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INTRODUCTION 
 

Osteosarcoma (OS), one of the most frequent primary 

tumors, is characterized by direct production of bone or 

bone-like tissue by the cancerous cells [1, 2]. The 

osteosarcoma is locally invasive and can metastasize at 

an early stage. Typically, osteosarcoma occurs in 

adolescents in the metaphysis of long bones, such as the 

proximal tibia and distal femur. The five-year survival 

rate of osteosarcoma patients with lung metastases was 

only 19% [3–6]. Although the diagnosis and treatment 

of osteosarcoma has made progress compared to the 

past few decades [7–14], the prognosis for patients with 

metastatic or recurrent cancer is still poor [15]. So, it is 

pivotal to study the mechanism underlying the 

progression of osteosarcoma and develop novel therapy 

targets of osteosarcoma. 
 

As a coactivator of transcription, Zinc finger CCHC 

domain containing 12 gene (ZCCHC12) contains a zinc 

finger domain [16, 17]. ZCCHC12 encodes a down-

stream effector of bone morphogenetic protein (BMP) 

pathway and activating BMP pathway through 

interaction with SMAD1 and association with CBP 

[18]. A variant in ZCCHC12 may play a role in 

X-linked cognitive disability [19]. Studies have found 

that ZCCHC12 is associated with the epithelial-

mesenchymal transition (EMT) of tumor cells [20]. 

Despite this, no functional role has been revealed for 

ZCCHC12 in osteosarcoma occurrence or development. 

Thus, investigation of the influence of ZCCHC12 on 

osteosarcoma tumorigenesis is crucial. 

 

As part of our present study, we investigated the 

underlying biochemical mechanisms of ZCCHC12 and 

its impact on osteosarcoma. Analysis of whole 

transcriptome in osteosarcoma showed that osteo-

sarcoma exhibits an upregulation of ZCCHC12 in 

comparison to normal bone tissues. Meanwhile, we 
found that osteosarcoma cells may be induced to 

proliferate and migrate by ZCCHC12. Cell cycle arrest 

occurs when ZCCHC12 is knocked down in 
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osteosarcoma cells. As a result of activating the 

PI3K/AKT pathway, ZCCHC12 promotes osteosarcoma 

tumorigenesis, while inhibition of PI3K/AKT pathway 

limits its effectiveness in osteosarcoma. Moreover, our 

in vitro research showed that ZCCHC12 to promote 

tumor growth. Our study indicates that ZCCHC12 may 

be a novel therapy target of osteosarcoma. 

 

MATERIALS AND METHODS 
 

Bioinformatics analysis 

 

The sequencing data obtained from the GEO database 

(GSE99671) includes 18 pairs of normal bone tissue 

samples and bone tumor samples. On the sequencing 

data, a difference analysis was performed by R using 

the limma package. 

 

Cell lines and cell culture 

 

HOS, 143B, Saos-2, U2OS, Hfob1.19 and MG63 were 

purchased from Chinese Academy of Sciences Cell 

Bank (Shanghai, China). A Dulbecco’s modified eagle 

medium (DMEM, Thermo Scientific, USA) with 10% 

fetal bovine serum (FBS, Thermo Fisher, USA), and 

100 U/ml of penicillin and 100 *g/mL of streptomycin 

(Invitrogen) was used for cell culturing under 5% CO2 

at 37°C. Cells were passaged when the density reaches 

90%. 

 

CCK-8 assay 

 

The cell proliferation status was evaluated with the Cell 

Counting Kit-8 (CCK-8, Dojindo Laboratories, Japan) 

assay. Transfected HOS and 143B cells were plated at 

2000 cells per well in 96-well plates. Respectively, the cell 

state was detected with CCK8 reagents 24, 48, 72, 96 

hours after seeding. After incubating with CCK-8 reagents 

in dark at 37°C for 2 hours, SpectraMax 190 Microplate 

Reader was used to measure the optical density at 450 nm. 

 

Apoptosis assay 

 

Following three-time washing with PBS, the transfected 

HOS cells were collected. Then we added 100 μL 1× 

binding buffer containing 5 μL of annexin V‐FITC 

(Beyotime, China) and 10 μL of propidium iodide (PI) to 

resuspend cells. Incubated at room temperature without 

light for 20 min with binding buffer, flow cytometry 

(Beckman Coulter Diagnostics CytoFlex, USA) was used 

to detect the apoptosis rate of HOS cells. 

 

Colony‐forming assay 

 

After transfection, 143B and HOS cells were grown for 

9 days in six-well plates at a density of 500 cells per 

well. Cells were washed three times with PBS before 

being fixed for 20 minutes with 4% paraformaldehyde 

(Beyotime, China). The fixed cells were washed three 

times with PBS before being stained for 25 minutes 

with 1% crystal violet. After drying up, cells were 

photographed and colonies counted. 

 

Lentivirus transfection 

 

Knockdown and overexpression lentiviruses were 

designed and constructed by Jiman Biotechnology 

(Shanghai) Co., Ltd.  Lentivirus transfection was 

performed at a cell density of 25%. The original 

medium was discarded, and serum-free medium 

containing 5 ug/ml polybrene was added to the cells, 

followed by the lentivirus suspension. The medium was 

switched to normal cell culture medium 24 hours 

following transfection. Two days after virus 

transfection, cell selection was performed using 

puromycin. Cells in suspension were removed, where 

adherent cells were considered lentivirus transfected. 

 

si-RNA transfection 

 

Plasmids were constructed by Jiman (Shanghai) Co., 

Ltd. HOS cells were cultured in six-well plates in 

advance, and si-RNA transfection was performed at 

50% cell density. For each well of cells, following 

diluting si-RNA with 125 ul of serum-free medium, the 

mixture was let stand for 5 minutes. Dilute 5 ul of lipo 

2000 reagent with 125 ul of serum-free medium, mix 

gently and let stand for 5 minutes. Following the mixing 

of the two mixtures, 15 minutes of standing was 

allowed at room temperature. PBS was used to wash the 

six-well plate once before replacing the medium with 

serum-free medium. Gently added the transfection 

reagent-plasmid mixture into the six-well plate and 

cultured for 6 hours. Following the removal of the 

medium, the normal medium was substituted. 

 

Cell cycle analyses 

 

PBS was used to wash the cells three times after 

removing the cell culture medium. Then, trypsin was 

used for cell digesting. Medium containing FBS was 

added 3 min after digestion. Then we transfer the cells 

to a centrifuge tube and centrifuge at 1000 g for 3 min. 

After removing the supernatant, we resuspend the cells 

in PBS, and then centrifuge again. The pre-cooled 70% 

ethanol was added to each centrifuge tube after 

removing PBS. Centrifuge tubes were rotated overnight 

at 4°C. Then, ethanol was removed from fixated cells 

by centrifugation at 1000 g for five minutes. Each 
sample was prepared with propidium iodide staining 

solution according to the dosage of 0.5 ml staining 

buffer, 25 ul propidium iodide staining solution (20×) 
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and 10 ul RNase A (50×). Flow cytometry (Beckman 

Coulter Diagnostics CytoFlex, USA) was used to 

determine cell cycle after 30 minutes of incubation at 

37°C without light. 

 
qRT-PCR 

 

After aspirating the culture medium, HOS and 143B 

cells were washed with 1 ml of PBS per well. 

Subsequently, Trizol (Invitrogen, USA) was added, the 

HOS and 143B cells were gently pipetted 3–5 times and 

lysed on ice for 5 minutes. Following scraping off the 

cells, lysates were transferred to a new centrifuge tube. 

Chloroform was added to each centrifuge tube after 

letting the lysis buffer stand at room temperature for 5 

minutes. The trizol and chloroform mixture was left to 

stand for 3 minutes at room temperature after mixing 

thoroughly. Then, the centrifuge tubes were centrifuged 

at 12,000 g for 15 minutes. Removing the clear liquid 

from the upper layer and transferred it into a new 

centrifuge tube. The mixture was centrifuged for 10 

minutes at 12000 g after adding isopropanol and letting 

it stand for 10 minutes. Pouring off the liquid in the tube 

and RNA precipitate can be seen at the bottom of the 

centrifuge tube. Next, 75% ethanol was added to wash 

the RNA precipitate. After centrifugation, 20 ul of 

DEPC water was added to each tube. The RNA solution 

was loaded to Nano Drop2000 to detect the 

concentration and A260/A280 ratio. PrimeScript RT 

reagent (TAKARA, RR036A) was used for reverse 

transcription of RNA. qRT-PCR was performed with 

Hieff® qPCR SYBR Green Master Mix (Low Rox Plus) 

reagent from Yisheng Biotechnology (Shanghai) Co., 

Ltd following the manufacturer’s instructions. 

 

Transwell assays 

 

2 × 105 143B or HOS cells were plated in the upper 

chamber of a 24-well transwell chamber. A serum-free 

medium was used to culture the cells for 24 hours at 

37°C. Afterward, cells were washed twice with PBS and 

fixed for 20 minutes with 4% paraformaldehyde. At 

37°C, the lower surface of the chamber was stained with 

0.1% crystal violet for 30 minutes while the upper 

surface was removed gently using cotton swabs. We 

counted traversed cells under a microscope in 3 random 

fields. 

 

Wound healing assays 

 

HOS and 143B cells were seeded into six-well plate. 

The cells were scratched with a 200 *l plastic pipette tip 
after reaching 90% density. Afterwards, the cells were 

washed with PBS and cultivated in normal medium. 

Images were taken at 0 h, 12 h and 24 h after scratch 

under a microscope at 3 random fields. 

Western blotting 

 

HOS and 143B Cells were lysed with Radio 

immunoprecipitation assay buffer (RIPA, Beyotime) 

in presence of Phenylmethanesulfonyl fluoride 

(PMSF, Beyotime) on ice for half an hour. The 10% 

SDS-PAGE polyacrylamide gels were made and used 

for lysates separating. Proteins on the gels were then 

transferred to polyvinylidene fluoride (PVDF) 

membranes (0.22 μm, Beyotime) and blocked with 

proteins-free quick blocking buffer (Epizyme, 

PS108P) for 15 minutes at 37°C. Incubation was 

conducted overnight with primary antibodies on 

PVDF membranes at 4°C. Following three TBST 

washes, the membranes were incubated for 1 hour at 

37°C with horseradish peroxidase (HRP)-conjugated 

secondary antibodies (Beyotime). ECL reagent 

(Epizyme) was used for the detection of antibody-

antigen complexes. 

 

Subcutaneous xenografts 

 

The Ethics Committee at our hospital approved our 

animal studies. Male nude mice (aged 4 weeks, 

weighting 18–20 g) were purchased from Jihui 

Laboratory Animal Breeding Co., Ltd. and housed in 

the SPF animal room of local hospital. Each cage 

housed five mice, and the animal room was placed 

under a 12-hour light/12-hour dark cycle. The 

temperature in the animal room was constant at 21°C. 

Each group contained five mice. Four independent 

groups were formed. The right axilla of each mouse 

was subcutaneously injected with 106 143B cells 

transfected with Vector, LV-ZCCHC12, Vector-

shRNA or LV-shZCCHC12. By caliper, tumor 

volumes were measured on a weekly basis (0.5 × 

width2 × length). Four weeks after injection, mice 

were sacrificed, and tumors were dissected and 

weighed. 

 

Immunohistochemistry 

 

Tumor tissues were embedded in paraffin after fixation 

with 4% paraformaldehyde. After deparaffinizing 

tissue slides in xylene, they were rehydrated in 

alcohol. 3% hydrogen peroxide was used for 

endogenous peroxidase blocking for IHC. Then 0.1 M 

citric sodium buffer was used under microwave for 

antigen retrieval. Tumor sections were blocked with 

5% BSA for an hour and then incubated overnight at 

4°C with the primary antibody. After washing three 

times with PBS, the antibody binding was detected 

with HRP-DAB kit (MaxvisionTM2 HRP-Polymer anti-
Rabbit IHC Kit) and the nucleus was counterstained 

with haematoxylin. Olympus microscopes were used 

to acquire the images. 
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Statistical analysis 

 

Data is expressed as mean ± S.D. The Gaussian 

distribution of the data is tested by Shapiro-Wilk 

criterion. A two-tailed Student’s t test was used to 

determine whether a continuous variable differed 

statistically significantly between two groups. The 

Tukey’s test was applied after the one-way analysis of 

variance for comparisons between three or more groups. 

Statistical significance was determined by P < 0.05. 

 

RESULTS 
 

ZCCHC12 was upregulated in human OS tissues 

and cell lines 
 

ZCCHC12 was identified by analyzing a previously 

performed RNA-Sequencing analysis (GEO, ID: 

GSE99671) in 18 OS tissues and matched adjacent non-

tumor tissues. The expression of ZCCHC12 was 

significantly increased in OS cells and tissues compared 

with non-cancer cells and tissues (Figure 1A, 1C and 

1D). The top 20 significantly enriched signaling 

pathways from KEGG enrichment analysis were shown 

in Figure 1B, among which there were several well-

known cancer-related pathways, such as PI3K/AKT 

signaling pathway, MAPK signaling pathway, et al. 

 

ZCCHC12 promoted OS cell proliferation and 

migration 

 

We performed gain-of-function and loss-of-function 

assays to determine the biological role of ZCCHC12 in 

OS. The highest-ZCCHC12-expressing cell line, HOS, 

was selected to construct ZCCHC12-knockdown cell 

model by transfection with specific siRNAs; 

meanwhile, the lowest-ZCCHC12-expressing cell line, 

143B, was used to establish ZCCHC12-overexpression 

 

 
 

Figure 1. ZCCHC12 was upregulated in OS. (A) Differences in gene expression between OS and normal bone tissues represented by a 

volcano plot. (B) KEGG enrichment analysis indicated that PI3K/AKT signaling pathways had been significantly altered. (C) ZCCHC12 
expression was detected in OS cell lines by qRT-PCR. (D) Heatmap of differential gene expression in OS and normal bone tissues. n = 5; *P < 
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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cell model by transfection with full-length ZCCHC12 

lentivirus. Western blots and qRT-PCR were used to 

validate knockdown and overexpression efficiency 

(Figure 2A–2D). As shown in Figure 2E and 2F, 

ZCCHC12 knockdown significantly reduced OS cell 

growth and colony formation, whereas ZCCHC12 

overexpression had the opposite effect. Moreover, we 

found that ZCCHC12 enhanced the migration of OS 

cells. Transwell migration assays showed that 

ZCCHC12 knockdown dramatically inhibited OS cells’ 

mobility (Figure 3A and 3E), whereas ZCCHC12 

overexpression played the opposite role (Figure 3B and 

3G). Similar to Transwell assays, wound healing assays 

also showed similar results (Figure 3C, 3D, 3F and 3H). 

Based on these findings, ZCCHC12 enhanced OS cells 

proliferation and migration in vitro. 

 

 
 

Figure 2. ZCCHC12 promoted OS cell proliferation. (A and B), qRT-PCR was applied to verify the overexpression and knockdown 

efficiency of ZCCHC12. (C and D), western blot analysis was performed to examine the expression of ZCCH12 in OS cells. (E) CCK8 analyses 
of the OS cell proliferation with ZCCHC12 overexpression or knockdown. (F) Colony formation assay analysis of cell proliferation after 
ZCCHC12 knockdown or overexpression in OS cells. n = 5; *P < 0.05, **P < 0.01, ***P < 0.001. 
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ZCCHC12 knockdown induced OS cell apoptosis 

and cell cycle arrest in S-phase 

 

By using flow cytometry, we assessed ZCCHC12 

knockdown’s impact on OS cell apoptosis and cell cycle 

regulation. As shown in Figure 3I and 3J, the 

suppression of ZCCHC12 significantly increased the 

level of cell apoptosis. Meanwhile, ZCCHC12 

knockdown led to an increased S-phase cell fraction, 

indicating a pronounced cell cycle arrest in S-phase 

(Figure 3K and 3L). Considering the results above, we 

assumed that ZCCHC12 regulated OS cell proliferation 

through regulation of apoptosis and cell cycle. 

 

ZCCHC12 accelerated EMT in OS cells 

 

Given that EMT is closely associated with the motility 

of cancer cells [21], we examined ZCCHC12’s effect on 

EMT-related markers by qRT-PCR and western blot. As 

shown in Figure 4A–4C, E-cadherin was upregulated 

 

 
 

Figure 3. ZCCHC12 facilitated cell migration and inhibition of it induced cell apoptosis and S-phase arrest in OS cells. (A–D), 
migration ability of cells was detected by Transwell migration assays (A and B) and wound-healing assays (C and D). (E–H), the 
quantifications of cell migration were presented by the column chart. (I) Flow cytometry images of the cell apoptosis and (J) column bar 
graph of apoptotic cells. (K) Cell cycle in HOS cells with ZCCHC12 knockdown and (L) percentages of cells in each cell cycle phase are shown 
in the bar graph. scale bar: 200 μm. n = 5; *P < 0.05, **P < 0.01, ***P < 0.001.  
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after ZCCHC12 knockdown, while N-cadherin, Snail 

and Vimentin were downregulated. Moreover, 

ZCCHC12 overexpression had the opposite effect. The 

findings indicate that ZCCHC12 plays a critical role in 

the EMT of OS. 

 

ZCCHC12 facilitated OS progression via activating 

PI3K/AKT signaling pathway 

 

The KEGG analysis indicated the PI3K/AKT signaling 

pathway as the most enriched signaling pathway 

(Figure 1B). To assess whether PI3K/AKT pathway was 

involved in the effect of ZCCHC12 on OS, expression 

of PI3K, p-PI3K, AKT and p-AKT in OS cells were 

examined by western blot. The results showed that 

ZCCHC12 knockdown resulted in decreased PI3K and 

AKT phosphorylation, while ZCCHC12 overexpression 

strongly promoted their phosphorylation (Figure 5A). In 

addition, the rescue experiments confirmed that PI3K 

agonist 740Y-P attenuated ZCCHC12 knockdown’s 

inhibitory effects on OS cell proliferation and migration 

(Figure 5B, 5D–5F, and 5H), meanwhile, PI3K inhibitor 

LY294002 could reverse the promoting effect of 

ZCCHC12 overexpression on OS cell proliferation and 

migration (Figure 5C–5E, 5G and 5I). Taken together, 

these results suggested that ZCCHC12 contributed to 

OS progression by activating the PI3K/AKT signaling 

pathway. 

 

ZCCHC12 promoted OS growth in vivo 
 

To investigate the in vivo role of ZCCHC12 in OS,  

we established nude mice xenograft model by 

subcutaneously injecting 143B cells stably transfected 

with LV-ZCCHC12, LV-shZCCHC12 or their empty 

vectors. Figure 6A–6C shows there was a significant 

increase in the volume and weight of the xenograft 

tumors after upregulation of ZCCHC12. In contrast, its 

downregulation showed opposite effects. The mRNA 

level of ZCCHC12 was detected by qRT-PCR 

(Figure 6D). The expression levels of p-PI3K, p-AKT 

and ZCCHC12 in xenograft tumors were measured by 

western blot and immunohistochemistry while p-PI3K 

and p-AKT are significantly inhibited in tumors tissues 

with ZCCHC12 knockdown as shown in Figure 

6E and 6F. 
 

DISCUSSION 
 

Osteosarcoma ranks among the most frequent primary 

tumors of bone. It has a high degree of malignancy, and 

remains a significant cause of cancer-related death 

among children and young adults [22]. At present, 

neoadjuvant chemotherapy followed by surgical 

resection and adjuvant chemotherapy is still the primary 

treatment approach for OS [23]. However, owing to the 

late of diagnosis, early metastasis and drug resistance of 

 

 
 

Figure 4. ZCCHC12 promoted OS cell EMT progression. (A–C), qRT-PCR (A and B) and western blot analysis (C) were performed to 
examine EMT-related markers in OS cells after ZCCHC12 knockdown or overexpression. n = 5; **P < 0.01, ***P < 0.001. 
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Figure 5. ZCCHC12 contributed to OS progression through PI3K/AKT signaling pathway. (A) The expression levels of PI3K/AKT 

signaling pathway-associated proteins were detected by western blot analysis. (B–I) functional rescue experiments using PI3K agonist 740Y-
P or PI3K inhibitor LY294002 were performed to verify the effect of ZCCHC12 on proliferation and migration in OS. ZCCHC12-silenced HOS 
cells were treated with 740 Y-P while ZCCHC12-overexpressed 143B cells were treated with LY294002, then cells were used for proliferation 
analysis (B and C), CCK-assays; (D and E), colony formation assays) and migration analysis (F–I), Transwell migration assays and wound-
healing assays). scale bar: 200 μm. n = 5; *P < 0.05, **P < 0.01, ***P < 0.001. 



www.aging-us.com 7513 AGING 

OS, its 5-year survival rate remains dismal [24, 25]. 

Therefore, a deep comprehension of OS molecular 

mechanisms may allow the identification of novel 

biomarkers, and is crucial for improving diagnosis and 

treatment. 

 

The rapid advances in high-throughput sequencing has 

greatly improved our knowledge of the molecular 

mechanisms underlying carcinogenesis [26, 27]. In the 

present study, by analyzing a publicly available RNA-

sequencing datasets from the GEO database, ZCCHC12 

was found overexpressed in OS tissues than adjacent 

non-tumor samples. ZCCHC12 has been reported to 

serve as a transcriptional coactivator in the BMP 

pathway and was associated with some diseases such as 

thyroid carcinoma [16, 18–20]. There is, however, a 

 

 
 

Figure 6. ZCCHC12 promoted OS cells tumorigenicity in vivo. (A) Subcutaneous tumors were removed from nude mice and fixed in 

0.4% formalin. (B and C), Tumor volume and weights of xenografts in nude mice were measured. (D), qRT-PCR was applied to examine the 
expression of ZCCHC12 in tumor xenograft tissues. (E), Western blot was performed to examine the expression of p-PI3K, p-AKT and 
ZCCHC12 in tumor xenograft tissues. (F) IHC staining for p-PI3K, p-AKT and ZCCHC12 in tumor xenograft tissues. scale bar: 200 μm. n = 5; 
***P < 0.001. 
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lack of knowledge about the putative role of ZCCHC12 

in OS. 

 

Our present study revealed that ZCCHC12 played an 

active role in promoting OS progression. The 

expression of ZCCHC12 was much higher in OS cell 

lines compared to normal human osteoblasts 

(hFOB1.19). Functionally, ZCCHC12 could promote 

the in vitro proliferative and migratory abilities, as well 

as the in vivo tumorigenic capacity of OS cells. In 

addition, depletion of ZCCHC12 could induce OS cell 

apoptosis and S-phase arrest. Mechanistically, 

ZCCHC12 promoted the malignant progression of OS 

through activation of the PI3K/AKT signaling pathway. 

 

The overall prognosis for patients with OS is poor 

because of its high metastatic potential [28]. EMT is a 

key mechanism of tumor metastasis, inhibition of which 

may attenuate cancer metastasis [29]. In this study, we 

found that silencing ZCCHC12 slowed down migration 

of OS cells. Furthermore, a positive correlation was 

found between the expression of ZCCHC12 and 

mesenchymal markers (N-cadherin, Snail and 

Vimentin), while a negative correlation was found 

between ZCCHC12 and epithelial marker (E-cadherin). 

The above results suggested that ZCCHC12 exerted a 

pivotal role in OS migration and EMT process. Thus, 

inhibiting ZCCHC12 may be an effective method for 

suppressing OS metastasis. 

 

PI3K/AKT signaling has been shown to be frequently 

hyperactivated in OS, resulting in its initiation and 

progression [30]. We found that ZCCHC12 could 

enhance PI3K and AKT phosphorylation, while PI3K 

agonist 740Y-P and PI3K inhibitor LY294002 could 

rescue the effect of ZCCHC12 knockdown and 

overexpression, respectively. These findings revealed 

that PI3K/AKT signaling was activated by ZCCHC12 

in OS. Therefore, combination therapy with the 

inhibition of PI3K/AKT pathway and ZCCHC12 

through small molecule inhibitors may be a potential 

effective strategy for OS with high ZCCHC12 

expression. 

 

In conclusion, the present study identified ZCCHC12 as 

a novel player in OS for the first time, showing that 

ZCCHC12 could promote OS cell proliferative and 

migratory abilities through activating the PI3K/AKT 

pathway. Therefore, ZCCHC12 offers the prospect of 

being a novel molecular target for OS diagnosis and 

treatment. 
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