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INTRODUCTION 
 

The αklotho gene product was discovered in mice in 

1997 as a protein with strong anti-aging properties [1, 

2]. Mice almost completely lacking αklotho exhibit a 

dramatically shortened life span of a few weeks only 

whilst suffering from a broad range of diseases and 

symptoms mimicking human aging [1]. Observed 

abnormalities affect nearly every organ and tissue [1] 

and include frequent aging-associated diseases 

including fibrosis [3, 4], lung emphysema [5], multiple 

organ atrophy [1], or hearing loss [6, 7]. The accelerated 

aging of αklotho-deficient mice is paralleled by massive 

calcification in most tissues [1, 8]. Importantly, the 

reduction of dietary phosphate or vitamin D intake of 

the animals almost completely normalizes their 

phenotype pointing to a dominant role of phosphate and 

vitamin D excess in their rapid aging [9, 10]. Indeed, 

αklotho protein has important functions in the 
homeostasis of these nutrients [11]: It is a trans-

membrane protein predominantly expressed in the 

kidney that enhances the binding affinity of fibroblast 
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ABSTRACT 
 

αKlotho is a transmembrane protein acting as a co-receptor for FGF23, a bone hormone regulating renal 
phosphate and vitamin D metabolism. αKlotho expression is controlled by PPARγ. Soluble αklotho (sKL) 
regulates cellular signaling impacting stress resistance and death. αKlotho deficiency causes early onset of 
aging-associated diseases while its overexpression markedly increases lifespan. Cellular stress due to cytotoxic 
therapeutics or apoptosis induction through caspase activation or serum deficiency may result in cell death. 
Owing to αklotho’s role in cellular stress and aging, this study explored the effect of cytotoxic agents or 
apoptosis stimulants on cellular αklotho expression. Experiments were performed in renal MDCK, NRK-52E and 
HK-2 cells. Gene expression was determined by qRT-PCR, sKL by ELISA, apoptosis and necrosis by annexin V 
binding and a fluorescent DNA dye, and cell viability by MTT assay. Cytostatic drugs cisplatin, paclitaxel, and 
doxorubicin as well as apoptosis induction with caspase 3 activator PAC-1 and serum deprivation induced 
αklotho and PPARG gene expression while decreasing viability and proliferation and inducing apoptosis of 
MDCK and NRK-52E cells to a variable extent. PPARγ antagonism attenuated up-regulation of αklotho in MDCK 
cells. In HK-2 cells, αklotho gene expression and sKL protein were down-regulated by chemotherapeutics. SKL 
serum levels in patients following chemotherapy were not significantly changed. In summary, potentially fatal 
stress results in up-regulation of αKlotho gene expression in MDCK and NRK-52E cells and down-regulation in 
HK-2 cells. These results indicate that different renal cell lines may exhibit completely different regulation of 
αklotho. 
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growth factor 23 (FGF23) for its membrane receptor 

[12, 13]. FGF23 is a proteohormone released by bone 

cells that inhibits phosphate reabsorption and 

1,25(OH)2D3 (biologically active vitamin D) synthesis 

in the kidney [14, 15] and has gained attention as a 

marker indicating disease [16, 17]. Hence, the lack of 

αklotho or FGF23 results in abnormally high serum 

phosphate and 1,25(OH)2D3 levels that account for 

enhanced calcification and contribute to rapid aging and 

early death to a large extent [18]. 

 

In addition to its significance as a co-receptor for 

FGF23, FGF23-independent endocrine and paracrine 

effects of αklotho have been revealed [19–21]. These 

are mainly due to soluble klotho (sKL) that is produced 

through the cleavage of transmembrane αklotho [22]. 

SKL can be detected in body fluids including serum, 

urine, or cerebrospinal fluid [23, 24]. Endocrine or 

paracrine actions of sKL include the direct regulation of 

ion channels [25] or important signaling pathways (e.g., 

IGF, Wnt, or TGF-β1 signaling) [2, 26, 27]. αKlotho 

exerts anti-neoplastic [28], anti-inflammatory [29, 30], 

anti-fibrotic [3], and anti-oxidant effects [31, 32] and 

has been proven organoprotective, e.g., in the kidney 

[33, 34]. In several tumor cell lines and cancer mouse 

models, higher expression of αklotho is associated with 

beneficial, potentially lifespan-expanding effects [35, 

36]. And indeed, overexpression of αklotho results in a 

30% longer lifespan of mice uncovering αklotho as a 

very powerful anti-aging factor [2]. Also in human 

centenarians, single nucleotide polymorphisms (SNPs) 

of the αklotho gene may be effective [37]. Moreover, 

lower αklotho levels are associated with poorer outcome 

in kidney or cardiovascular disease in men [33, 38–40]. 
 

Chemotherapy with platinum derivative cisplatin, 

anthracycline doxorubicin, or paclitaxel is standard of 

care in many forms of cancer. Although the three 

compounds differ in their cellular targets, they have in 

common that they exert cytotoxic effects which 

compromise proliferation and may ultimately result in 

apoptotic cell death [41–43]. Apoptosis of cultured cells 

without prior cell damage may be induced by activation 

of executioner caspase 3 with PAC-1 or by growth 

factor deprivation through serum depletion [44, 45]. 
 

In view of the versatile effects of αklotho on cell survival 

and death [46, 47], this study aimed to investigate 

whether cytotoxic drugs or initiation of apoptosis affect 

αklotho gene expression in three different renal cell lines 

and in patients receiving chemotherapy. 

 

RESULTS AND DISCUSSION 
 

As a first step, MDCK and NRK-52E cells were used 

to study αklotho gene expression. MDCK cells were 

treated with antineoplastic platinum derivative 

cisplatin for 24 h, and αklotho mRNA levels were 

analyzed by qRT-PCR. As illustrated in Figure 1A, 

cisplatin up-regulated αklotho gene expression in 

MDCK cells, an effect reaching significance at 3 µM 

cisplatin. The effect was not paralleled by decreased 

viability of MDCK cells even at 10 µM cisplatin 

(Figure 1B), but by reduced cell proliferation (Figure 

1C). We determined the rate of apoptosis and necrosis 

by means of an assay analyzing annexin V binding and 

a DNA-binding dye which is impermeable to the 

membrane of intact cells. As illustrated in Figure 1D, 

cisplatin induced apoptosis without significantly 

influencing necrosis of MDCK cells. In another series 

of experiments, NRK-52E cells were treated without 

or with cisplatin for 24 h, and αklotho gene 

expression, viability, proliferation, and apoptosis/ 

necrosis were assessed. Again, cisplatin (10 µM) 

significantly enhanced αklotho expression (Figure 1E), 

an effect paralleled by decreased cell viability (Figure 

1F) and proliferation (Figure 1G). Again, cisplatin 

induced apoptosis without significantly stimulating 

necrosis of NRK-52E cells (Figure 1H). 

 

Further experiments were performed to elucidate 

whether cytostatic compound paclitaxel also affects 

αklotho. To this end, MDCK cells were incubated with 

different concentrations of paclitaxel for 24 h or with 

vehicle control, respectively. It is shown in Figure 2A 

that 120 nM paclitaxel significantly stimulated the 

abundance of αklotho mRNA. By the same token, 120 

nM paclitaxel significantly lowered the viability (Figure 

2B) and proliferation (Figure 2C) of MDCK cells. 

These effects were paralleled by enhanced apoptosis 

and necrosis (Figure 2D). We also studied the effect  

of 120 nM paclitaxel in NRK-52E cells. This 

concentration of the antimitotic agent significantly up-

regulated αklotho gene expression within 24 h (Figure 

2E), too, whilst down-regulating viability (Figure 2F) 

and proliferation (Figure 2G) of NRK-52E cells. Similar 

to MDCK cells, paclitaxel induced apoptosis and 

necrosis in NRK-52E cells (Figure 2H). 

 

As a third common antineoplastic drug, we tested 

anthracycline doxorubicin. A 24 h-exposure to 100 nM 

or 300 nM doxorubicin led to a significant increase in 

the abundance of αklotho transcripts in MDCK cells 

(Figure 3A). Doxorubicin treatment (300 nM) did not 

significantly affect viability (Figure 3B) but reduced 

proliferation (Figure 3C) of MDCK cells. Doxorubicin 

induced apoptosis while slightly reducing the number of 

necrotic cells (Figure 3D). In NRK-52E cells, 300 nM 

doxorubicin readily stimulated αklotho expression 

within 24 h (Figure 3E) and compromised cell viability 

(Figure 3F) as well as proliferation (Figure 3G). 
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Figure 1. Cisplatin upregulates αklotho expression in MDCK and NRK-52E cells. (A) Arithmetic mean ± SEM of αklotho transcript 

levels normalized to TBP in MDCK cells treated with cisplatin at the indicated concentration for 24 h (n = 5; Friedman ANOVA followed by 
Dunn-Bonferroni post-hoc test). (B, C) Arithmetic mean ± SEM of MDCK cell viability (B) or number (C) upon treatment without or with 10 
µM cisplatin for 24 h (B: n = 5, one-sample t-test; C: n = 4, one-sample t-test). (D) Rate of apoptosis and necrosis of MDCK cells treated with 
or without 10 µM cisplatin for 24 h (n = 6, one-sample t test) (E) Arithmetic mean ± SEM of αklotho transcript levels relative to TBP in NRK-
52E cells incubated without or with 10 µM cisplatin for 24 h (n = 5, paired t-test). (F, G) Arithmetic mean ± SEM of NRK-52E cell viability (F) 
or number (G) upon treatment without or with 10 µM cisplatin for 24 h (F: n = 5, one-sample t-test; G: n = 4, one-sample t-test). (H) Rate of 
apoptosis and necrosis of NRK-52E cells treated with or without 10 µM cisplatin for 24 h (n = 5, one-sample t test) *p < 0,05, **p < 0.01, ***p 
< 0.001 indicate significant difference from vehicle control; Abbreviations: a. u.: arbitrary units; ctr: control. 

 

 
 

Figure 2. Paclitaxel induces αklotho expression in MDCK and NRK-52E cells. (A) Arithmetic mean ± SEM of αklotho transcript 

levels normalized to TBP in MDCK cells treated with paclitaxel at the indicated concentration for 24 h (n = 5; Friedman ANOVA and Dunn-
Bonferroni post-hoc test). (B, C) Arithmetic mean ± SEM of MDCK cell viability (B) or number (C) upon treatment without or with 120 nM 
paclitaxel for 24 h (B: n = 4, one-sample t-test; C: n = 5, one-sample t-test). (D) Rate of apoptosis and necrosis of MDCK cells treated with 
120 nM paclitaxel or vehicle control for 24 h (n = 6, one-sample t test). (E) Arithmetic mean ± SEM of αklotho transcript levels relative to 
TBP in NRK-52E cells incubated without or with 120 nM paclitaxel for 24 h (n = 5, paired t-test). (F, G) Arithmetic mean ± SEM of NRK-52E 
cell viability (F) or number (G) upon treatment without or with 120 nM paclitaxel for 24 h (F: n = 5, one-sample t-test; G: n = 5, one-sample 
t-test). (H) Rate of apoptosis and necrosis of NRK-52E cells treated with or without 120 µM paclitaxel for 24 h (n = 5, one-sample t test). *p < 
0.05, **p < 0.01, ***p < 0.001 indicate significant difference from vehicle control; Abbreviations: a. u.: arbitrary units; ctr: control. 
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Apoptosis and necrosis were enhanced by doxorubicin 

in NRK52-E cells (Figure 3H). 

 

Since different classes of cytostatic drugs with pro-

apoptotic properties similarly enhanced αklotho 

expression in MDCK and NRK-52E cells within 24 h, 

we sought to explore whether direct apoptosis induction 

also affects αklotho. To this end, we treated the cells 

with and without caspase 3 activator PAC-1 for 24 h. 

As demonstrated in Figure 4A, 10 µM PAC-1 induced 

αklotho expression in MDCK cells, an effect paralleled 

by decreased cell viability (Figure 4B) and proliferation 

(Figure 4C). PAC-1 enhanced apoptosis without 

significantly modifying necrosis (Figure 4D). Also in 

NRK-52E cells, PAC-1 treatment (10 µM) resulted in a 

significant surge in αklotho transcripts within 24 h 

(Figure 4E) and decreased their viability (Figure 4F) 

and proliferation (Figure 4G). The rates of apoptosis 

and necrosis were significantly higher in NRK-52E 

cells upon exposure to PAC-1 (Figure 4H). 

 

Depriving cells of growth factors through serum 

depletion similarly favors apoptosis [45]. We therefore 

aimed to test whether αklotho expression is affected by 

serum depletion. As depicted in Figure 5A, a 24 h-

incubation of MDCK cells in the absence of serum 

significantly up-regulated αklotho gene expression 

without significantly impacting on cell viability (Figure 

5B) and proliferation (Figure 5C). Serum depletion up-

regulated apoptosis whereas necrosis-dependent 

fluorescence was reduced in serum-starved cells (Figure 

5D). In NRK-52E cells, serum depletion did not 

significantly affect αklotho mRNA levels within 24 h 

(Figure 5E). However, viability and proliferation were 

moderately but significantly lower in NRK-52E cells 

incubated in the absence of serum compared to control 

cells (Figure 5F, 5G). Serum depletion induced 

apoptosis and did not significantly affect necrosis in 

NRK-52E cells (Figure 5H). 

 

Next, we analyzed gene expression of pro-apoptotic 

molecules BAD, BAX, and the ratio of BAX/BCL-2 

expression in MDCK cells. As illustrated in Figure 6, 

treatment with cisplatin (Figure 6A, 6E, 6I) or 

doxorubicin (Figure 6C, 6G, 6K) up-regulated BAD, 

BAX and BAX/BCL-2 expression. Paclitaxel induced 

up-regulation of BAX, but did not significantly modify 

BAD and BAX/BCL-2 (Figure 6B, 6F, 6J) whilst PAC-

1 significantly enhanced expression of BAX and 

BAX/BCL-2, but did not significantly change BAD 

expression (Figure 6D, 6H, 6L). 

 

We performed further experiments to identify the 

mechanism underlying enhanced αklotho expression in 

 

 
 

Figure 3. Doxorubicin enhances αklotho expression in MDCK and NRK-52E cells. (A) Arithmetic mean ± SEM of αklotho transcript 

levels normalized to TBP in MDCK cells treated with doxorubicin at the indicated concentration for 24 h (n = 5; Friedman ANOVA followed by 
Dunn-Bonferroni post-hoc test). (B, C) Arithmetic mean ± SEM of MDCK cell viability (B) or number (C) upon treatment without or with 300 
nM doxorubicin for 24 h (B: n = 5; one-sample t-test; C: n = 4; one-sample t-test). (D) Rate of apoptosis and necrosis of MDCK cells treated 
with or without 300 nM doxorubicin for 24 h (n = 6, one-sample t test). (E) Arithmetic mean ± SEM of αklotho transcript levels relative to TBP 
in NRK-52E cells incubated without or with 300 nM doxorubicin for 24 h (n = 5, paired t-test). (F, G) Arithmetic mean ± SEM of NRK-52E cell 
viability (F) or number (G) upon treatment without or with 300 nM doxorubicin for 24 h (F: n = 4, one-sample t-test; G: n = 4, one-sample t-
test). (H) Rate of apoptosis and necrosis of NRK-52E cells treated with or without 300 nM doxorubicin for 24 h (n = 5, one-sample t test) *p < 
0.05, **p < 0.01 indicate significant difference from vehicle control; Abbreviations: a. u.: arbitrary units; ctr: control. 
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Figure 4. αKlotho gene expression is stimulated by procaspase activating compound 1 (PAC-1) in MDCK and NRK-52E cells. 
(A) Arithmetic mean ± SEM of αklotho transcript levels normalized to TBP in MDCK cells treated with PAC-1 at the indicated concentration for 
24 h (n = 6; Friedman ANOVA followed by Dunn-Bonferroni post hoc test). (B, C) Arithmetic mean ± SEM of MDCK cell viability (B) or number 
(C) upon treatment without or with 10 µM PAC-1 for 24 h (B: n = 4, one-sample t-test; C: n = 6, one-sample t-test). (D) Rate of apoptosis and 
necrosis of MDCK cells treated with or without 10 µM PAC-1 for 24 h (n = 6, one-sample t test). (E) Arithmetic mean ± SEM of αklotho 
transcript levels relative to TBP in NRK-52E cells incubated without or with 10 µM PAC-1 for 24 h (n = 6, paired t-test). (F, G) Arithmetic mean 
± SEM of NRK-52E cell viability (F) or number (G) upon treatment without or with 10 µM PAC-1 for 24 h (F: n = 5, one-sample t-test; G: n = 4, 
one-sample t-test). (H) Rate of apoptosis and necrosis of NRK-52E cells treated with or without 10 µM PAC-1 for 24 h (n = 5, one-sample t 
test). *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant difference from vehicle control; Abbreviations: a. u.: arbitrary units; ctr: control. 

 

 
 

Figure 5. Serum deprivation up-regulates αklotho expression in MDCK cells. (A) Arithmetic mean ± SEM of αklotho transcript levels 

relative to TBP in MDCK cells incubated for 24 h with or without 5% fetal bovine serum (FBS; n = 5; paired t-test). (B, C) Arithmetic mean ± SEM of 
MDCK cell viability (B) or number (C) upon incubation with or without 5% FBS for 24 h (B: n = 4, one-sample t-test; C: n = 6, one-sample t-test). (D) 
Rate of apoptosis and necrosis of MDCK cells cultured with or without 5% FBS for 24 h (n = 6, one-sample t test). (E) Arithmetic mean ± SEM of 
αklotho transcript levels relative to TBP in NRK-52E cells incubated for 24 h with or without 5% newborn calf serum (NBCS) (n = 8, paired t-test). (F, 
G) Arithmetic mean ± SEM of NRK-52E cell viability (F) or number (G) upon incubation with or without 5% NBCS for 24 h (F: n = 5, one-sample t-test; 
G: n = 4, one-sample t-test). (H) Rate of apoptotis and necrosis of NRK-52E cells cultured with or without 5% NBCS for 24 h (n = 5, one-sample 
Wilcoxon test). *p < 0.05, **p < 0.01 indicates significant difference from control cells; Abbreviations: a. u.: arbitrary units; ctr: control. 
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MDCK and NRK-52E cells exposed to 

chemotherapeutics or apoptosis stimulants. Since 

transcription factor PPARγ is pivotal for klotho 

expression [48] and has been demonstrated to be up-

regulated by cisplatin [49], we analyzed PPARG 

expression. As a result, treatment with cisplatin 

(Figure 7A, 7F), paclitaxel (Figure 7B, 7G), 

doxorubicin (Figure 7C, 7H), and PAC-1 (Figure 7D, 

7I) enhanced PPARG expression in both, MDCK and 

NRK52-E cells. Moreover, serum starvation enhanced 

PPARG in NRK-52E (Figure 7J), but not in MDCK 

cells (Figure 7E). 

In order to confirm that PPARγ is indeed required for 

cisplatin to up-regulate αklotho expression, we exposed 

MDCK cells to cisplatin in the presence and absence of 

PPARγ antagonist SR202. As illustrated in Figure 8, 

SR-202 significantly blunted cisplatin-dependent up-

regulation of αklotho. Hence, PPARγ contributes to 

enhancement of αklotho expression, but may not fully 

explain it. 

 

Transmembrane αklotho forms a complex with FGFR1 

to serve as a receptor for FGF23. A further series of 

experiments sought to clarify whether the effect of

 

 
 

Figure 6. Cytotoxic agents and PAC-1 up-regulate apoptotic proteins BAD and BAX in MCDK cells. (A–D) Arithmetic mean ± 

SEM of BAD transcript levels relative to TBP in MDCK cells incubated for 24 h without or with 10 μM cisplatin (A; n = 5; paired t-test), 120 
nM paclitaxel (B; n = 5, paired t-test), 300 nM doxorubicin (C; n = 5, paired t-test), or 10 µM PAC-1 (D; n = 6, paired t-test). (E–H) Arithmetic 
mean ± SEM of BAX transcripts relative to TBP in MDCK cells treated without or with 10 µM cisplatin (E; n = 5, Wilcoxon signed-rank test), 
120 nM paclitaxel (F; n = 5, paired t-test), 300 nM doxorubicin (G; n = 5, Wilcoxon signed-rank test), or 10 µM PAC-1 (H; n = 6, paired t-test). 
(I–L) Arithmetic mean ± SEM of BAX to BCL-2 mRNA ratio in MDCK cells incubated for 24 h without or with 10 µM cisplatin (I; n = 5, paired t-
test), 120 nM paclitaxel (J; n = 5, paired t-test), 300 nM doxorubicin (K; n = 5, paired t-test), or 10 µM PAC-1 (L; n = 6, paired t-test). *p < 
0.05, **p < 0.01, ***p < 0.001 indicate significant difference from vehicle control; Abbreviations: a. u.: arbitrary units; ctr: control. 
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Figure 7. Cytotoxic agents and apoptosis inducers up-regulate PPARG in MDCK and NRK-52E cells. (A–E) Arithmetic mean ± SEM 

of PPARG transcript levels normalized to TBP in MDCK cells treated with or without 10 µM cisplatin (A; n = 5; paired t-test), 120 nM paclitaxel 
(B; n = 5; paired t-test), 300 nM doxorubicin (C; n = 5, paired t-test), 10 µM PAC-1 (D; n = 6, paired t-test), or with and without 5% FBS in the 
culture medium (E; n = 5, Wilcoxon signed-rank test) for 24 h. (F–J) Arithmetic mean ± SEM of PPARG mRNA levels relative to TBP in NRK-52E 
cells treated for 24 h with or without 10 µM cisplatin (F; n = 8; paired t-test), 120 nM paclitaxel (G; n = 5; paired t-test), 300 nM doxorubicin 
(H; n = 7, paired t-test), 10 µM PAC-1 (I; n = 6, paired t-test), or incubated with or without 5% NBCS in the culture medium (J; n = 6, Wilcoxon 
signed-rank test). *p < 0.05, **p < 0.01 indicate significant difference from vehicle control; Abbreviations: a. u.: arbitrary units; ctr: control. 

 

 
 

Figure 8. Selective PPARγ antagonist SR-202 blunts cisplatin-dependent αklotho gene expression in MDCK cells. Arithmetic 

mean ± SEM of αklotho transcripts relative to TBP in MDCK cells treated with 3 µM cisplatin or vehicle control in the absence (left bars) or 
presence (right bars) of 200 µM PPARγ antagonist SR-202 for 24 h (n = 8, repeated measures ANOVA followed by Dunnett post hoc test). 
**p < 0.01 indicates significant difference from vehicle control (1st bar vs. 2nd bar), #indicates significant difference from the absence of 
PPARγ inhibitor SR-202 (2nd bar vs. 4th bar); Abbreviations: a. u.: arbitrary units; ctr: control. 
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chemotherapeutics and apoptosis stimulants also affect 

FGFR1 and/or FGF23 expression in MDCK cells. As 

demonstrated in Figure 9A, 9B, cisplatin up-regulated 

FGFR1 expression and protein. Similar effects on 

FGFR1 expression were observed following incubation 

with doxorubicin (Figure 9C), PAC-1 (Figure 9D), and 

upon incubation in serum-free medium (Figure 9E). The 

expression of FGF23, which is mainly expressed in bone, 

could not be detected in unstimulated (Ct value: > 40, n = 

5) MDCK. Cisplatin-treated MDCK cells exhibited lower 

Ct values for FGF23, however expression was still very 

low (Ct value: 37.1 ± 1.85, n = 5). 

 

ELISA-based quantification of αklotho protein is 

particularly feasible in human cells. Therefore, we 

performed further experiments in human proximal 

tubular cell line HK-2. We treated these cells with the 

cytotoxic agents and apoptosis stimulants in a way 

similar to MDCK and NRK-52E cells and measured 

αklotho transcripts as well as sKL protein by ELISA.  

 

 
 

Figure 9. Cisplatin, doxorubicin, PAC-1, and serum depletion up-regulate FGFR1 in MDCK cells. (A) Arithmetic mean ± SEM of 

FGFR1 mRNA levels relative to TBP in MDCK cells treated with or without 10 µM cisplatin for 24 h (n = 5, paired t-test). (B) Left panel: 
Arithmetic mean ± SEM of FGFR1 protein abundance normalized to the abundance of β-actin in MDCK cells following treatment with or 
without 10 µM cisplatin for 24 h (n = 7, one-sample t-test). Right panel: Original Western Blot demonstrating the abundance of FGFR1 in 
MDCK cells treated with (cis) or without (ctr) 10 µM cisplatin for 24 h. (C) Arithmetic mean ± SEM of FGFR1 transcript levels relative to TBP 
in MDCK cells treated with or without 300 nM doxorubicin for 24 h (n = 4, paired t-test). (D) Arithmetic mean ± SEM of FGFR1 transcript 
level relative to TBP in MDCK cells treated with or without 10 µM PAC-1 for 24 h (n = 5, paired t-test). (E) Arithmetic mean ± SEM of FGFR1 
transcripts relative to TBP in MDCK cells incubated without or with 5 % FBS in culture medium for 24 h (n = 5, paired t-test). *p < 0.05, **p < 
0.01 indicate significant difference from vehicle control; Abbreviations: a. u.: arbitrary units; cis cisplatin; ctr: control. 
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Surprisingly, cisplatin (Figure 10A), paclitaxel (Figure 

10C), doxorubicin (Figure 10E), and serum-free 

incubation (Figure 10G) significantly down-regulated 

αklotho gene expression. In line with this, sKL protein 

concentration was lower in the cell culture supernatant 

of HK-2 cells upon incubation with cisplatin (Figure 

10B), doxorubicin (Figure 10F), and in the absence of 

serum (Figure 10H) and virtually unchanged upon 

exposure to paclitaxel (Figure 10D). 

 

As a last step, we analyzed sKL in serum samples from 

patients before and after chemotherapy (Table 1) and 

found that the serum sKL concentration was not 

significantly different after chemotherapy compared to 

samples obtained before therapy (Figure 11). 

 

According to our study, αklotho expression was up-

regulated by antineoplastic cytostatic agents cisplatin, 

paclitaxel, and doxorubicin in MDCK and NRK-52E 

cells within 24 h. Moreover, caspase 3 activator PAC-1 

enhanced αklotho expression in both cell lines, whereas 

serum depletion was only effective in MDCK cells. 

Caspase 3 activation and serum depletion can be 

expected to induce apoptosis [44, 45]. In sharp contrast, 

the same treatment resulted in down-regulation of both, 

αklotho transcripts and sKL protein, in HK-2 cells. The 

serum concentration of sKL was not significantly 

affected by chemotherapy. 

 

Treatment with antineoplastic agents induces cellular 

stress through different mechanisms: Cisplatin impairs 

DNA replication by enabling inter- and intrastrand 

crosslink adducts [41], anthracycline derivative 

doxorubicin is a topoisomerase II inhibitor and DNA 

intercalator [42], and paclitaxel is an antimitotic agent 

that prevents spindle assembly by interacting with 

 

 
 

Figure 10. Cytostatic drugs and serum deprivation reduce αklotho gene expression and soluble klotho (sKL) protein 
secretion in HK-2 cells. (A) Arithmetic mean ± SEM of αklotho mRNA levels relative to TBP in HK-2 cells treated with or without 10 μM 
cisplatin for 24 h (n = 8, paired t-test). (B) Arithmetic mean ± SEM of sKL concentration in the supernatant of HK-2 cells treated with 10 μM 
cisplatin or vehicle control for 24 h (n = 6, paired t-test). (C) Arithmetic mean ± SEM of αklotho transcript levels relative to TBP in HK-2 cells 
treated with or without 120 nM paclitaxel (n = 6, paired t-test) for 24 h. (D) Arithmetic mean ± SEM of sKL concentration in the cell culture 
supernatant of HK-2 cells treated with or without 120 nM paclitaxel for 24 h (n = 6, paired t-test). (E) Arithmetic mean ± SEM of αklotho 
transcript levels relative to TBP in HK-2 cells treated with or without 300 nM doxorubicin for 24 h (n = 5, paired t-test). (F) Arithmetic mean 
± SEM of sKL concentration in the cell culture supernatant of HK-2 cells treated with or without 300 nM doxorubicin for 24 h (n = 4, paired 
t-test). (G) Arithmetic mean ± SEM of αklotho mRNA levels relative to TBP in HK-2 cells incubated with (ctr) or without 10 % FBS in the 
culture medium for 24 h (n =5, paired t-test). (H) Arithmetic mean ± SEM of sKL concentration in the HK-2 cell culture supernatant after 
incubation with or without 10% FBS for 24 h (n = 5, paired t-test). *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant difference from 
vehicle control; Abbreviations: a. u.: arbitrary units; ctr: control. 
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Table 1. Patients’ characteristics. 

Patient no. Age Sex Diagnosis Chemotherapy 
Cycle of 

chemotherapy 

1 59 m colon adenocarcinoma 
folinic acid, fluorouracil, oxaliplatin, 
bevacizumab 

18 

2 62 m colon carcinoma folinic acid, fluorouracil, oxaliplatin 2 

3 74 m esophageal carcinoma 
fluorouracil, folinic acid, oxaliplatin, 
docetaxel 

4 

4 70 m pancreatic carcinoma 
folinic acid, fluorouracil, irinotecan, 
oxaliplatin 

6 

5 79 m esophageal carcinoma 
fluorouracil, folinic acid, oxaliplatin, 
docetaxel 

4 

6 78 m esophageal carcinoma folinic acid, fluorouracil, oxaliplatin 6 

7 73 f pancreatic adenocarcinoma 
folinic acid, fluorouracil, irinotecan, 
oxaliplatin 

6 

8 61 f lung carcinoma 
nivolumab, ipilimumab, carboplatin, 
pemetrexed 

1 

9 80 m esophageal carcinoma 
fluorouracil, folinic acid, oxaliplatin, 
docetaxel 

1 

 

tubulin [50]. Ultimately, the cellular impairments 

induced by these drugs may result in apoptotic cell 

death, a consequence intended in therapeutic use of 

these agents in the treatment of different types of cancer 

[51]. In line with this, cisplatin, doxorubicin, and 

paclitaxel reduced viability and proliferation of MDCK 

and NRK-52E cells, albeit to a variable extent. 

Moreover, the treatment was followed by induction of 

apoptosis and partially by secondary necrosis. In these 

two cell lines, apoptosis was paralleled by a marked 

upregulation of αklotho gene expression. In addition, 

expression of pro-apoptotic genes BAD, BAX, and 

BAX/BCL-2 ratio was induced by the chemotherapeutic 

agents, albeit to a variable extent. Also, direct induction 

of apoptotic cell death in the absence of cytotoxic drugs 

up-regulated αklotho mRNA levels in MDCK and 

 

 
 

Figure 11. The serum concentration of soluble klotho (sKL) in patients with cancer before and after administration of a 
cycle of chemotherapy. Arithmetic mean ± SEM of sKL serum concentration (n = 9; paired t-test) in patients 24 ± 4 h before and after 

administration of a cycle of chemotherapy.
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NRK-52E cells. According to these results, αklotho 

expression was upregulated in injured and potentially 

moribund MDCK and NRK-52E cells prior to their 

putative death. 

 

Several of the effects of αklotho on major intracellular 

signaling pathways can be expected to be pro-apoptotic: 

Inhibition of IGF-1 and insulin signaling [52] as well as 

Wnt signaling [53]. Also αklotho’s role as a tumor 

suppressor fits to the concept of αklotho being pro-

apoptotic [52]. Accordingly, our findings, i.e., up-

regulation of αklotho in MDCK and NRK-52E cells 

prone to death, may be a novel aspect of the cellular 

machinery which is part of the initiation and/or 

execution of apoptosis. Other effects of αklotho 

including increased anti-oxidant resistance [54], further 

anti-apoptotic properties [55], or reduced inflammation 

[29] may rather be associated with being pro-survival. 

In view of the latter aspect of αklotho signaling, up-

regulation of αklotho in damaged and/or dying cells as 

revealed by our study could therefore be interpreted as 

an attempt to enhance cellular stress resistance and 

possibly overcome the injury. In line with this, αklotho 

has been shown to counteract another form of cell 

death, necroptosis [46]. Definitely, further studies are 

necessary to decipher the precise role of increased 

αklotho expression in cells exposed to potentially 

deadly noxae. 

 

In an attempt to identify the mechanism underlying 

αklotho up-regulation in MDCK and NRK-52E 

following exposure to cytotoxic agents or other 

apoptosis stimulants, we uncovered a role for 

transcription factor PPARγ. PPARγ has been 

demonstrated to be relevant for αklotho expression [48] 

and is upregulated itself by cisplatin [49]. In line with 

this, we could confirm that the chemotherapeutics up-

regulate PPARG in both, MDCK and NRK-52E cells. 

Moreover, using PPARγ antagonist SR-202 we 

demonstrated that the cisplatin effect on αklotho in 

MDCK cells is indeed dependent on PPARγ albeit other 

factors are likely to be involved, too. 

 

In the kidney, transmembrane αklotho forms a 

complex with FGFR1, yielding the receptor for bone-

derived hormone FGF23 [12]. In line with 

stimulation of αklotho expression, the cytotoxic 

agents and apoptosis inducers also up-regulated 

FGFR1 in MDCK cells. 

 

While our experiments clearly demonstrated up-

regulation of αklotho in apoptotic MDCK and NRK-

52E cells and uncovered PPARγ as a factor explaining, 
at least in part, this effect, a completely different 

response was found in HK-2 cells: The same treatment 

down-regulated both, αklotho gene expression and sKL 

concentration in the cell culture supernatant. Several 

factors may contribute to this discrepancy: Firstly, HK-

2 is a human proximal tubule cell line from normal 

kidney that has been immortalized with human 

papilloma virus (HPV 16) E6/E7 genes, and these two 

genes are part of its genome [56]. In contrast, MDCK 

and also NRK-52E cells are spontaneously 

immortalized cells [57]. As a matter of fact, E6 and E7 

genes used to immortalize HK-2 cells render them more 

resistant to apoptotic stimuli [58], an effect that may 

help explain the different response of HK-2 cells 

observed in our study. Secondly, it also appears possible 

that the origin of the cells (MDCK cells: dog, NRK-

52E: rat, HK-2: human) also contributes to the different 

response [59]. Thirdly, the renal localization of αklotho 

may play a role: It is expressed in proximal and, at a 

higher level, in distal tubule. Renal phosphate handling 

mainly occurs in the proximal tubule, but its regulation 

is more dependent on αklotho in the distal tubule [60, 

61]. MDCK cells are from distal tubule [62], whereas 

NRK-52E cells are from proximal tubule [63] as are 

HK-2 cells [64]. Therefore, the different origin of the 

cell lines may also contribute to the contrasting results. 

Moreover, it has to be kept in mind that renal cell lines 

are only models that do not reflect all aspects of kidney 

physiology [65]. Therefore, our diverging results using 

the three different kidney cell lines also underscores that 

care must be taken when studying αklotho in cell 

culture. 

 

In a pilot human study, we studied the impact of one 

cycle of chemotherapy on serum sKL in patients 

suffering from different types of cancer. We did not 

observe a significant change of sKL after 

chemotherapy. It is a major limitation of this small pilot 

study that patients with different forms of cancer, 

different chemotherapeutic regimens and different 

treatment cycles were included. Hence, several aspects 

may be relevant for our finding: Different forms of 

cancer themselves impact on αklotho [66]. Moreover, 

the disease stage and also the number of chemotherapy 

cycles may influence the effect on αklotho. Although 

distal tubule is thought to be the main source of sKL 

[61], also proximal tubule may produce sKL. Given the 

different response of distal tubular MDCK and proximal 

tubular HK-2 cells to chemotherapeutics, it appears to 

be possible that divergent effects also play a role in the 

human kidney. Definitely, further human studies are 

warranted to define possible effects of cytotoxic agents 

on sKL. 

 

Since αklotho plays a particular role in patients with 

severe disease (e.g., CKD patients [67]), it would of 
course be of high clinical interest to know whether 

different responses of αklotho to chemotherapeutics are 

of clinical relevance and may reflect a different 



www.aging-us.com 7293 AGING 

Table 2. Primers. 

Gene Species Primer sequence (5′ → 3′) 

klotho dog AAATGAAGCTCTGAAAGCC and AATGATAGAGGCCAAACTTC 

TBP dog CCTATTACCCCTGCCACACC and GCTCCCGTACACACCATCTT 

klotho rat CAACTACATTCAAGTGGACC and CAGTAAGGTTTTCTCTTCTTGG 

TBP rat ACTCCTGCCACACCAGCC and GGTCAAGTTTACAGCCAAGATTCA 

klotho human TGGAAACCTTAAAAGCCATCAAGC and CCACGCCTGATGCTGTAACC 

TBP human TGCACAGGAGCCAAGAGTGAA and CACATCACAGCTCCCCACCA 

PPARG dog CCTCACGAAGAGCCTTCCAA and CCGGAAGAAGCCCTTGCAT 

PPARG rat GAAGCTGTGAACCACTAATATCCA and GCTCTTGTGAACGGGATGTCT 

FGFR1 dog AGACAGGTAACAGTGTCGGC and ACGGTTGGGTTTGTCCTTGT 

BAD dog CCAGTGAGCAGGAAGACTCC and TTCCTTCATCCTCGTCGGTC 

BAX dog GATGGCAACTTCAACTGGGG and AAGCACTCCAGCCACAAAGA 

BCL-2 dog GGTGAACTGGGGGAGGATTG and TCAAACAGAGGCTGCATGGT 

 

response to the treatment. This should be addressed in 

further studies. 

 

In conclusion, our study shows that the expression of 

αklotho gene is stimulated in MDCK or NRK-52E cells 

exposed to cytotoxic chemotherapeutics cisplatin, 

doxorubicin or paclitaxel or treated with apoptosis 

inducers PAC-1 or serum depletion. The effect is, at 

least in part, dependent on PPARγ. In contrast, the same 

treatment down-regulates αklotho gene expression and 

sKL protein in HK-2 cells. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

Madin-Darby Canine Kidney cells (MDCK; CCL-34, 

ATCC, Manassas, VA, USA) were cultured at 37°C and 

5% CO2 in Dulbecco’s Modified Eagle Medium: 

Nutrient Mixture F-12 (DMEM/F-12; (Gibco, Life 

Technologies, Darmstadt, Germany) plus 5% fetal 

bovine serum (FBS; Gibco), 1% glutamine, and 100 

U/mL penicillin and 100 µg/mL streptomycin (Gibco). 

NRK-52E (CRL-1571, ATCC) cells were cultured in 

DMEM (Gibco) with 5% newborn calf serum (NBCS; 

Gibco), 100 U/mL penicillin, and 100 µg/mL 

streptomycin (Gibco) at 37°C and 5% CO2. Human HK-

2 cells (CRL-2190, ATCC) were cultured in DMEM 

with 10% FBS, 100 U/mL penicillin, and 100 µg/mL 

streptomycin at 37°C and 5% CO2. For the experiments, 

cells were first seeded into 6-well plates (Greiner Bio-

One, Frickenhausen, Germany) for 24 h. Subsequently, 

cisplatin, PAC-1, doxorubicin (all from Tocris 

Bioscience, Bristol, UK), or paclitaxel (MP 

Biomedicals, Eschwege, Germany) were added for 24 h 

consent indicated. For serum starvation, culture medium 

was replaced by serum free medium. After 24 h, cells 

were either trypsinated and counted with a Neubauer 

hemocytometer or analyzed for RNA isolation. 

Selective PPARγ inhibitor SR-202 (Biomol, Hamburg, 

Germany) was added to the culture medium along with 

cisplatin at 200 µM. Cell culture supernatants were 

collected and frozen for further use. 

 

Quantitative real time PCR 

 

RNA isolation was accomplished by means of RNA-

Solv reagent (Omega Bio-Tek, Norcross, GA, USA). 

For cDNA synthesis 1.2 µg of total RNA was 

transcribed with the GoScript Reverse Transcription 

System and random primers (Promega, Mannheim, 

Germany). Quantitative real time PCR (qRT-PCR) 

using 2 µl of total cDNA was performed in reaction 

mixes containing 0.25 µM (αklotho) and 0.5 µM 

(TATA-binding protein, TBP) of each primer, 10 µl 

GoTaq qPCR Master Mix (Promega), and sterile water. 

 

The primers used in qPCR analysis are provided in Table 

2. αklotho, PPARG, FGFR1, BAD, BAX, and BCL-2 

mRNA levels were normalized to TBP mRNA. 

 

Viability assay (MTT assay) 

 

Cells were seeded into 96-well plates and treated as 

described for 24 h and for another hour with 3-[4,5-

dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide 

(MTT; Sigma-Aldrich, Schnelldorf, Germany). 

Thereafter, the MTT solution was replaced by dimethyl 
sulfoxide (DMSO; AppliChem, Darmstadt, Germany), 

and absorption was measured at 550 nm and 690 nm 

(reference) on a FluoStar Omega plate reader (BMG 

Labtech, Ortenberg, Germany). Results were 
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normalized to vehicle-treated cells and are given as 

percentage of viable cells. 

 

ELISA 

 

HK-2 supernatants and patients’ serum samples were 

subjected to ELISA for measurement of soluble αklotho 

protein according to the manufacturer’s protocol (IBL, 

Hamburg, Germany). 

 

Apoptosis and necrosis assay 

 

The rate of apoptosis and necrosis was measured using the 

RealTime-Glo Annexin V Apoptosis and Necrosis Assay 

(Promega) according to the manufacturer’s protocol. 

 

Western blotting 

 

MDCK cells were cultured in T25 cell culture flasks 

(Greiner Bio-One) for 24 h under standard conditions, 

then incubated with or without 10 µM cisplatin for 

another 24 h. After cell lysis using RIPA buffer (Cell 

Signaling Technology, Frankfurt, Germany) 

supplemented with protease and phosphatase inhibitor 

cocktail and EDTA (Halt, Thermo Scientific), total 

protein concentration was measured by Bradford assay 

(Bio-Rad). Thirty µg of total protein were subjected to 

standard 10% SDS-PAGE and Western Blotting. The 

following antibodies were used: anti-FGF receptor 1 

(D8E4), anti-β-actin (8H10D10), anti-rabbit IgG HRP-

linked (all from Cell Signaling Technology), and anti-

mouse IgG HRP-linked antibody (Abcam, Cambridge, 

UK). For visualization, membranes were incubated for 2 

min with Westar Nova 2.0 (β-actin) or Westar 

Supernova (FGFR1) ECL substrate (both from 

Cyanagen, Bologna, Italy). Densitometrical analysis was 

performed on a C-Digit® Blot scanner (Li-Cor, Lincoln, 

NE, USA) and FGFR1 bands were normalized to β-actin 

bands using the Image Studio™ software (Li-Cor). 

 

Patients 

 

Serum samples were collected from cancer patients of 

the Department of Oncology, University Hospital of 

Martin-Luther-University Halle-Wittenberg, Halle 

(Saale), Germany. The study was approved by the ethics 

committee of Martin-Luther-University (approval no. 

2014–75). Blood samples were collected 20 ± 4 h 

before and after chemotherapy, centrifuged and frozen 

at −70°C until analysis. Patient characteristics are 

depicted in Table 1. 

 

Statistics 

 

Data represent arithmetic mean ± standard error of the 

mean (SEM) with n denoting the number of 

independent experiments. Groups were tested for 

normal distribution using Shapiro-Wilk test. The cell 

number and viability experiments were analyzed with 

one-sample t-test or alternatively with one-sample 

Wilcoxon signed rank test, as appropriate. Data with 

more than two groups were analyzed with repeated 

measures analysis of variance (ANOVA) followed by 

Dunnett’s multiple comparison test or with non-

parametric Friedman ANOVA and Dunn-Bonferroni 

post-hoc test. If p < 0.05, differences were considered 

significant. SPSS software was used for statistical data 

evaluation (IBM Version 27.0; Armonk, NY, USA). 
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