNA splicing 1.96E-26 8.80E-24 

ncRNA processing 2.04E-26 8.80E-24 

RNA splicing, via transesterification reactions 1.24E-20 4.26E-18 

CC 

spliceosomal complex 1.30E-10 2.26E-08 

U2-type precatalytic spliceosome 2.95E-10 2.26E-08 

precatalytic spliceosome 2.95E-10 2.26E-08 

cytoplasmic ribonucleoprotein granule 4.61E-10 2.65E-08 

ribonucleoprotein granule 1.10E-09 4.33E-08 

MF 

catalytic activity, acting on RNA 1.01E-30 2.15E-28 

nuclease activity 7.84E-14 8.35E-12 

ribonuclease activity 4.07E-13 2.89E-11 

catalytic activity, acting on a tRNA 8.50E-13 4.52E-11 

tRNA binding 2.46E-11 1.05E-09 

KEGG 

Spliceosome 1.19E-15 6.33E-14 

RNA transport 1.04E-08 2.75E-07 

RNA degradation 4.52E-08 7.99E-07 

mRNA surveillance pathway 2.20E-05 0.000291209 

Cytosolic DNA-sensing pathway 0.002889905 0.026712079 
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In training cohort, there was a worse prognosis for high-

risk group compared with low-risk group (p < .001, 

Figure 5A). The one-, three-, and five-years AUC 

values of the signature was 0.895, 0.883 and 0.89 

(Figure 5B), indicating great diagnostic capability of the 

prognostic signature. The survival status of patients and 

risk score of the signature consisting of the three 

DERBPs in the low- and high-risk subgroups were 

shown in Figure 5C, 5D. 

 

Furthermore, the same analysis methods were applied in 

different cohorts, including test cohort (n=55), entire 

cohort (n=111), GSE65858 cohort (n=270) and 

GSE27020 cohort (n=109). In test cohort, patients with 

a higher risk score also had a worse overall survival 

than those with a lower risk score (p = 0.048, Figure 

6A) and entire cohort (p < .001, Figure 7A). The Time-

dependent AUC values of test cohort and entire cohort 

were plotted in Figures 6B, 7B. In GSE27020 cohort, 

patients with higher risk score were more likely to have 

a worse disease-free survival compared with patients in 

the lower risk score (p = 0.011, Supplementary Figure 

1A). The Time-dependent AUC values of GSE27020 

cohort were plotted in Supplementary Figure 1B. In 

GSE65858 cohort (n=270), patients with a higher risk 

score also had a worse overall survival (p = 0.147, 

Supplementary Figure 2A). The AUC values of the 

GSE65858 cohort was displayed in Supplementary 

Figure 2B. As shown in Supplementary Figure 2C, 2D, 

patients with higher risk score had a higher mortality. 

 

Immune context of the prognostic signature 

 

To explore the immune characteristics of different 

subgroups, in TCGA cohort, CIBERSORT 

(Supplementary Figure 3A) and ssGSEA (Supplementary 

Figure 3B) algorithms were performed. While only 

para-inflammation was differentially enriched in the 

 

 
 

Figure 3. Protein-protein interaction (PPI) network and module analysis. (A) PPI network of integrated DERBPs by String database; 
(B) Visualized PPI analysis of DERBPs based on Cytoscape; (C–E) Top three modules from the PPI network. 
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Table 2. Univariate Cox regression analysis for prognostic signature. 

id HR HR.95L HR.95H pvalue 

KHDRBS3 7.072258353 2.609931172 19.16404492 0.000119996 

RBM38 0.216674422 0.078590104 0.597375531 0.003119943 

EIF5A2 3.429842961 1.389144386 8.46839454 0.007523681 

GTPBP3 0.130350488 0.028933995 0.587241752 0.00797546 

CCDC86 4.703911956 1.496876874 14.78196909 0.008038545 

TDRD3 7.617503865 1.443551636 40.19694458 0.016732381 

CD3EAP 3.877391645 1.156712741 12.99732028 0.028101935 

CPEB3 0.028673549 0.000949282 0.86609916 0.041088249 

NARS 3.177289338 1.019643854 9.900680028 0.04620559 

THOC7 2.769197743 1.003182988 7.644124983 0.04928726 

 

 
 

Figure 4. Identification of prognosis-related DERBPs associated with laryngeal squamous cell carcinoma. (A, B) LASSO 

coefficient profiles of DERBPs selected by univariate Cox regression analysis; (C) Forest plot of multivariate Cox regression analysis. 
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Table 3. Multivariate Cox regression analysis for prognostic signature. 

id coef HR HR.95L HR.95H pvalue 

GTPBP3 -2.421490619 0.088789168 0.01897852 0.415391518 0.002098438 

KHDRBS3 2.021819781 7.552055522 2.445703998 23.31988772 0.000440374 

RBM38 -1.070742906 0.342753789 0.122551551 0.958618301 0.041300275 

 

high-risk and low-risk groups, there was no significant 

difference in immune cell infiltration and TIDE  

scores between the high-risk and low-risk groups 

(Supplementary Figure 3C). Additionally, we found  

that patients in the low-risk group were more sensitive 

to KIN001-135, MP470, QL-XII-61 and VX-702 

(Supplementary Figure 3D–3G). 

 

Verification by qRT-PCR 

 

In clinical tissues, higher GTPBP3 and RBM38 

expression were found in LSCC tissues, while lower 

KHDRBS3 expression was found (Figure 8D–8F), 

which was consistent with the results of differential 

expression analysis from TCGA (Figure 8A–8C). In cell 

lines, the same results were noted. (Figure 8G–8I). 

Independent prognosis analysis 

 

Univariate and multivariate Cox regression analysis 

suggested that gender, lymph node metastasis and risk 

score were independent prognostic factors of LSCC 

patients (p < .05, Figure 9A, 9B). These results 

suggested that the risk score calculated by 

transcriptomic signature was an independent risk factor 

for patients with LSCC. 

 

Construction of a nomogram based on the three hub 

DERBPs 

 

Based on the independent prognosis analysis, a 

nomogram integrating gender, lymph node metastasis 

and risk score was developed based on the entire cohort 

 

 
 

Figure 5. Prognostic assessment of the transcriptomic signature in training cohort. (A) Kaplan-Meir (KM) survival curves;  
(B) Receiver operating characteristic curves; (C, D) Risk score distribution and survival status. 
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Figure 6. Prognostic assessment of the transcriptomic signature in training cohort in test cohort. (A) Kaplan-Meir (KM) survival 

curves; (B) Receiver operating characteristic curves; (C, D) Risk score distribution and survival status. 
 

 
 

Figure 7. Prognostic assessment of the transcriptomic signature in TCGA cohort. (A) Kaplan-Meir (KM) survival curves; (B) Receiver 
operating characteristic curves; (C, D) Risk score distribution and survival status. 
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to predict the overall survival of LSCC patients at one, 

three, and five years after diagnosis (Figure 9C). The 

calibration curves for predicting one-, three- and five-

year overall survival showed that the nomogram-

predicted survival rate closely matched the ideal curve 

(Figure 9D–9F). Our results suggested that, the 

nomogram we developed according to independent 

prognosis analysis exhibited great performance for risk 

stratification of LSCC. 

 

DISCUSSION 
 

Even with advances in treatment modalities, the 

prognosis of laryngeal cancer remains poor and the 

survival rates have not been obviously improved. 

Hence, it is urgently required to explore molecular 

mechanisms and identify novel signatures, which could 

assess the tumor behavior during initial diagnosis in 

LSCC patients [25]. Nowadays, RNA-sequencing 

technology was widely applied to development of 

disease prognostic model [26, 27]. Perfect and effective 

prognostic features can improve personalized patient 

management. The large amount of genomic information 

collected from individual tumor samples has promoted 

the identification of novel diagnostic, prognostic, or 

predictive biomarkers [28]. For example, Peng 

identified a novel gene signature for the prognosis  

of gastric cancer [29]; Yang found five significant 

 

 
 

Figure 8. The validation of three RBPs in tissues and cell lines through qRT-PCR. (A–C) Expression of GTPBP3, KHDRBS3 and RBM38 

in TCGA database; (D–F) GTPBP3 and RBM38 presented higher expression in LSCC, compared to their adjacent normal tissue, while KHDRBS3 
was the opposite; (G–I) GTPBP3 and RBM38 presented higher expression in LSCC cell lines, compared to laryngeal epithelial cell line HuLa-PC, 
while KHDRBS3 was the opposite. 
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microRNAs related to the prognosis of colorectal cancer 

[30]; Zhong suggested that six long non-coding RNAs 

(lncRNAs) might be involved with breast cancer–

related biological processes [31]; Zhang identified 214 

differentially expressed lncRNAs, and found a novel 

four-lncRNA signature that could predict the prognosis 

of cancer [32]. 

 

Despite the universal application of prognostic 

signatures, few signatures were constructed and assessed 

for laryngeal cancer. To our knowledge, this is the first 

time that RBPs has been combined with laryngeal 

cancer. Prognosis-related RBPs were filtered out and a 

transcriptomic signature was developed according to 

three RBPs expression (GTPBP3, KHDRBS3, and 

RBM38). 

 

GTP binding protein 3 (GTPBP3) exists in mitochondria 

and exerts effects on mitochondria [33]. Past studies 

suggested that GTPBP3 was associated with some 

oxidative phosphorylation diseases [33]. As an example, 

Chen et al. [34] suggested that GTPBP3 was related to 

mitochondrial tRNA metabolism. Moreover, GTPBP3 is 

also correlated with primary angle closure glaucoma 

[35] and non-syndromic hearing loss [36]. 

 

KH RNA binding domain containing, signal transduction 

associated 3 (KHDRBS3) was initially found to be 

associated with spermatogenesis. Recent research has 

indicated that KHDRBS3 is strongly involved in 

tumorigenesis and development. Shi [37] suggested that 

KHDRBS3 drove circ-0088300 to accelerate the 

metastasis of gastric carcinoma cells. In colorectal cancer 

cells, KHDRBS3 was found to promote drug resistance 

by maintaining stem cell stemness [38]. In this study, 

lower KHDRBS3 expression was detected in LSCC 

tissues. 

 

RNA binding motif protein (38RBM38) is located on 

chromosome 20q13 and is expressed broadly in bone 

 

 
 

Figure 9. Independent prognostic analysis and construction of a nomogram (A) Univariate analysis of clinical factors; (B) Multivariate 

analysis of clinical factors; (C) Nomogram for predicting one-, three-, and five-year overall survival of laryngeal squamous cell carcinoma 
patients based on entire cohort; (D–F) Calibration plots of the nomogram based on one-, three-, and five-year overall survival. The y-axis 
represents actual survival, and the x-axis represents nomogram-predicted survival. 
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marrow and lymph node [39]. It is worth mentioning that 

the expression levels of RBM38 are different in different 

tumor, indicating that the function of RBM38 in tumors 

is complex. RBM38 acts as a tumor suppressor by 

reducing c-Myc and enhancing PTEN expression in 

breast cancer [40]; Observations in most studies 

suggested that RBM38 promotes cancer [41, 42]. 

 

In this study, higher GTPBP3, higher RBM38 and lower 

KHDRBS3 expression were found in LSCC tissues and 

cell lines. We developed a transcriptomic signature 

associated with these prognostic RBPs for laryngeal 

cancer and verified in internal and external cohorts. 

Interestingly, based on the results of independent 

prognostic analysis and the nomogram we constructed, 

we found that female gender was an independent 

prognostic factor and females were more likely to suffer 

from laryngeal cancer. Statistically, laryngeal cancer 

occurs more commonly in men than in women and the 

incidence of laryngeal cancer in men is nearly five 

times that in women [43]. In this retrospective analysis, 

we found that the prognosis of laryngeal cancer in 

women was worse than that in men, which could give 

new hints for our clinical work. 
 

In the previous studies, Duan et al. [44–47] developed a 

transcriptomic signature based on RBPs in HNSCC. 

HNSCC contains many regions such as pharynx, larynx, 

tongue, oral cavity, nasal cavity and paranasal cavity. 

However, the biological characteristics and overall 

survival rate of different HNSCC regions are rather 

divergent. Therefore, it may lead to confusion if many 

tumor types are enrolled in one study. Based on the 

principle of precision therapy, we believe studying the 

function of RBPs in LSCC instead a composition of 

multiple HNSCC could obtain better results in terms of 

precision and minimize bias. As far as we know, this 

was the first attempt to develop a prognostic signature 

and nomogram based on RBPs for prognostic evaluation 

in LSCC. In general, the signature showed a higher AUC 

value than those by other studies [44–47] in predicting 

3- and 5-year OS (Supplementary Figure 3H, 3I), 

indicating a better sensitivity and specificity. 
 

Also, the research we conducted has some shortcomings. 

The tumor sample size used to construct the 

transcriptomic signature was small and more LSCC 

cohorts needed to be collected and included for further 

analysis. More, molecular biology experiments on 

GTPBP3, KHDRBS3 and RBM38 need to be performed. 

 

CONCLUSIONS 

 
In this study, we identified differentially expressed RBPs 

and screened an innovative three-RBP signature to 

predict the outcome of LSCC patients for the first time. 

Results from different independent cohorts showed that 

this prognostic signature had decent discriminative ability 

in predicting the prognosis of LSCC patients. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Risk score analysis of prognostic model in the GSE27020 cohort. (A) Survival curve for the low- and high-

risk subgroups; (B) Receiver operating characteristic curves for forecasting disease-free survival based on risk score; (C, D) Risk score 
distribution and recurrence status. 
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Supplementary Figure 2. Risk score analysis of prognostic model in the GSE65858 cohort. (A) Survival curve for the low- and high-

risk subgroups; (B) Receiver operating characteristic curves for forecasting disease-free survival based on risk score; (C, D) Risk score 
distribution and survival status. 
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Supplementary Figure 3. Immune context and sensitive drugs between subgroups. (A) Immune cell infiltration between subgroups 
with CIBERSORT algorithm; (B) Immune function activity between subgroups with ssGSEA algorithm; (C) Immunotherapy response between 
subgroups with TIDE scores; (D) Estimated IC50 values of KIN001-135; (E) Estimated IC50 values of MP470; (F) Estimated IC50 values of QL-
XII-61; (G) Estimated IC50 values of VX-702; (H) ROC curves of similar methods for predicting three-year OS; (I) ROC curves of similar methods 
for predicting five-year OS. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 1. Clinical information of TCGA cohort. 

Characteristics Amount(proportion) 

Age (>60y/ ≤60y) 47(42.3%)/ 64(57.7%) 

Gender (Male/ Female) 91(82%)/ 20(18%) 

Grade (G1-G2/ G3) 82(73.9%)/ 29(26.1%) 

Status (Alive/ Dead) 61(55%)/ 50(45%) 

TNM Stage (I-II/III-IV/ Not available) 12(10.8%)/ 86(77.5%)/ 13(11.7%) 

T classification (T1-2/ T3-4/ Not available) 20(18%)/ 78(70.3%)/ 13(11.7%) 

N classification (N0/ N+/ Not available) 43(38.7%)/ 55(49.5%)/ 13(11.7%) 

Abbreviation: Grade means pathological grade. 

 

Supplementary Table 2. The sequences of all primers used in this study. 

ID GTPBP3 KHDRBS3 RBM38 GAPDH 

Forward 

primer(5'-3') 
GCAGGCGAGTTCACCAGAC TTCCAGTGGTTCGAGGGAAAC CTGCCGTACCACACTACCG GATGCCCCCATGTTCGTCAT 

Reverse 

primer(5'-3') 
TTTCCGCGTGGATAAGGTCC CTCGTGGTACTACAACTCCAAC ATGATGGGGTTCGGGTCTTTG TAAGCAGTTGGTGGTGCAGG 

 

Supplementary Table 3. List of differentially expressed RBPs. 
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Supplementary Table 4. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of the 
differentially expressed RNA-binding proteins in the key modules. 

  Description p value p.adjust 

subNet1    

BP 

ribosome biogenesis 1.23604819956605E-53 2.47726683998237E-51 

rRNA processing 1.80164861089627E-53 2.47726683998237E-51 

ncRNA processing 3.49783767023767E-52 3.20635119771786E-50 

rRNA metabolic process 4.58359810633518E-51 3.15122369810544E-49 

maturation of SSU-rRNA 5.99452455159044E-12 3.29698850337474E-10 

CC 

preribosome 6.34171978636655E-33 2.09276752950096E-31 

small-subunit processome 1.04130348165355E-23 1.71815074472837E-22 

nucleolar part 3.22657076243753E-20 3.54922783868128E-19 

90S preribosome 4.99058966692517E-13 4.11723647521327E-12 

fibrillar center 1.48178141267309E-11 9.77975732364241E-11 

MF 

snoRNA binding 2.6734745200065E-13 1.73775843800423E-11 

catalytic activity, acting on RNA 1.47039551774291E-10 4.77878543266446E-09 

RNA helicase activity 9.73584405162519E-10 2.10943287785213E-08 

helicase activity 1.67118431651836E-07 2.71567451434234E-06 

RNA methyltransferase activity 6.73210692872447E-07 8.75173900734181E-06 

KEGG Ribosome biogenesis in eukaryotes 4.87604513359848E-29 9.75209026719696E-29 

subNet2    

BP 

mitochondrial translational elongation 3.19077661737608E-24 1.9770698154501E-23 

mitochondrial translational termination 3.59467239172745E-24 1.9770698154501E-23 

translational termination 1.84511620668653E-23 6.76542609118395E-23 

translational elongation 2.3853363994251E-22 6.12462051769803E-22 

mitochondrial translation 2.78391841713547E-22 6.12462051769803E-22 

CC 

organellar ribosome 1.6386550585062E-24 1.31092404680496E-23 

mitochondrial ribosome 1.6386550585062E-24 1.31092404680496E-23 

ribosomal subunit 5.43877874796791E-21 2.90068199891622E-20 

mitochondrial protein complex 1.44572305331084E-19 5.78289221324337E-19 

ribosome 2.11626701607867E-19 6.77205445145175E-19 

MF 

structural constituent of ribosome 3.00137078934191E-20 1.20054831573676E-19 

small ribosomal subunit rRNA binding 2.13874983828877E-08 4.27749967657753E-08 

rRNA binding 5.06850011824096E-06 6.75800015765461E-06 

oxidoreductase activity, acting on the aldehyde 

or oxo group of donors 

0.024039989892977 0.024039989892977 

KEGG Ribosome 2.77702116923204E-09 2.77702116923204E-09 

subNet3    

BP 

piRNA metabolic process 9.14280943940186E-12 1.84684750675917E-09 

RNA splicing, via transesterification reactions 

with bulged adenosine as nucleophile 

1.26242187179221E-10 6.83716002246461E-09 

mRNA splicing, via spliceosome 1.26242187179221E-10 6.83716002246461E-09 

RNA splicing, via transesterification reactions 1.35389307375537E-10 6.83716002246461E-09 

RNA splicing 8.29844787638623E-10 3.35257294206004E-08 

CC 

P granule 2.5559092533254E-14 5.96378825775926E-13 

pole plasm 2.5559092533254E-14 5.96378825775926E-13 

germ plasm 2.5559092533254E-14 5.96378825775926E-13 

cytoplasmic ribonucleoprotein granule 2.82428926655342E-11 4.94250621646848E-10 

ribonucleoprotein granule 4.23382682510392E-11 5.92735755514549E-10 

MF catalytic activity, acting on RNA 0.0000434647392351823 0.00226016644022948 
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ribonucleoprotein complex binding 0.000368208665236822 0.00957342529615737 

helicase activity 0.00066694155273121 0.011560320247341 

snRNA binding 0.00114700790836894 0.0140337338176663 

translation initiation factor activity 0.00134939748246791 0.0140337338176663 

KEGG 
Spliceosome 3.82425188294518E-06 0.0000229455112976711 

RNA transport 0.0097535710768834 0.0292607132306502 

 


