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INTRODUCTION 
 

Pyroptosis, a new form of programmed cell death [1, 2], 

differs from apoptosis in terms of its ability to elicit a 

strong inflammatory response and its characteristic 
morphology of forming plasma membrane pores [3]. It 

has garnered increasing attention in recent years. When 

stimulated, the pattern recognition receptors in the cell 

act as receptors to recognize these signals and trigger 

pyroptosis. The assembly and activation of inflamma-

somes are crucial. It then activates the inflammasome-

activated caspase-1 and intracellular lipopolysaccharide 

activated caspase-11/4/5. The activated caspases then 

cleave gasdermin D (GSDMD) at the 272FLTD275 site, 

removing the inhibitory GSDMD-C domain and 

contributing to N-terminal oligomerization in membranes 
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ABSTRACT 
 

Pyroptosis plays a critical role in the occurrence and development of colon cancer (CC). However, the specific 
mechanisms of pyroptosis patterns on immune regulation and tumor microenvironment (TME) formation in CC 
remain unclear. Based on 30 pyroptosis-related genes (PRGs), we evaluated the pyroptosis patterns of 1689 CC 
samples from the Cancer Genome Atlas and the Gene Expression Omnibus databases. The signatures of 
pyroptosis patterns and PRGs were identified in CC. In addition to systematically associating these patterns 
with TME cell infiltration characteristics, we constructed a pyroptosis signature score (PPSscore) to quantify 
pyroptosis patterns in individual tumor patients with immune responses. We discovered three distinct 
pyroptosis patterns, each with a different survival probability and being biologically relevant. TME infiltrating 
characteristics of revealed these patterns, consistent with immune-inflamed, immune-desert and immune-
excluded phenotypes. Furthermore, a low PPSscore was associated with better clinical benefits. A high 
PPSscore was associated with a lower chance of survival due to its association with stromal activation. 
Additionally, two immunotherapy cohorts revealed that patients with lower PPSscore had better immune 
responses and durable clinical benefits. Our findings indicate that pyroptosis patterns play a vital role in 
immunoregulation and the formation of TME in CC. 
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to form pores [4–6], resulting in lytic cell death and the 

release of inflammatory cytokines [7, 8]. The 

inflammatory cascade is triggered by the release of pro-

inflammatory mediators into the extracellular 

environment. Pyroptosis was first discovered in the 

immune defense against bacterial infection [9]. 

Accumulating evidence reveals that it also plays a 

crucial role in developing other diseases, particularly 

cancer, the leading health menace in recent decades. 

 

Despite advances in therapeutic strategies, the five-year 

overall survival (OS) rate for colon cancer (CC), one of 

the most common cancers worldwide, remains 

relatively low [10]. Scientists have shifted from simply 

focusing on tumor cell inheritance to realizing that the 

integral tumor microenvironment (TME) is widely 

implicated in tumorigenesis. TME, in addition to tumor 

cells, contains noncancer cell types (such as stromal 

cells, infiltrating immune cells, endothelial cells, and 

others.) and extracellular components (blood vessels, 

secreted cytokines, extracellular matrix, and others.) 

[11]. All these components contribute to the malignant 

phenotypes of cancer and immune escape. Aside from 

the genomic aberrations, tumor cells’ therapeutic 

responses also rely on the composition of the TME, 

which may significantly influence the clinical 

outcomes. Immunotherapy is the focus of tumor 

research at present. CC patients who respond to 

immunotherapy, particularly immune checkpoint 

inhibitors (ICIs), show a durable response [12, 13]. 

Though effective as it can be, the patients who exhibit 

dramatic responses is only occupy a small proportion. 

Previous research identified three basic immune 

profiles: the immune-inflamed, the immune-desert and 

the immune-excluded phenotypes, representing 

different TME characteristics and therapeutic options 

[14–16]. Thus, using TME to assess immune 

infiltration is vital for predicting existing ICI 

responses and developing new immunotherapy 

strategies [16–18]. 

 

The occurrence of pyroptosis has been shown to 

influence the TME antitumor immune response [19]. 

CD8+ T cells and NK cells released granzymes that 

could cleave GSDMB/E and thus triggered tumor cell 

pyroptosis, indicating that pyroptosis might play a role 

in anti-tumor immunity [20, 21]. Moreover, a GSDMD 

deficiency reduced the cytolytic capacity of CD8+ T 

cells in the vicinity of immune synapses [22]. 

Evidence also shows that the inflammatory factors 

released by pyroptosis may initiate an inflammatory 

cascade that influence tumor immunity. Hence, 

comprehensive characterizations of TME cell 

infiltration mediated by multiple pyroptosis patterns 

will improve our understanding of TME immune 

mechanisms. 

In this study, we combined transcriptome and 

genomic data from 1689 CC samples from the Cancer 

Genome Atlas (TCGA) and the Gene Expression 

Omnibus (GEO) databases to comprehensively 

evaluate the association between pyroptosis patterns 

and TME cell infiltration characteristics and identified 

three distinct pyroptosis patterns. We also 

investigated the TME characteristics of these distinct 

patterns [14]. Furthermore, we constructed a 

pyroptosis signature score (PPSscore) to predict 

clinical response to ICI treatment and quantify 

pyroptosis patterns for individual patients. These 

findings indicated that pyroptosis patterns played vital 

roles in forming the diversified TME of CC and that 

they might be indispensable in guiding therapeutic 

interventions for CC. 

 

RESULTS 
 

The landscape of variation of pyroptosis-related 

genes (PRGs) in CC 
 

Finally, 30 PRGs, (AIM2, CASP1, CASP3, CASP4, 

CASP5, CASP6, CASP8, CASP9, ELANE, GPX4, 

GSDMB, GSDMC, GSDMD, IL18, IL1B, IL6, 

NLRC4, NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, 

NOD1, NOD2, PLCG1, PRKACA, PYCARD, 

SCAF11, TIRAP and TNF) were identified. First, we 

examined the profile of PRGs copy number variations 

(CNV) and somatic mutations in the CC sample. The 

results revealed that CNV alteration is common in the 

30 PRGs. As shown in Figure 1A, 114 samples 

experienced mutations of PRGs (the total number is 

399, with a frequency of 28.57%). NLRP7 and SCAF11 
genes had the highest mutation frequency, while no 

mutation was detected in the CC sample’s CASP6, 

PRKACA, PYCARD and TNF genes. The number of 

genes with copy number amplification was roughly 

equal to the number of genes with a widespread 

frequency of CNV deletion (Figure 1B). The location of 

CNV alteration of these PRGs on chromosomes was 

shown (Figure 1C). We could easily select the cancer 

samples based on the above characteristics (Figure 1D). 

Following that, we examined the mRNA expression 

levels of these genes. Tests were performed between 

normal and CC samples to determine whether the 

expression of PRGs in CC patients could be affected by 

the above-mentioned genetic variation. PRGs with 

amplified CNV had significantly higher expression in 

CC tissues (such as GSDMC and PLCG1) than in 

normal colon tissues (Figure 1B and 1E). These 

findings strongly suggest that changes in CNV may be 

substantial cause for the change of PRGs expression. 
Comprehensive analysis of the above, distinguishing 

normal and CC samples from CNV changes to final 

genetic and expression changes, revealed that the 
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imbalance of PRGs expression played a key role in the 

progression of CC. 

 

Pyroptosis patterns mediated by 30 PRGs 

 

Six GEO datasets (GSE39582, GSE38832, GSE37892, 

GSE33113, GSE29621 and GSE17536, Supplementary 

Table 1) were enrolled into one meta-cohort. A 

univariate Cox regression analysis was used to 

determine the relationship between the 30 PRGs and the 

prognosis of CC patients. The forest plot revealed that 

CASP8, TIRAP, GSDMB, CASP3, CASP6, CASP1 

and CASP5 genes could be considered protective 

factors, whereas NLRP2, CASP4, NLRP3, PRKACA 

 

 
 

Figure 1. Landscape of genetic and expression variation of PRGs in CC. (A) Total of 114 of the 399 CC patients experienced genetic 
alterations of PRGs, with a frequency of 28.57%. The upper barplot showed the tumor mutational burden. The number on the right indicated 
the mutation frequency in each gene. The stacked barplot below showed fraction of conversions in each sample. Each column represented 
every individual patient. (B) The histogram showed the CNV variation frequency of PRGs. The height of the column represented the alteration 
frequency. The deletion frequency, green dot; The amplification frequency, red dot. (C) The location of CNV alteration of PRGs on 23 
chromosomes. (D) Principal component analysis for the expression profiles of 30 PRGs to distinguish tumors from normal samples. Tumors 
were marked with blue and normal samples were marked with yellow. (E) The difference of mRNA expression levels of 30 PRGs between 
normal and CC samples (*P < 0.05; **P < 0.01; ***P < 0.001). (F) The univariate Cox regression model was used to analyze the prognosis of 30 
PRGs in 6 CC cohorts. Hazard ratio >1 indicated risk factors for survival, and hazard ratio <1 indicated protective factors for survival. 
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and NLRP1 genes could be considered risk factors 

(Figure 1F). The findings revealed the prognostic 

values of 30 PRGs in CC patients. Then, we classified 

different pyroptosis patterns based on the expression 

of 30 PRGs. Using unsupervised clustering, we 

identified pattern 1 (PPScluster-1), pattern 2 

(PPScluster-2) and pattern 3 (PPScluster-3) (Figure 

2A). Prognostic analysis of the three distinct patterns 

revealed that the PPScluster-1 pattern had a survival 

advantage (Figure 2B). 

 

The pyroptosis patterns characterized by distinct 

immune cell infiltration 

 

Furthermore, we used GSVA enrichment analysis to 

uncover the biological pathways underlying these three 

pyroptosis patterns. As a result, PPScluster-1 was 

enriched in activating T cell receptor signaling 

pathways, Toll like receptor signaling pathways and B 

cell receptor signaling pathways (Figure 2C). All of this 

indicated the fully activation of the immune. 

PPScluster-2 was prominently linked to the immune 

suppression biological process. While PPScluster-3 was 

markedly enriched in stromal and carcinogenic 

activation pathways such as ECM receptor interaction, 

cell adhesion and MAPK signaling pathways. However, 

subsequently analyses of TME revealed that PPScluster-

3 was abundant in innate immune cell infiltration 

(Figure 3A). Additionally, cluster 3 showed 

significantly enhanced stroma activity (Figure 3B).  

But the patients in PPScluster-3 did not show a 

corresponding survival advantage (Figure 2B). 

 

 
 

Figure 2. Pyroptosis patterns and relevant biological pathway for each pattern. (A) Unsupervised clustering of 30 PRGs in the six 

CC cohorts. The PPSclusters and cohorts’ names were used as patient annotations. Each column represented patients and each row 
represented PRGs. (B) Unsupervised clustering analysis of CC patients from 6 GEO cohorts (GSE39582, GSE38832, GSE37892, GSE33113, 
GSE29621 and GSE17536) resulted in three pyroptosis patterns. Kaplan-Meier curves of relapse-free survival for CC patients in the meta-
GEO cohort with different pyroptosis patterns. (C, D) The heatmaps were used to visualize the gene set variation analysis score of 
representative biological pathways in distinct pyroptosis patterns. The color of orange represented activated pathways and blue 
represented inhibited pathways. The CC cohorts were used as sample annotations. PPScluster-1 vs. PPScluster-3 (C) and PPScluster-1 vs. 
PPScluster-2 (D). 
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Combining the distinct TME cell infiltration 

characterization of these three patterns with the novel 

concept of ‘immune contexture’, we classified 

PPScluster-1 as an immune-inflamed phenotype, 

characterized by immune cell infiltration and 

activation; PPScluster-2 as an immune-desert pheno-

type, characterized by the suppression of immunity; 

and PPScluster-3 as an immune-excluded phenotype, 

characterized by stromal activation (Figures 2C, 2D 

and 3A, 3B). 

The specific correlation between each TME infiltration 

cell type and PRGs were explored (Supplementary  

Figure 1). High expression of TNF, NLRP3, NLRP1, 

NLRC4, IL-6, IL-1β, IL-18, CASP4 and AIM2 was 

significantly associated with enhanced immunocyte 

infiltration, whereas SCAF11, PLCG1 and CASP6 

expression displayed a negative correlation with the 

immune infiltration level. From the above, we could 

speculate that pyroptosis patterns mediated by PRGs played 

indispensable roles in the immune regulation of TME. 

 

 
 

Figure 3. TME cell infiltration characteristics in distinct pyroptosis patterns. (A) The abundance of each TME infiltrating cell in 

three pyroptosis patterns (*P < 0.05; **P < 0.01; ***P < 0.001). (B) Differences in stroma-activated pathways in three pyroptosis patterns (*P 
< 0.05; **P < 0.01; ***P < 0.001). (C) Unsupervised clustering of 30 PRGs in the GSE39582 cohort. Clinicopathological information including 
tumor subtype, tp53 mutation, tumor location, tumor stage, and gender as well as the pyroptosis cluster, were shown in annotations 
above. Orange represented the high expression of genes and blue represented the low expression. (D) Principal component analysis of the 
transcriptome maps of the three pyroptosis patterns showed that there were significant differences among them. (E) The proportion of six 
molecular subtypes in GSE39582 cohort among three pyroptosis patterns. (F) The gene ontology enrichment analysis functionally annotates 
DEGs related to the pyroptosis patterns. 
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Pyroptosis patterns in GSE39582 

 

Then, we analyzed the cohort GSE39582 (n = 585) to 

further explore these three phenotypes for their different 

clinical and biological characteristics. Excitingly, the 

unsupervised clustering results also obtained three similar 

patterns of pyroptosis from the dataset GSE39582 

(Supplementary Figure 2A–2D and Figure 3C, 3D). 

Figure 3D showed, the pyroptosis transcriptional profile 

among these different patterns revealing a significant 

distinction. PPScluster-1 presented decreased expression 

of GPX4 and IL-6 genes, while varying increases in 

other PRGs. PPScluster-2 exhibited significant increases 

in the expression of GPX4, NOD1, PLCG1 and 

PRKACA genes. PPScluster-3 showed high expression 

of AIM2, CASP4, IL-1β, IL-6, NLRC4, NLRP3 and 

TNF genes (Supplementary Figure 2E). Marisa et al. 

(CIT cohort) stratified CC patients into six dominant 

molecular subtypes (CIN, CSC, dMMR, and KRASm), 

which were named after their main respective biological 

characteristics: C1, “CINImmuneDown”; C2, “dMMR”; 

C3, “KRASm” (for “KRAS-mutant”); C4 “CSC” (for 

“cancer stem cell”); C5, “CINWntUp”; and C6, 

“CINnormL” [23]. The prognosis of each of our six 

subtypes in the discovery set differed. C3 had a better 

prognosis, whereas C4 had a relatively poorer prognosis. 

The Oncotype DX score (an emerging prognostic 

classifier) classified 97% of the C4 samples as high  

risk. In our study, patients with the C4 subtype were 

predominantly clustered into PPScluster-2 and 

PPScluster-3, whereas patients with the C3 subtype 

were predominantly clustered into PPScluster-1  

(Figure 3E). Moreover, the tp53 mutation that leads to a 

poor prognosis in patients was most prominent in 

PPScluster-2 (Figure 3C). This was consistent with our 

previous prognostic analysis of the three pyroptosis 

patterns. In addition, the prognostic analysis showed 

that compared to the shorter survival periods of 

PPScluster-2 and PPScluster-3, the survival period of 

PPScluster-1 was markedly prolonged (Supplementary 

Figure 2F). 

 

Generation of pyroptosis phenotype-related gene 

signatures and functional annotation 

 

The limma package was used to detect 230 overlapping 

differentially expressed genes (DEGs) related to the 

pyroptosis phenotype (Supplementary Figure 2G). The 

clusterProfiler package was then used to perform Gene 

Ontology (GO) enrichment analysis on the DEGs. The 

results showed enrichment of biological processes such 

as leukocyte chemotaxis and positive regulation of T 

cell activation that are remarkably related to immunity, 

confirming once again that pyroptosis played a crucial 

role in the immune regulation in TME (Figure 3F). 

Then, we validated the regulatory mechanism involved. 

The method was to use unsupervised clustering analysis 

to classify patients into different genomic subtypes 

based on the 230 DEGs associated with the pyroptosis 

phenotype. Furthermore, the unsupervised clustering 

algorithm distinguished three pyroptosis genomic 

phenotypes, which were labeled PPS gene cluster A, 

PPS gene cluster B and PPS gene cluster C 

(Supplementary Figure 3A–3D, Figure 4A). Patients 

with a better prognosis for the C3 subtype were mostly 

concentrated in PPS gene cluster A. Tumors with PPS 

gene cluster C patterns had an abundant tp53 mutation 

subtype and were poorly differentiated. PPS gene 

cluster B identified patients with a poorer prognosis for 

the C4 subtype (Figure 4A). The survival analysis 

results of pyroptosis phenotype-related gene signatures 

were consistent with the preceding conclusions. CC 

patients in gene cluster A had a higher chance of 

survival. On the contrary, patients in gene cluster B had 

a worse prognosis. A moderate prognosis was observed 

in patients under gene cluster C (Figure 4B). In these 

three gene clusters, differences expression for 30 PRGs 

were observed (Figure 4C). 

 

Construction of the pyroptosis signature score and 

identification of its clinical relevance 
 

We used published literature to extract cytokines and 

chemokines from them. We could explore the role of 

pyroptosis-related phenotypes in tumor immunity by 

studying their expression in these three gene clusters. 

TGFB2, SMAD9, PDGFRA, TGFBR2, TWIST1, 

ACTA2, COL4A1 and VIM are the genes involved in 

the transcription of the TGFb/EMT pathway. Immune 

checkpoint transcription genes include: PD-L1, CTLA-

4, IDO1, LAG3, HAVCR2, PD-1, PD-L2, CD86, 

TIGIT, TNFRSF9. Immune activation genes include: 

IFNG, GZMB, CD8A, PRF1, GZMA, CXCL9, 

CXCL10. To better characterize the function of 

pyroptosis signature genes, we investigated known 

signature genes in CC patients (Supplementary  

Figure 3E). The findings showed that gene cluster B 

activated the matrix and promoted tumor progression. 

We also confirmed that most of the mRNAs that were 

significantly up-regulated in gene cluster B were related 

to the TGFb/EMT pathway, confirming that matrix 

activation was the main feature of this gene cluster. 

(Supplementary Figure 3F–3H). Finally, we obtained 

results that were consistent with the findings in  

Figure 4D, patients with the C4 “CSC” subtype in gene 

cluster B had a poor prognosis. 
 

The findings above reveal that different pyroptosis 

patterns have a regulatory effect on the formation of 

TME landscapes, resulting in differences in patient 

prognosis. However, the analysis results of group 

patients could not, predict patterns of pyroptosis in 
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individual patients to a certain extent. We constructed a 

pyroptosis signature score (PPSscore) using principal 

component analysis algorithms to quantify pyroptosis 

patterns for individual tumor patients with an immune 

response, considering the individual heterogeneity and 

complexity of pyroptosis patterns. The alluvial diagram 

was used to show the variation in characteristics of 

each tumor patient (Figure 4D). Furthermore, we 

investigated the potential relationship between known 

signatures and PPSscore (Figure 4E). The Kruskal-

Wallis test revealed that PPSscore differed significantly 

between pyroptosis gene clusters. According to the 

median score results, gene cluster A scored the lowest, 

and gene cluster B scored the highest. When combined 

with the previous analysis, a low PPSscore may be 

linked to immune activation-related signatures, 

whereas a high PPSscore may be linked to stromal 

activation-related signatures (Figure 4F). It’s worth 

noting that PPScluster-3 had the significantly increased 

PPSscore than the other clusters, while PPScluster-1 

had the lowest median score (Figure 4G). We further 

demonstrated that high scores were significantly 

associated with enhanced stromal pathways activation 

(Figure 4H). Furthermore, tumors with the C3- 

“KRASm” subtype had the lowest PPSscore compared 

to the other subtypes (Figure 5A). These results 

strongly suggested that PPSscore had certain 

advantages as an indicator for evaluating the pyroptosis 

patterns of individual tumors and could be used to 

further assess the characterization of TME in tumors. 

 

 
 

Figure 4. Construction and analysis of pyroptosis signatures. (A) Unsupervised clustering of overlapping pyroptosis phenotype-

related genes in GSE39582 cohort to classify patients into three genomic subtype (PPS gene cluster A–C). Clinicopathological information 
such as tumor subtype, tp53 mutation, tumor location, tumor stage, and gender was used as patient annotations. (B) The survival curves of 
the pyroptosis phenotype-related gene signatures were shown using the Kaplan-Meier plotter. (C) The expression of 30 PRGs in three gene 
clusters (*P < 0.05; **P < 0.01; ***P < 0.001). (D) The changes of PPSclusters, PPS gene clusters, tumor molecular subtypes and PPSscore were 
shown in the Alluvial diagram. (E) Correlations between PPSscore and the other gene signatures in GSE39582 CC cohort using Spearman 
analysis. Negative correlation was marked with blue and positive correlation with red. (F, G) The Kruskal-Wallis test was used to compare 
the statistical difference in PPSscore among three gene clusters and three PPSclusters. (H) Differences in stroma-activated pathways 
between high and low PPSscore groups (*P < 0.05; **P < 0.01; ***P < 0.001). 
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To verify the predictive value of PPSscore in patient 

prognosis, we divided patients into a high and a low 

PPSscore group. Patients with a low PPSscore survived 

significantly longer (Figure 5B, P < 0.01). The 

independence was then calculated as a prognostic index 

for PPSscore in the CC sample. Considering the factors 

of patients’ adjuvant chemotherapy, gender, age, stage, 

and MMR status, multivariate Cox regression model 

analysis revealed that PPSscore was a reliable and 

independent prognostic biomarker for evaluating patient 

outcomes (HR 4.65 (2.98–7.2), Supplementary Figure 4A). 

Moreover, the ability of the PPSscore signature to 

predict the curative effect of adjuvant chemotherapy in 

CC was investigated. Patients with low PPSscore values 

who received adjuvant chemotherapy benefited 

significantly from the treatment. We also found that 

adjuvant chemotherapy did not affect the predictive 

ability of the PPSscore. That is, regardless of whether 

they received adjuvant chemotherapy or not, the low 

PPSscore group has a clear survival advantage 

 

 
 

Figure 5. Analysis of pyroptosis patterns characteristics and tumor somatic mutation . (A) The Kruskal-Wallis test was used 

to compare the statistical differences of PPSscore among the four molecular subtypes. (B) Survival analyses for low and high 
PPSscore patient groups in GSE39582 using Kaplan-Meier curves. (C) Survival analyses for subgroup patients classified by PPSscore 
and treatment with adjuvant chemotherapy (ADJC) using Kaplan-Meier curves. (D) Survival analyses for low and high PPSscore 
patient groups in the TCGA-COAD cohort using Kaplan-Meier curves. (E, F) Tumor somatic mutation landscape in TCGA-COAD cohort 
were established according to high PPSscore (E) and low PPSscore (F). Each column represented individual patients. The upper 
barplot showed TMB. The right number indicated the mutation frequency in each gene. The right barplot showed the proportion of  
each variant type. 
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(Figure 5C). Patients with lower scores were more 

likely to have survival advantage in the TCGA-COAD 

cohort (Figure 5D). In addition, we found that patients 

with higher pyroptosis values were more prone to 

disease progression (Supplementary Figure 4B). These 

findings suggest that the PPSscore had significant 

predictive value for clinical characteristics such as 

clinical stage and status. 

 

Characteristics of pyroptosis patterns in tumor 

somatic mutation 

 

Tumor mutational burden (TMB) is one of the emerging 

biomarkers for predicting the response of tumor patients 

to immunotherapy. The efficacy of anti-PD-1/PD-L1 

immunotherapy was significantly associated with 

patients' high TMB status. Therefore, we analyzed the 

distribution of somatic mutations in different PPSscores 

in the TCGA-COAD cohort. Figure 5E and 5F showed 

that the low PPSscore group had more extensive TMB 

than the high PPSscore group. However, the TMB 

quantification showed that tumors with a low PPSscore 

had a lower TMB (Supplementary Figure 5A). Besides, 

there was no significant correlation between PPSscore 

and TMB (Supplementary Figure 5B). Thus, the 

difference in PPSscore predicting the prognosis of CC 

patients may not be due to TMB. Further studies were 

needed to predict the clinical response and efficacy of 

TMB in patients with CC. 

 

The role of PPSscore in predicting immunotherapy 

 

To further test the stability of the PPSscore model and 

validate its prognostic value for patients, we applied the 

PPSscore signature to other independent CC cohorts 

(GSE17536, GSE29621, GSE33113, GSE37892 and 

GSE38832) except GSE39582 (Supplementary Figure 

6A–6E). The combined set of all GEO cohorts was 

validated (Supplementary Figure 6F). PPSscore was 

also tested for its ability to predict relapse-free survival 

(Supplementary Figure 6G). Subsequently, we 

continued to expand the predictive power of the 

PPSscore signature on 3-year and 5-year survival in CC 

patients (Supplementary Figure 6H and 6I). Using the 

ROC curve to evaluate the PPSscore was particularly 

advantageous in predicting the 3- and 5-year survival 

rates of CC patients. 

 

Immunotherapy has gained wide attention for cancer 

therapy. Therefore, we investigated whether pyroptosis 

pattern signals could predict patients’ responses to 

immune checkpoint blockade therapy. We found that 

low PPSscore patients had a significant survival 
advantage in both the anti-PD-L1 cohort (IMvigor210) 

and anti-PD-1 (GSE78220) cohort (Figure 6A–6G). 

Patients with low PPSscore who receiving anti-PD-1/L1 

immunotherapy had a significant clinical response and 

therapeutic advantage over these with high PPSscore. 

Further studies showed that TME stroma was 

significantly activated with a high PPSscore. We 

speculated that these processes might mediate tumor 

immune tolerance mechanisms, resulting in a poor 

prognosis in tumor patients (Figure 6H). Current studies 

have shown that tumor neoantigen burden was the 

important factor affecting the effect of immunotherapy. 

Through comparative analysis, we finally determined 

the conditions under which patients could benefit  

from survival: low PPSscore and high neoantigen 

burden (Figure 6I). When combined with the preceding 

evidence, quantification of pyroptosis patterns 

(PPSscore) was an independent and promising 

biomarker, particularly for evaluating the clinical 

efficacy of immunotherapy and predicting patients’ 

prognosis. The pyroptosis patterns and characteristics 

established in this study could aid in the clinical 

prediction of patients’ responses to anti-PD1/L1 

immunotherapy, and provide a foundation for CC 

patients’ prognosis. 

 

DISCUSSION 
 

Pyroptosis, a new form of programmed cell death, is 

characterized by rapid plasma-membrane rupture and 

the release of proinflammatory intracellular contents 

[24]. The activated caspases cleave the hinge region 

between the N- and C-terminal domains of genes, 

releasing the lethal segment and causing pyroptosis [25, 

26]. Pyroptosis can influence the TME antitumor 

immune response [27–29]. For instance, CD8+ T cells 

and NK cells in the TME can trigger tumor clearance 

via the GSDMB granzyme A axis, which is aided by 

IFN-γ [20]. Furthermore, colocalization of GSDMD and 

granzyme B (an enzyme capable of cleaving GSDME) 

was observed near immune synapses, and GSDMD 

deficiency reduced CD8+ T cells cytolytic capacity 

[22]. ICIs are severely limited in most cancer types 

because they do not work in all cancer patients [30]. 

Tumors resistant to immune checkpoint inhibitors are 

deemed “cold”: their TME could be changed, which 

involved a series of immune tolerance mechanisms, 

including the recruitment of immunosuppressive cells, 

and the release of immunosuppressive factors. 

However, a previous study found that pyroptosis "heats" 

anticancer immunity [31]. As previously stated, PRGs 

may predict survival and influence immunotherapy. 

Nonetheless, characterizations of panoramic TME 

infiltration mediated by integrated roles of PRGs in CC 

are not entirely clear. We identified three pyroptosis 

patterns in TME cell infiltration, which will help us 

focus on the role of pyroptosis in the formation of TME 

and immunity, providing a solid foundation for 

developing immunotherapy strategies. 
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Figure 6. The influence of distinct PPSscore on anti-PD-1/L1 immunotherapy. (A) Survival analyses for low and high PPSscore 

patient groups in the anti-PD-L1 immunotherapy cohort using Kaplan-Meier curves. (B) The percent weight of patients with clinical 
response to anti-PD-L1 immunotherapy in low or high PPSscore groups. SD/PD, stable disease/progressive disease; CR/PR, complete 
response/partial response. (C) The distribution of PPSscore in distinct anti-PD-L1 clinical response groups. (D) Survival analyses for low and 
high PPSscore patient groups in the anti-PD1 immunotherapy cohort using Kaplan-Meier curves. (E) The percent weight of patients with 
clinical response to PD-1 blockade immunotherapy in low or high PPSscore groups. (F) The correlation of PPSscore with clinical response to 
anti-PD-1 immunotherapy. Pt, patients. PD, green; PR, blue; CR, orange. (G) The distribution of PPSscore in distinct anti-PD-1 clinical 
response groups. (H) Differences in stroma-activated pathways between high and low PPSscore groups in anti-PD-L1 immunotherapy 
cohort. The upper and lower ends of the boxes represented the interquartile range of values. The lines in the boxes represented the 
median value. The asterisks represented the statistical P value (***P < 0.001). (I) Survival analyses for patients receiving anti-PD-L1 
immunotherapy classified by both PPSscore and neoantigen burden using Kaplan-Meier curves. 



www.aging-us.com 7557 AGING 

In this study, 33 PRGs were integrated from previous 

reviews into six GEO datasets (GSE39582, GSE38832, 

GSE37892, GSE33113, GSE29621, and GSE17536) of 

the CC in our study, and eventually, 30 PRGs were 

identified. Based on these identified genes, we obtained 

three distinct pyroptosis patterns: PPScluster-1, 

PPScluster-2, and PPScluster-3. These patterns had 

different survival probabilities and distinct TME cell 

infiltration characterization. The results showed that the 

PPScluster-1 pattern occupied a particularly significant 

survival advantage. Simultaneously, GSVA enrichment 

analysis revealed that PPScluster-1 was markedly 

enriched in immune activation pathways. However, 

PPScluster-2 (immune suppression) and PPScluster-3 

(immune-excluded) patients had a lower survival 

probability than CC patients in the PPScluster-1 pattern. 

It appears that pyroptosis plays a vital role in the 

immune regulation of the TME. Interestingly, the TME 

cell infiltration analyses revealed that PPScluster-3 

(immune-excluded phenotype) was remarkably rich in 

innate immune cell infiltration (Figure 3A), but patients 

with this pattern did not have a significantly improved 

prognosis (Figure 2B). Previous studies have shown that 

immune cells are abundant in tumors with an immune-

excluded profile. What is noteworthy is that these 

immune cells are retained in the stroma surrounding 

tumor cell nests rather than penetrating the tumor 

parenchyma [15, 32, 33]. Clinical responses are 

uncommon when stroma-associated T cells show no 

evidence of infiltration [14]. GSVA analysis showed 

that the cluster 3 pattern was significantly related to 

stromal activation. T cell suppression was thought to 

activate stroma in the TME. Therefore, we speculated 

that the antitumor effect in cluster 3 was mediated by 

stromal activation, resulting in immune T cell 

suppression. Furthermore, the matrix activity in cluster 

3 was significantly enhanced, such as the activation of 

EMT and TGFb, confirming our speculation. Therefore, 

this study confirmed that the results of the immune 

phenotype classification generated by our clustering 

results were meaningful. 

 

Furthermore, DEGs were found in different pyroptosis 

phenotypes. Subsequently, GO enrichment analysis 

revealed that the DEGs in different clusters were linked 

to immune-related pathways. These findings confirmed 

that pyroptosis played a significant role in the immune 

regulation in the TME of CC. Similarly, the 

unsupervised clustering algorithm identified three 

distinct pyroptosis genomic phenotypes based on the 

obtained DEGs. The current study’s survival analysis 

results revealed different survival probabilities in the 

three gene clusters. As previously stated, it confirmed 

that distinct pyroptosis-related patterns did exist in CC 

and that pyroptosis played a key role in shaping distinct 

TME landscapes. 

However, in the clinic, CC was found to have some 

contradictions, “the first neoplasia found to be under 

immunosurveillance and the last one to respond to 

immunotherapy” [34]. The reason may be due to the 

individual heterogeneity of CC, characterized by different 

biomolecular, anatomical, and gene signatures. Existing 

differences influence tumor behavior [35, 36]. An immune 

response is not assured in every individual, even if they 

belong to the immune-inflamed phenotype. Patients may 

vary in their responses. Therefore, we developed the 

‘PPSscore’ scoring system to quantify individual 

pyroptosis patterns in CC patients. The apparent 

superiority of the PPSscore is that it considers the 

heterogeneity of CC patients and can link pyroptosis to 

prognosis. The results revealed that PPScluster-1 had the 

lowest median PPSscore. Moreover, in this study’s anti-

PD-L1 and anti-PD-1 cohorts, patients with a low 

PPSscore had a significant survival advantage. Our 

findings strongly demonstrated that the PPSscore could be 

a promising way of evaluating individual tumor pyroptosis 

patterns and determining tumor immune phenotypes. 

 

CONCLUSIONS 
 

We evaluated the pyroptosis patterns of 1689 CC 

patients using 30 PRGs. The three patterns identified in 

our study were highly consistent with the three known 

immune phenotypes of tumors, including immune-

excluded, immune-inflamed, and immune-desert 

phenotypes. We also confirmed that distinct pyroptosis 

patterns were important in immunoregulation and the 

development of TME diversity and complexity. 

Quantifying pyroptosis patterns in individual tumors 

could improve our understanding of TME infiltration 

characterization and effectively predict patient clinical 

response to immunotherapy. This current research 

might provide a profound approach to discovering 

effective immunotherapeutic strategies. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing of CC datasets 

 

Public gene-expression data and clinical annotation  

of CC were obtained from GEO 

(https://www.ncbi.nlm.nih.gov/geo/) and TCGA 

(https://cancergenome.nih.gov/) database. Patients 

lacking survival information were excluded from this 

study. In total, 1689 patients from 7 eligible CC cohorts 

were enrolled. These cohorts included GSE39582 (n = 

585), GSE38832 (n = 122), GSE37892 (n = 130), 

GSE33113 (n = 96), GSE29621 (n = 65), GSE17536  

(n = 177) and the Cancer Genome Atlas-Colon 
Adenocarcinoma (TCGA-COAD, n = 514). The basic 

information from the CC datasets included in the group 

was summarized in Supplementary Table 1. We used 

https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/


www.aging-us.com 7558 AGING 

the raw “CEL” files for the microarray data from 

Affymetrix®. For background adjustment and quantile 

normalization, we performed a robust multi-array 

averaging method of the affy and simpleaffy packages. 

TCGA RNA sequencing data (FPKM value) were 

downloaded from the Genomic Data Commons (GDC, 

https://portal.gdc.cancer.gov/) using the R package 

TCGAbiolinks. Subsequently, FPKM values were 

transformed into transcripts per kilobase million (TPM) 

values. The ComBat method of the “SVA” R package 

was applied to correct the batch effects from non-

biological technical biases. The somatic mutation data 

was obtained from the TCGA database. 

 

Unsupervised clustering for 30 PRGs 

 

Initially, we extracted 33 PRGs from previous reviews. 

In our study, these genes were integrated into six CC 

GEO datasets. Finally, a set of 30 genes was extracted 

for identifying different pyroptosis forms mediated by 

these genes. We used unsupervised clustering analysis 

to differentiate pyroptosis patterns and classify patients 

based on PRGs expression. The consensus ClusterPlus 

package was used to execute the clustering algorithm, 

and ensure the stability of classification through 1000 

times repetitions. 

 

Gene set variation analysis (GSVA) and functional 

enrichment analyses 

 

The GSVA was then used to further investigate the 

differences in biological processes between different 

pyroptosis patterns, we subsequently conducted the 

GSVA. “c2.cp.kegg.v6.2.symbols” gene sets were 

downloaded from the MSigDB database and an adjusted 

P < 0.05 was considered statistically significant. The R 

package ‘clusterProfiler’ was used to implement 

functional annotation for PRGs. FDR< 0.05 was set as 

the cutoff value. 

 

Estimation of immune cell infiltration in the CC 

TME 

 

The single-sample gene set enrichment analysis 

(ssGSEA) algorithm was used to assess the status of 

immune cell infiltration in the TME. The recent study 

provided the special feature gene set for identifying 

each TME infiltration immune cell type. A ssGSEA 

enrichment score calculated the relative abundance of 

TME-infiltrated cells in each sample. 

 

Identification of DEGs among distinct pyroptosis 

patterns 

 

This study’s above unsupervised clustering analysis 

results in this study classified CC patients into three 

distinct pyroptosis patterns (PPScluster-1, PPScluster-2 

and PPScluster-3), from which we determined 

pyroptosis-related DEGs among these three distinct 

pyroptosis phenotypes. DEGs in CC samples were 

evaluated using the empirical Bayesian approach of the 

limma R package. The filtering criteria for DEGs were 

set to an adjusted P-value < 0.001. 

 

Establishment of pyroptosis gene signature 
 

Considering the individual heterogeneity, we 

constructed PPSscore, a set of scoring systems, for 

evaluating pyroptosis forms in individual tumors. The 

DEGs identified from the three distinct pyroptosis 

clusters were firstly normalized for all GSE39582 

samples, and the overlapping genes were extracted. By 

analyzing DEGs, an unsupervised clustering method 

was developed to classify patients into different 

groups. Then, for each gene, we used a univariate Cox 

regression model to perform a prognostic analysis. The 

genes with P < 0.05 were extracted for further 

analysis. We then conducted the LASSO Cox 

regression algorithm to construct a pyroptosis- 

relevant gene signature. The PPSscore was defined as 

follows: 
 

1

PPS 
n

i

score Coefi Expri
=

=   

 

where Expri represented the signature genes and the 

LASSO Cox regression provided the Coefi 

coefficient. 

 

Collection of two immunotherapeutic cohorts 

information 
 

We discovered two immunotherapeutic cohorts after 

systematically searching the ICB gene expression 

profiles. For further analysis, the gene expression 

profiles of advanced urothelial cancer patients treated 

with atezolizumab (anti-PD-L1 antibody, IMvigor300 

cohort) and metastatic melanoma patients treated with 

pembrolizumab (anti-PD-1 antibody, GSE78220 cohort) 

were all transformed into the TPM value for further 

analysis. 

 

Statistical analysis 
 

R version 3.6.1 and the appropriate packages were 

used for statistical analysis. The correlation 

coefficients between TME infiltrating immune cells 

and pyroptosis gene expression were computed using 

Spearman and distance correlation analyses. One-way 
ANOVA and the K-W tests were used to compare 

differences between groups. Survminer R software 

package was used to determine the cutoff points for 

https://portal.gdc.cancer.gov/
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each subgroup of data sets. The “surv-Cutpoint” 

function was used to find the maximum rank statistic. 

Patients were divided into high and low PPSscore 

groups according to the maximum log-rank statistics. 

The Kaplan-Meier method was used to generate 

survival curve for prognostic analysis. A multivariate 

Cox regression model was used to determine the 

independence of the variables. Especially for patients 

with detailed clinical data.The results visualization for 

PPSscore in GSE39582 cohort was achieved through 

the forestplot R package. The mutational landscape in 

CC patients with high and low PPSscore subtypes in 

the TCGA-COAD cohort was plotted using the 

waterfall function of the R ‘maftools’ package. The 

CNV landscape of the 30 PRGs was depicted using the 

RCircos R package. A two-sided P-value <0.05 was 

considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Spearman analysis was used to obtain the correlation between each TME infiltrating cell type and 
PRGs. Blue represented negative correlation and red represented positive correlation. 
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Supplementary Figure 2. Unsupervised clustering of 30 PRGs in GSE39582 CC cohort. (A) The heatmap of consensus matrices for 

GSE39582 CC cohort (k = 3). (B) Empirical cumulative distribution function (CDF) plots displayed consensus distributions for each k. (C) The 
delta area score (y-axis) indicated the relative increase in cluster stability. (D) The item tracking plot showed the consensus cluster of items 
(in columns) at each k (in rows). (E) The expression of 30 PRGs in the three PPSclusters (*P < 0.05; **P < 0.01; ***P < 0.001). (F) Survival 
analyses for the three pyroptosis patterns in GSE39582 using Kaplan-Meier curves. (G) 230 overlapping DEGs related to pyroptosis 
phenotype were shown in Venn diagram. 
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Supplementary Figure 3. Characteristics of cytokine transcriptome, chemokine transcriptome and known signatures in 
distinct gene clusters. (A) The heatmap of consensus matrices for GSE39582 CC cohort (k = 3). (B) Empirical cumulative distribution 

function plots displayed consensus distributions for each k. (C) The delta area score (y-axis) indicated the relative increase in cluster 
stability. (D) The item tracking plot showed the consensus cluster of items (in columns) at each k (in rows). (E) Difference in the expression 
of known signatures including stromal-activation related signatures, tumor-promotion related signatures and immune-activation related 
signatures among three gene clusters (*P < 0.05; **P < 0.01; ***P < 0.001). (F) Difference in the immune-activation related gene expression 
among three gene clusters. (G) Difference in the immune-checkpoint related gene expression among three gene clusters. (H) Difference in 
the TGFβ- EMT pathway-related gene expression among three gene clusters. 
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Supplementary Figure 4. The prognostic value of PPSscore and the correlation between the clinicopathological features 
and PPSscore. (A) Multivariate Cox regression analysis for PPSscore in GSE39582 cohort shown by the forest plot. (B) Difference in 

PPSscore among distinct clinical subgroups in GSE39582 cohort. ADJC, adjuvant chemotherapy. 

 

 

 

 
 

Supplementary Figure 5. The relationship between tumor mutation burden (TMB) and PPSscore. (A) The distribution of tumor 

mutation burden (TMB) in distinct PPSscore groups (P = 0.042, Wilcoxon test). (B) There was a positive correlation between TMB and 
PPSscore (r = 0.19, P < 0.001). 
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Supplementary Figure 6. The prognostic value of PPSscore in CC cohorts. Survival analyses for low and high PPSscore patient 
groups in (A) GSE17536, (B) GSE29621, (C) GSE33113, (D) GSE37892 and (E) GSE38832 using Kaplan-Meier curves. (F) Overall survival 
analysis of PPSscore in all GEO CC cohorts. (G) Relapse-free survival analysis of PPSscore in all GEO CC cohorts. (H) The predictive power of 
the PPSscore signature on 3-year survival in GSE39582 cohort (AUC = 0.712). (I) The predictive power of the PPSscore signature on 5-year 
survival in GSE39582 cohort (AUC = 0.693). 
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Supplementary Table 
 

Supplementary Table 1. The GEO and TCGA datasets included in this study. 

Accession number Source Number of patients Survival 

TCGA: COAD Illumina RNAseq 514 OS 

GEO: GSE39582 Affymetrix Human Genome U133 Plus 2.0 Array 585 RFS/OS 

GEO: GSE38832 Affymetrix Human Genome U133 Plus 2.0 Array 122 RFS/OS 

GEO: GSE37892 Affymetrix Human Genome U133 Plus 2.0 Array 130 RFS 

GEO: GSE33113 Affymetrix Human Genome U133 Plus 2.0 Array 96 RFS 

GEO: GSE29621 Affymetrix Human Genome U133 Plus 2.0 Array 65 RFS/OS 

GEO: GSE17536 Affymetrix Human Genome U133 Plus 2.0 Array 177 RFS/OS 

 

 


