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ABSTRACT 
 

Ribonucleotide reductase (RNR) small subunit M2 (RRM2) levels are known to regulate the activity of RNR, a 
rate-limiting enzyme in the synthesis of deoxyribonucleotide triphosphates (dNTPs) and essential for both 
DNA replication and repair. The high expression of RRM2 enhances the proliferation of cancer cells, thereby 
implicating its role as an anti-cancer agent. However, little research has been performed on its role in the 
prognosis of different types of cancers. This pan-cancer study aimed to evaluate the effect of high 
expression of RRM2 the tumor prognosis based on clinical information collected from The Cancer Genome 
Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found RRM2 gene was highly 
expressed in 30 types of cancers. And we performed a pan-cancer analysis of the genetic alteration status 
and methylation of RRM2. Results indicated that RRM2 existed hypermethylation, associated with m6A, 
m1A, and m5C related genes. Subsequently, we explored the microRNAs (miRNA), long non-coding RNAs 
(lncRNA), and the transcription factors responsible for the high expression of RRM2 in cancer cells. Results 
indicated that has-miR-125b-5p and has-miR-30a-5p regulated the expression of RRM2 along with 
transcription factors, such as CBFB, E2F1, and FOXM. Besides, we established the competing endogenous 
RNA (ceRNA) diagram of lncRNAs-miRNAs-circular RNAs (circRNA) involved in the regulation of RRM2 
expression. Meanwhile, our study demonstrated that high-RRM2 levels correlated with patients’ worse 
prognosis survival and immunotherapy effects through the consensus clustering and risk scores analysis. 
Finally, we found RRM2 regulated the resistance of immune checkpoint inhibitors through the PI3K-AKT  
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INTRODUCTION 
 

Ribonucleotide reductase (RNR) is responsible for  

the de novo synthesis of deoxyribonucleotide 

triphosphate (dNTP), thereby playing an important 

role in DNA synthesis and DNA repair. However, 

abnormal dNTP levels lead to inaccurate DNA 

replication, causing genomic instability [1]. The 

activity of RNR is coordinated with the cell cycle and 

the levels of its smaller subunit ribonucleotide 

reductase subunit M2 (RRM2). Apart from the 

catalytic RRM2, the enzyme RNR is made up of a 

regulatory larger subunit, i.e., ribonucleotide reductase 

subunit M1 (RRM1) [2]. In humans, RNR comprises 

one large subunit RRM1 and two small subunits, 

RRM2B and RRM2. The expression of RRM1 remains 

the same throughout the cell replication cycle, but the 

expression of RRM2 increases during the early S 

phase and the late G1 phase [3]. During the G2  

phase, following cyclin-dependent kinases (CDK)-

mediated phosphorylation of Thr33, RRM2 is 

degraded via cyclin F to maintain balanced levels of 

dNTPs [4]. Therefore, the level of RRM2 regulates the 

cell cycle-dependent activity of RNR, the rate-limiting 

enzyme. 

 

Expression levels of RNR subunits have been  

studied in various types of cancers, leading to the 

findings of over-expression of RRM2 in cancer  

cells [5]. The higher expression of RRM2 has also 

been associated with poor survival outcomes in  

cancer patients [6]. Because of these functions,  

RNR inhibitors have been widely utilized in cancer 

treatment along with chemotherapy [7, 8]. Studies 

have indicated that high-expression levels of RRM2 

can be regulated at non-coding RNAs (ncRNAs)  

and RNA modification [6, 9]. Besides, some 

researchers reported that RRM2 could regulate 

immunotherapy responses, and the knockdown of 

RRM2 could enhance the anti-tumor efficiency of  

PD-1 blockade in renal carcinoma [10]. Therefore, all 

findings suggest that RRM2 plays an important role in 

tumorigenesis, tumor progression, and the treatment of 

cancer. 

 
The public database The Cancer Genome Atlas 

(TCGA) project contains functional genomics datasets, 

thereby providing us with high-throughput RRM2 

expression data and clinical information of cancer 

patients. Therefore, in this study, we utilized the  

TCGA data to establish a comprehensive 

bioinformatics-based pan-cancer analysis of RRM2. 

Besides, we performed analyses to explore the potential 

mechanism responsible for the pathogenesis. The 

overall study flowchart is shown in Supplementary 

Figure 1A. 

 

RESULTS 
 

RRM2 expression and survival analyses in human 

cancers 

 

Analysis of the data obtained from TCGA and GTEx 

revealed that the expression level of RRM2 in the tumor 

tissues of ACC, BLCA, BRCA, CESC, CHOL, COAD, 

DLBC, ESCA, GBM, HNSC, KIRP, KIRC, LAML, 

LGG, LUAD, LIHC, LUSC, OV, PAAD, PRAD, 

READ, STAD, SKCM, THCA, TGCT, UCEC, THYM, 

UCS (P < 0.0001), SARC, and PCPG (P < 0.05) was 

higher than that of the control tissues (Figure 1B). 

However, no significant difference in RRM2 expression 

was observed between KICH and control tissues. Also, 

a higher expression of RRM2 total protein was observed 

in the primary tissues of BRCA, ovarian cancer, colon 

cancer, clear cell RCC, and UCEC. In this study, RRM2 

expression data were generated for patients belonging to 

diverse age groups and tumor stages (Figure 1C, 1D). In 

BRCA, ESCA, KIRP, LUAD, LUSC, PCPG, PRAD, 

READ, and THYM tissues, the expression of RRM2 

was higher in patients aged 60 years and above. 

Besides, we investigated the correlation of RRM2 

expression with the prognosis of patients. For the 

TCGA cases, analysis of OS, progression-free interval 

(PFI), and disease-free interval (DFI) (Figure 1E) 

revealed a correlation between higher RRM2 expression 

and poor prognosis. 

 

Genomic alterations and methylation in RRM2 
 

A total of 10,953 patients from the TCGA PanCancer 

Atlas Studies were obtained through the cBioPortal 

website. The percentage of RRM2 genetic alterations 

was 1.5% (Figure 2A). The percentage of SNVs of the 

RRM2 gene in UCEC and SKCM was 13% and 8%, 

respectively (Figure 2B). We performed a pan-cancer 

analysis of the genetic alteration status of RRM2 and 

observed that maximum alteration (> 4%) appeared in 

patients with endometrial carcinoma (Figure 2C); 

single pathways. Collectively, our findings elucidated that high expression of RRM2 correlates with 
prognosis and tumor immunotherapy in pan-cancer. Moreover, these findings may provide insights for 
further investigation of the RRM2 gene as a biomarker in predicting immunotherapy’s response and 
therapeutic target. 
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patients with primary type of melanoma showed an 

alteration frequency of ~3%. The mutated site of RRM2 

is depicted in the schematic diagram of the protein 

structure or the three-dimensional (3D) structure 

(Supplementary Figure 1B). Thus, the results indicated 

a strong relationship between RRM2 expression and 

mutations in multiple tumors. Also, a significant 

correlation was observed between gene-level and CNV 

in LUSC, BRCA, SKCM, ESCA, KIRC, DLBC, OV, 

BLCA, UCS, TGCT, PAAD, ACC, HNSC, CESC, and 

STAD (Figure 2D). As shown in Figure 2E, a 

significant correlation was observed between RRM2 

gene expression and MSI in COAD, LIHC, SARC, 

SKCM, STAD, TGCT, UCEC and, UCS. Tumor 

mutational burden (TMB), as a quantifiable biomarker, 

reflected the number of mutations in cancer. Significant 

correlations were observed between RRM2 expression 

and TMB in ACC, BLCA, BRCA, CESC, CHOL, 

COAD, KICH, KIRC, LGG, LIHC, LUAD, LUSC, 

MESO, OV, PAAD, PRAD, SARC, SKCM, STAD, 

THYM, and UCEC (Figure 2F). Also, we compared the 

RRM2 methylation of different types of tumor tissues 

with normal ones. Studies have indicated that DNA 

hypermethylation silences the tumor suppressor gene, 

dysregulating crucial pathways related to malignancy. 

Results indicated significant differences in the 

following types of cancers: BLCA, BRCA, CHOL, 

COAD, CESC, ESCA, HNSC, KIRC, LIHC, LUAD, 

LUSC, PAAD, UCEC, and READ (Figure 2G). Pan-

cancer analysis of DNA methyltransferases (DNMT) 

revealed its significant correlation with RRM2 (Figure 

3A). We found that RRM2 was significantly associated 

with m6A, m1A, and m5C related genes (Figure 3B–

3D). Also, results indicated that overall survival of 

different methylation levels of RRM2 exhibited a 

significantly different in thymoma, sarcoma, melanoma, 

and glioma (Figure 3E). 
 

The miRNAs and transcription factors of RRM2 
 

The correlation of RRM2 expression with miRNAs in 

different tumors is depicted in Figure 4A. A consistent 

 

 
 

Figure 1. RRM2 gene expression levels in different tumors and clinical data of cancer patients obtained from TCGA. (A) RRM2 

gene expression levels in different cancer types and normal tissue from the TCGA and GTEx datasets. The red rectangle box represents the 
gene expression level in tumor tissue and the blue rectangle box in normal tissue. (B) Protein expression of RRM2 in breast cancer, ovarian 
cancer, colon cancer, clear cell RCC, and UCEC. The red rectangle box represents protein expression levels in tumor tissue and the blue one in 
normal tissue. (C) The RRM2 gene expression levels in patients belonging to different age groups. The red rectangle box indicates the RRM2 
gene expression level in patients aged less than or equal to 60 years. The blue rectangle box indicates the RRM2 gene expression level in 
patients aged greater than 60 years. (D) The RRM2 gene expression levels in different tumors belonging to different pathological stages. The 
red rectangle box indicates the RRM2 gene expression level in stage I, the green one in stage II, the blue one in stage III, and the purple one in 
stage IV tumors. (E) Correlation analysis of RRM2 gene expression with OS, PFI, and DFI by the Cox regression analysis method in different 
types of cancers. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 
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negative correlation of has-miR-125b-5p and has-miR-

30a-5p was observed in more than 10 types of cancers, 

indicating that these two miRNAs regulate RRM2 

expression the most. Also, we constructed the ceRNA 

diagram of lncRNA-miRNA-circRNA in KIRC 

(Figure 4B) and predicted the transcription factors of 

RRM2 (Figure 4C). The following transcription 

factors were consistently positive in more than 20 

cancer types and were predicted to be the potential 

targets of RRM2: CBFB, E2F1, E2F6, FOXM1, 

HDAC1, HDAC2, SMC1A, CTCF, and RAD21. We 

found that RRM2 was significantly associated with 

DNA mismatch repair (MMR) genes (Figure 4D). The 

expression of the RRM2 gene also had a significant 

correlation with RNAss and DNAss in different 

cancers (Figure 4E). 

 

RRM2-associated biological functions and immune 

signatures 

 

To determine the biological functions of RRM2, we 

divided the tumor samples into high and low expression 

groups (Figure 5A). GSEA analysis results revealed that 

cell cycle, DNA replication, spliceosome, chromatin 

remodeling at the centromere, negative regulation of 

chromosome organization, mitotic nuclear division, 

ncRNA 3 end processing, DNA dependent DNA 

replication, chromosome segregation, snRNA metabolic 

process, nuclear chromosome segregation, snRNA 

processing, sister chromatid segregation, metaphase 

anaphase transition of the cell cycle, regulation of 

chromosome segregation, and mitotic sister chromatid 

segregation were positively associated with RRM2 in 

more than 10 types of cancers (Figure 5B, 5C). 

According to single-cell resolution results, the 

functions, including cell cycle, DNA damage, DNA 

repair, EMT, invasion, proliferation, and stemness were 

found to be positively associated with RRM2 (Figure 

5D). Since accumulating evidence indicates that RRM2 

regulates tumor immunity [10], we also paid attention to 

immune pathways. We observed that a substantial 

number of immune-related pathways had either positive 

or negative correlations with RRM2 depending on the 

cancer type (Figure 5B, 5C). A statistically significant 

 

 
 

Figure 2. Genetic alteration in RRM2. (A) OncoPrint visual summary of alteration based on a query of RRM2. The green color 
represents mutation sites on a query of the RRM2 gene. (B) The SNVs percentage profile of RRM2. The color in each small rectangle 
represents the mutation frequency in different types of cancers; the red and white indicate the high and low mutation frequency,  
respectively. (C) The alteration frequency of RRM2 with mutation type in different tumors. (D) CNV Pearson’s correlation between CNV 
and RRM2 mRNA expression. (E) Radar map of correlation between RRM2 expression and MSI. The value in black denotes the range, 
and the curve in red the correlation coefficient. (F) Radar map of correlation between RRM2 expression and TMB. The value in black 
reveals the range, and the curve in blue the correlation coefficient. (G) Analysis of promoter methylation levels of RRM2 in different 
tumors. *P < 0.05, **P < 0.01, ***P < 0.001. 
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relationship was observed between immune cell score 

and RRM2 expression in ACC, BRCA, ESCA, GBM, 

KIRC, LGG, LUAD, LUSC, TGCT, THCA, THYM, 

UCEC, and UVM (Figure 5E). The correlation analysis 

results indicated a potential correlation between 

RRM2 levels and immune subtypes in KIRC, apart 

from demonstrating that RRM2 was expressed in C2 

at the highest level (Figure 5F). By examining the 

correlations between RRM2 and abundance of tumor-

infiltrating immune cells, including myeloid and 

lymphoid lineages, across 33 cancer types, we 

observed that the levels of M0 and M1 macrophages, 

activated CD4+ T cells, and T follicular helper cells 

were consistently positive in more than 10 types of 

cancers. Moreover, the levels of resting mast cells, 

naive B cells, and resting memory CD4+ T cells were 

negatively correlated in more than 10 types of cancers 

(Figure 5G). Furthermore, correlations between 

RRM2 expression and immune factors across human 

cancers are depicted in Figure 5H. Therefore, the 

results demonstrated that RRM2 expression was 

notably associated with cancer immunity, though the 

regulation of RRM2 could vary depending on the 

cancer type. 

 

Identification of RRM2-related genes in different 

cluster subgroups 

 

To explore the potential mechanism of the RRM2 gene, 

we screened RRM2-related genes and obtained a total of 

50 RRM2-correlated genes from the String databases 

tool (Figure 6A). Next, we obtained the top 100 genes 

correlating with RRM2 expression based on the 

GEPIA2 tool. Finally, intersection analysis of the above 

two groups produced six common members, namely, 

CENPI, KIF4A, CKAP2L, KIF11, CCNA2, and MKI67 

(Figure 6B); the heatmap demonstrated a strong positive 

correlation among them (Figure 6C). A total of 530 

KIRC samples were classified into three clusters (262 

patients labeled as “cluster A”, 133 patients labeled as 

 

 
 

Figure 3. Methylation in RRM2. (A) Correlation between RRM2 expression level and DNA methyltransferases. DNMT1, red; DNMT2, blue; 
DNMT3A, green; and DNMT3B, purple. (B–D) Correlations between RRM2 expression and the m1A, m5C, m6A-related genes in different 
tumors. (E) Kaplan-Meier overall survival curves of different methylation levels of RRM2 in different tumors. 
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“cluster B” and 135 patients labeled as “cluster C”) 

(Figure 6D, 6G). Results indicated that the RRM2-

related genes were mostly expressed in cluster B 

(Figure 6E). Meanwhile, the survival analysis revealed 

that cluster B had a poor prognosis (Figure 6F). 

Furthermore, we analyzed DEGs between cluster B and 

cluster C subgroups and explored their functions 

through GSVA and KEGG pathway analysis (Figure 

6H). Results indicated the enrichment of immune-

related biological processes, including T cell receptor 

signaling pathway, natural killer cell-mediated 

cytotoxicity, primary immunodeficiency, the intestinal 

immune network for IgA production, and the P53 

signaling pathway, involved in RRM2-related functions. 

Also, the differences in immune cell infiltration were 

observed in separate cluster subgroups (Figure 5). 

Establishing the risk score and evaluating the 

clinical predicting ability 

 

The above analyses could not include other RRM2-co-

expression genes and evaluate the biological function 

and significance of RRM2 comprehensively. Therefore, 

we constructed a risk score based on prognostic DEGs 

of different clusters (Figure 7A). Results indicated that 

patients exhibited a significantly shorter survival time in 

the high score group (Figure 7B–7D, 7F). The 

relationship between cluster and score is depicted in 

detail in Figure 6G, whereas the Sankey diagram 

indicated the connection between cluster, risk score, and 

outcome (Figure 7E). As we can see, cluster B was 

associated with the high-score group, which meant a 

poor prognosis. Also, we annotated the prognostic 

 

 
 

Figure 4. The miRNAs and transcription factors of RRM2. (A) The correlation of RRM2 expression with miRNA in different tumors. (B) 

The ceRNA diagram of lncRNA-miRNA-circRNA. The blue dots represent miRNA, green dots lncRNA, and yellow dots circRNA. (C) The 
transcription factor of RRM2 (p-value < 0.05 and correlation > 0.2). (D) Correlation between RRM2 expression and mismatch repair genes. (E) 
RRM2 gene expression associated with RNA stemness score (RNAss) and DNA stemness score (DNAss) in different cancers. Red dots indicate 
a positive correlation and blue dots a negative correlation. *P < 0.05, **P < 0.01, ***P < 0.001. 
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DEGs’ function (Figure 7I, 7J) and assessed that the 

risk score was positively correlated with immune 

infiltration levels (Figure 7K). 

 

Predicting immunotherapeutic resistance and related 

pathways 

 

PD-1, PD-L1, PD-L2, CTLA-4, LAG-3, Tim-3, CD47, 

and TIGIT are immune checkpoint receptors widely 

used to evaluate the immune response. Results indicated 

that PD-1, CTLA-4, PD-L1, PD-L2, LAG-3, TIM-3, 

TIGIT, and CD47 receptors were significantly 

upregulated in the high-risk score group (Figure 8A). 

Moreover, we analyzed the relationship of immune 

checkpoint receptors with RRM2 expression in different 

types of cancers (Figure 8B). It was observed that 

RRM2 expression mainly correlated with immune 

checkpoint genes in tumor tissues of HNSC, KICH, 

KIRC, LIHC, PRAD, THCA, and UVM. Moreover, 

CD276 had a strong positive correlation with RRM2 

gene levels in 23 types of tumors. As we all know, 

tumor immunotherapy has emerged as an effective 

treatment for malignant tumors, and TIDE serves as a 

more accurate biomarker than immune checkpoint 

inhibitors (ICIs). In this study, the TIDE score, 

dysfunction, exclusion, MDSC, TAM-M2, and CAF 

were generated from the TIDE system. Results 

indicated that the risk score was positively correlated 

with the TIDE score, whereas dysfunction was 

negatively correlated with TAM-M2 and CAF (Figure 

8C); this demonstrated that the high-score group had 

more side effects of ICIs, apart from having a poor 

survival prognosis. Meanwhile, a recent article reported 

that RRM2 overexpression reduced sunitinib sensitivity 

in renal cancer [10]. A comparison of the abilities of 

recognized biomarkers or genes in predicting RRM2’s 

 

 
 

Figure 5. RRM2-associated biological functions and immune signatures. (A) The DEGs between the high- and low-RRM2 expression 

groups in different tumors. (B) The heatmap of gene KEGG analysis of DEGs. (C) The heatmap of GO analysis of DEGs between high- and low-
RRM2 expression group. (D) Average correlations between RRM2 and functional status in different cancers and the bar chart indicating the 
number of datasets in which RRM2 is significantly related to the corresponding state for single-cell resolution. (E) RRM2 gene expression 
associated with stromal and immune scores in different cancers. (F) RRM2 gene expression levels in different immune subtypes. The X-axis 
represents the immune subtype; Y-axis gene expression. C1, wound healing; C2, IFN-g dominant; C3, inflammatory; C4, lymphocyte depleted; 
C5, immunologically quiet; C6, TGF-b dominant. (G) Correlation of RRM2 gene expression with immune cell infiltration levels in 33 types of 
tumors (p < 0.05). (H) Correlation of RRM2 gene expression with immune factors across human cancers. *: P-value <= 0.05; FDR <= 0.05. 
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response to immunotherapy is shown in Figure 8D. 

Based on the above results, we assumed that RRM2 was 

associated with ICI resistance. To explore the ICI 

resistance related signal pathways, the pathway map of 

RRM2 co-expression with PI3K-AKT signal pathway 

genes are shown in Figure 8E. 

 

DISCUSSION 
 

Overexpression of RRM2 has been observed in various 

cancers, leading to its recognition as an effective cancer 

therapeutic target [11]. In this study, we performed a 

comprehensive bioinformatics-based analysis for RRM2 

and built an RRM2-related risk score, which was a good 

predictor of survival outcomes and immunotherapy 

resistance. 

 

High-expression levels of RRM2 can be regulated at 

gene, transcriptional, and post-transcriptional levels. 

Zhang et al. reported that the E2F1 transcription factor 

could upregulate RRM2 expression [12]. Besides, 

previous research has demonstrated that several 

transcription factors, such as FOXM1, MYC, APC/C/ 

CDH1, and E2F, targeted RRM2 in prostate cancer 

[13]. In this study, we evaluated the correlation  

of all RRM2-related transcription factors with RRM2  

in 33 types of cancers. Results indicated that the  

CBFB, E2F1, E2F6, FOXM1, HDAC1, HDAC2, 

SMC1A, CTCF, and RAD21 transcription factors were 

consistently positive in more than 20 types of cancers 

and were predicted to be the potential targets of RRM2. 

Besides, most studies have demonstrated that miRNA 

directly acts on mRNA, thereby mediating the post-

transcription. Studies have reported that miR-20a-5p, 

miR-let-7, and miR-211 could regulate RRM2 

expression [6, 9]. Our study demonstrated the 

correlation of RRM2 expression with miRNAs in 

different tumors. It was observed that has-miR-125b-5p 

and has-miR-30a-5p were negatively expressed in more 

than 10 types of cancers. Also, we constructed the 

 

 
 

Figure 6. Consensus clustering of RRM2-related genes in KIRC. (A) Obtained the available experimentally determined RRM2-binding 
proteins from the STRING tool. (B) The intersection analysis of 100 genes from GEPIA2 and 50 genes from the STRING tool. (C) The correlation 
between the RRM2 gene and RRM2-related genes. Blue dots indicate a positive correlation and red dots a negative correlation. (D) 
Consensus clustering matrix for k = 3. (E) Principal component analysis (PCA) for the transcriptome profiles of subtypes, indicating a 
significant difference in transcriptomes between different cluster subgroups. (F) Kaplan-Meier overall survival curves of different clusters. (G) 
Heatmap of three clusters defined by RRM2-related genes. (H) Differences in the Kyoto Encyclopedia of Genes (KEGG) pathways between 
cluster B and cluster C. (I) Comparison of immune infiltration level of primary RCC patients among three clusters, supported by single-sample 
gene set enrichment analysis algorithm. Data are presented as mean ±SD; ns P>0.05, *P<0.05, **P<0.01, ***P < 0.001. 
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ceRNA diagram of lncRNA-miRNA-circRNA in KIRC 

(Figure 3B). The results indicated that DNAss was 

correlated with epigenetic features, and RNAss was 

reflective of gene expression. Besides, the stemness 

index was related to tumor pathology and immune 

microenvironment, thereby predicting the clinical 

outcome [14]. In this study, a significant correlation of 

the RRM2 gene expression was observed with RNAss 

and DNAss, especially in THYM (Figure 3). Significant 

correlations were observed between the expression of 

RRM2 and MMR genes, DNMT, and m1A, m5C, m6A-

related genes. Thus, our study provided significant 

insights into the potential role of RRM2 in tumor 

immunology. 

 

Previous studies have provided the effects of gene 

overexpression in different types of malignancies. 

Overexpression of ncRNAs and RNA modification-

mediated RRM2 has been associated with poor survival 

of malignant tumors. Analysis of 159 breast cancer 

patients revealed that the RRM2 gene levels were 

significantly associated with poor OS and PFS [15]. We 

investigated the expression of RRM2 in 33 different 

cancers using independent datasets from TCGA and 

GTEx databases. Results indicated that RRM2 was 

highly expressed in bladder, breast, colorectal, gastric, 

liver, kidney, lung, lymphoma tumors, etc. Also, its 

high expression was associated with OS, DFS, and PFI 

in ACC, KICH, KIRC, KIRP, LGG, LIHC, LUAD 

MESO PAAD, and SARC in the TCGA project. 

Interestingly, high expression of the RRM2 gene 

correlated with an improved prognosis in THYM 

(Figure 1). In this study, we constructed a risk score to 

quantify the RRM2 expression pattern in individual 

primary KIRC. Our results demonstrated a poor 

prognosis of the high score group. These findings may 

 

 
 

Figure 7. Construction of the risk score and exploration of its clinical relevance. (A) The Venn diagram of differential expression 

genes (DEGs) in three clusters. (B) Kaplan-Meier curves indicating the overall survival probability between two risk score groups. (C, D) 
Association of risk score with survival outcome. (E) Sankey diagram depicting the association of score groups with clusters, gene clusters, and 
survival outcome. (F) Kaplan-Meier curves demonstrating the overall survival probability in different clinical features. (G) The risk score 
difference between cluster A, cluster B, and cluster C. (H) High-and low-score groups are associated with the expression level of RRM2. (I) The 
GO analysis of prognostic DEGs. (J) KEGG analysis of prognostic DEGs. (K) The correlation between the risk score and immune cells. 
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provide insights for further investigation of the RRM2 

gene as a potential prognostic target. 

 

Studies have indicated that the tumor microenvironment 

facilitates immunosuppression and limits immunotherapy 

responses [16]. In the last decade, immune infiltration, 

which might be a promising target in the tumor 

microenvironment, has gained attention in tumor 

progression and immunotherapy resistance [17]. We 

performed a pan-cancer analysis of the potential 

correlation between RRM2 gene expression and stromal 

score, immune score, tumor-infiltrating immune cells, 

and immune factors (Figure 4). Results indicated that 

the ncRNAs and RNA modification-mediated over-

expression of RRM2 had a significant correlation with 

immune factors. We also identified three distinct 

patterns, which were correlated with different immune 

phenotypes and signaling pathways. Results indicated 

that KEGG pathways were negatively enriched in 

immune-related biological processes, including T cell 

receptor signaling pathway, natural killer cell-mediated 

cytotoxicity, primary immunodeficiency, the intestinal 

immune network for IgA production, and the P53 

signaling pathway in the high-expression cluster of 

RRM2. Previous studies have demonstrated that ICIs 

are the main methods of immunotherapy [18]. In this 

study, further analyses revealed that PD-1, CTLA-4, 

PD-L1, PD-L2, LAG-3, TIM-3, TIGIT, and CD47 were 

significantly upregulated in the high-risk score group, 

implying that RRM2 could affect the efficacy of 

immunotherapy. Meanwhile, a key finding of this study 

was that patients in the low-score group exhibited a 

response to immunotherapy in KIRC. We discovered 

that the risk scores were positively correlated with  

the TIDE score and T cell dysfunction. The low-risk 

score group exhibited a better immunotherapy effect 

 

 
 

Figure 8. Prediction of immunotherapy effect. (A) High-and low-score groups associated with the expression levels of immune 

checkpoint molecules, including PD-1, CTLA-4, PD-L1, PD-L2, LAG-3, TIM-3, TIGIT, and CD47. (B) Relations between the expression of RRM2 
and immunoinhibitors. (C) Relation of RRM2 expression with TIDE, dysfunction, exclusion, MDSC, TAM-M2, and CAF. (D) Comparison of the 
abilities of recognized biomarkers or genes in predicting RRM2’s response to immunotherapy. (E) Correlation of RRM2 expression with the 
PI3K-AKT signal pathway. P<0.05; ** P<0.01; *** P<0.001. 
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compared to the high-risk score group, indicating that 

a high-risk score group with high RRM2 expression 

might lead to the failure of ICI therapy. A similar 

result was reported in a study, wherein RRM2 

overexpression reduced sunitinib sensitivity in renal 

cancer patients [10]. And we found RRM2 regulated 

the ICI resistance through the PI3K-AKT single 

pathways. 

 

Our pan-cancer study employed comprehensive 

bioinformatic analyses for high expression of RRM2, 

demonstrating that it was related to the survival, 

prognosis, and effects of immunotherapy in cancer 

patients. Moreover, these findings may provide insights 

for further investigation of the RRM2 gene as a 

biomarker in predicting immunotherapy’s response and 

therapeutic target. 

 

MATERIALS AND METHODS 
 

RRM2 expression and survival analyses in human 

cancers 
 

The original data of 33 types of cancers were obtained 

from the public database TCGA and downloaded from 

the UCSCXenaShiny website (https://xena.ucsc.edu/). 

We searched RRM2 expression and retrieved data 

regarding overall survival (OS), progression-free interval 

(PFI), and disease-free interval (DFI) through the 

UCSCXenaShiny website [19]. Based on the Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) 

dataset (http://ualcan.path.uab.edu/analysis-prot.html), 

we analyzed the differences in RRM2 protein level 

between normal and tumor tissue samples [20]. 

According to the clinical data of TCGA, the RRM2 

expression levels among patients belonging to 

different age groups and pathological stages were 

analyzed. 

 

Genetic alterations and methylation in RRM2 
 

The cBioPortal website (https://www.cbioportal.org/) 

was used to explore TCGA Pan-Cancer Atlas Studies of 

RRM2 [21]. Furthermore, the analysis of the association 

between RRM2 and tumor mutational burden (TMB) or 

microsatellite instability (MSI) was compiled using 

Spearman’s method. The single nucleotide variants 

(SNV) percentage profile and Pearson’s correlation on 

copy number variations (CNV) were performed based 

on the Gene Set Cancer Analysis (GSCA) website 

(http://bioinfo.life.hust.edu.cn/web/GSCALite/) [22]. 

The University of Alabama Cancer Database 

(UALCAN) (http://ualcan.path.uab.edu/) was utilized to 
analyze promoter methylation levels of RRM2 in 

different tumors [23]. Kaplan-Meier overall survival 

curves of different methylation levels of RRM2 in 

different tumors through the EWAS DataHub website 

(https://ngdc.cncb.ac.cn/ewas/datahub/index). 

 

ncRNAs and RNA modification of RRM2 

 

The Encyclopedia of RNA Interactomes (ENCORI) 

(https://starbase.sysu.edu.cn/panCancer.php) was used to 

find the target-microRNAs (miRNAs) and long ncRNAs 

(lncRNAs) for RRM2. Co-expression analysis for the 

target-miRNA and RRM2 was performed through R 

package "Limma", “reshape2”, “ggpubr”, and “ggExtra” 

under corFilter < –0.2 or > 0.2 and p-valueFilter <0.05. 

Co-expression analysis for the target-miRNA and 

lncRNA was performed under corFilter <-0.1,  

p-valueFilter <0.05, and logFC* corFilter <0. Then 

RRM2 targeted-circRNA was obtained from the 

Circbank database (http://www.circbank.cn/index.html). 

Cytoscape served to construct the lncRNA-miRNA-

circRNA ceRNA network for kidney renal clear cell 

carcinoma (KIRC). The transcription factors (TF) of 

RRM2 was analyzed through an online database 

(http://dbtoolkit.cistrome.org/), and the co-expression 

analysis for TF and RRM2 was performed through R 

package "Limma", “reshape2”, “ggpubr”, and “ggExtra” 

under corFilter > 0.2 and p-valueFilter <0.05. Using the 

SangerBox tools (http://www.sangerbox.com/tool), 

correlations between RRM2 expression and the m1A, 

m5C, m6A-related genes, and mismatch repair (MMR) 

genes were obtained. Moreover, the correlation analysis 

of RRM2, RNA stemness score (RNAss), and DNA 

stemness score (DNAss) was performed through R-

package “Limma” and “corrplot”. 

 

RRM2-associated biological functions and immune 

signatures 

 

To explore the RRM2-associated pathways, we 

performed Spearman’s correlation analysis for RRM2 

expression and used Gene Set Enrichment Analysis to 

analyze the RRM2-associated biological functions. The 

C2 curated gene sets were downloaded from the 

Molecular Signatures Database (MSigDB). A gene 

ontology (GO) analysis was performed based on the 

false discovery rate (FDR) < 0.05 in more than 10 types 

of cancers. Kyoto encyclopedia of genes and genomes 

(KEGG) pathway analysis was performed based on 

FDR < 0.05 in more than three types of cancers. 

Average correlations between RRM2 and functional 

status in different cancers at single-cell resolution  

were performed through the CancerSEA database 

(http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) [24]. 

Stromal and immune cell scores were calculated by R 

package “estimate” and “Limma” [25]. Immune subtype 
analysis was performed utilizing R package “Limma”, 

“ggplot2”, and “reshape2”. Based on the Cell-type 

Identification by Estimating Relative Subsets of RNA 

https://xena.ucsc.edu/
http://ualcan.path.uab.edu/analysis-prot.html
https://www.cbioportal.org/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://ualcan.path.uab.edu/
https://ngdc.cncb.ac.cn/ewas/datahub/index
https://starbase.sysu.edu.cn/panCancer.php
http://www.circbank.cn/index.html
http://dbtoolkit.cistrome.org/
http://www.sangerbox.com/tool
http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp
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Transcripts (CIBERSORT) method, the relative 

proportion of immune cell infiltrations in 33 types of 

cancers was evaluated [26]. 

 

Identification of RRM2-related genes in different 

cluster subgroups 

 

Based on the Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING) website 

(https://string-db.org/), a total of 50 RRM2-related 

proteins, supported by experimental evidence (low 

confidence [0.150]), were obtained. Also, the top 100 

RRM2-correlated genes were obtained from the Gene 

Expression Profiling Interactive Analysis (GEPIA2) 

website. An intersection analysis was performed for the 

above two groups of RRM2-related genes. Correlation 

analysis between RRM2-related genes was performed 

by R-package “corrplot.” Next, the consensus cluster 

analysis, to classify the tumor samples into separate 

clusters built-in the expression profiles of RRM2-

related genes in the KIRC TCGA datasets, was 

performed using the R package “ConsensusClusterPlus” 

[27]. The overall survival (OS) was calculated on the 

basis of the Kaplan-Meier method. R package Gene Set 

Enrichment Analysis “gsva” was used to find the 

KEGG enrichment score of the pathways [28]. Based on 

the R package “princomp”, principal component 

analysis (PCA) was carried out to validate the molecular 

subtype. The investigation on the immune infiltration 

landscape was performed based on the single-sample 

ssGSEA. 

 

Establishment of the risk score and evaluation of its 

clinical predicting ability 

 

The differentially expressed genes (DEGs) were 

screened from different cluster subgroups using the R 

package “Limma”, and the prognostic DEGs were then 

selected for PCA. The following formula was utilized to 

establish the risk score = Σ(PC1i + PC2i), where “i” was 

the expression levels of the prognostic DEGs [29]. 

Kaplan-Meier curves, Sankey diagram, KEGG analysis, 

and the infiltration of the immune cells were performed 

by utilizing the R package “Limma”, “gsva”, and 

“ssGSEA”. The correlation analysis between the risk 

scores obtained for the expression of genes related to 

immune checkpoints, such as programmed cell death 

protein (PD)-1, cytotoxic T-lymphocyte antigen-4 

(CTLA-4), programmed cell death ligand 1 (PD-L1), 

programmed cell death ligand 2 (PD-L2), lymphocyte 

activation gene-3 (LAG-3), T cell immunoglobulin  

and mucin domain-3 (TIM-3), T cell immunoreceptor 

with Ig and ITIM domains (TIGIT), and CD47,  
was done through R package “Limma.” The Tracking  

of Indels by Decomposition (TIDE) database 

(http://tide.dfci.harvard.edu/) was utilized for exploring 

the effect of RRM2 expression on immune dysfunction 

and immune exclusion [30]. Also, the effect of RRM2 

expression on immune inhibitors was analyzed based on 

the SangerBox tool (http://www.sangerbox.com/tool). 

Based on the TCGA clinical data, the expression levels 

of the RRM2 gene were analyzed by the treatment 

outcome of different cancer patients. Correlation 

between The Genomics of Drug Sensitivity in Cancer 

(GDSC) and RRM2-related genes was performed 

through the GSCALite database. The co-expression of 

RRM2 and the gene of resistance of immunotherapy-

related signal pathway was performed based on the R 

package “Limma.” The heatmap was constructed based 

on the R package “reshape2” and “RColorBrewer.” 

Then, the liver hepatocellular carcinoma (LIHC) 

samples were subjected to “pathview” R package (p-

value < 0.05) for the construction of pathway maps for 

PI3K-AKT signal pathway (hsa04151). 

 

Statistical analysis 

 

In this study, the statistical operation and visualization 

were performed by utilizing the R 4.1.1 software. Based 

on the recommended methods, the statistical analysis 

for various data was performed based on different 

packages. Last but not the least, all tests were bilateral, 

and statistical significance was defined as P<0.05. 
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ACC: Adrenocortical carcinoma; BLCA: Bladder 

cancer; BRCA: Breast invasive carcinoma; CHOL: 

Cholangiocarcinoma; COAD: Colon adenocarcinoma; 

ESCA: Esophageal carcinoma; GBM: Esophageal 

carcinoma; NSC: Head and neck squamous cell 

carcinoma; KIRP: Kidney renal papillary cell carcinoma; 

KIRC: Kidney renal clear cell carcinoma; LUAD:  

Lung adenocarcinoma; LIHC: Liver hepatocellular 

carcinoma; LUSC: Lung squamous cell carcinoma; 

PRAD: Prostate adenocarcinoma; READ: Rectum 

adenocarcinoma; STAD: Stomach adenocarcinoma; 

THCA: Thyroid carcinoma; UCEC: Uterine Corpus 

Endometrial Carcinoma; CESC: Cervical squamous cell 

carcinoma and endocervical adenocarcinoma; PCPG: 

Pheochromocytoma and Paraganglioma; DLBC: 

Lymphoid neoplasm diffuse large B-cell lymphoma; 

LGG: Brain lower-grade glioma; OV: Ovarian serous 

cystadenocarcinoma; UCS: Uterine Carcinosarcoma; 

SARC: Sarcoma; SKCM: Skin cutaneous melanoma; 

THYM: Thymoma; TGCT: Testicular germ cell tumors; 

KICH: Kidney Chromophobe; PAAD: Pancreatic 

adenocarcinoma; RRM2: ribonucleoside diphosphate 

reductase subunit M2; RNR: Ribonucleotide reductase; 

OS: Overall survival; DFS: Disease-free survival; PFI: 

Progression-free interval; PD-1:programmed cell death 

protein-1; CTLA-4: cytotoxic T-lymphocyte antigen-4; 

https://string-db.org/
http://tide.dfci.harvard.edu/
http://www.sangerbox.com/tool


www.aging-us.com 7902 AGING 

PD-L1: programmed cell death ligand 1; PD-L2: 

programmed cell death ligand 2; LAG-3: lymphocyte 

activation gene-3; TIM-3: T cell immunoglobulin and 

mucin domain-3; TIGIT: T cell immunoreceptor with Ig 

and ITIM domains. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. (A) The overall study flowchart. (B) The mutated site of RRM2 is depicted in the schematic diagram of the protein 
structure or the three-dimensional (3D) structure. 

 


