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INTRODUCTION 
 

The LMNA locus is complex, with variations in 

polyadenylation and splicing leading to the generation 

of all A-type lamins, which are linked to myriad nuclear 

structural roles and functional properties [1–3]. B-type 

lamins are encoded by other loci and have been 

attributed overlapping functions. A-type lamins have 

received the bulk of the attention, however, since 

mutations at this locus have been linked to a variety of 

dystrophic and progeroid syndromes [1–3]. The purpose 

of this review is not to provide a thorough overview of 

A-type lamin functions and their disease connections, 

but rather to evaluate one hypothesis: that altered 

processing of lamin A due to a reduction in Zmpste24 

(aka FACE1) with age promotes aspects of the normal 

aging process. Several reviews have been cited herein 

for readers interested in broader questions around A-

type lamin function and dysfunction. 

 

Transcription of the LMNA gene produces mRNAs 

primarily for two proteins: prelamin A and lamin C. 

Prelamin A undergoes 4 post-translational steps to 

create mature lamin A for which the endoprotease, 

Zmpste24, is essential [4–7]. The prelamin A protein 

contains a CAAX (Cysteine-Alipathic-Alipathic-any 

amino acid) box at its C-terminal end (see [8, 9] for 

review). In humans and mice, the CAAX box of 

prelamin A is CSIM. The first step is farnesylation of 

cysteine, which is followed by cleavage of the terminal 

3 amino acids by Zmpste24 or Rce1. The third step is 
carboxymethylation of the same cysteine. Zmpste24 is 

then the only known protease that can delete an 

additional 15 amino acids to form mature lamin A 
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ABSTRACT 
 

Almost since the discovery that mutations in the LMNA gene, encoding the nuclear structure components lamin 
A and C, lead to Hutchinson-Gilford progeria syndrome, people have speculated that lamins may have a role in 
normal aging. The most common HPGS mutation creates a splice variant of lamin A, progerin, which promotes 
accelerated aging pathology. While some evidence exists that progerin accumulates with normal aging, an 
increasing body of work indicates that prelamin A, a precursor of lamin A prior to C-terminal proteolytic 
processing, accumulates with age and may be a driver of normal aging. Prelamin A shares properties with 
progerin and is also linked to a rare progeroid disease, restrictive dermopathy. Here, we describe mechanisms 
underlying changes in prelamin A with aging and lay out the case that this unprocessed protein impacts 
normative aging. This is important since intervention strategies can be developed to modify this pathway as a 
means to extend healthspan and lifespan. 
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Table 1. Phenotypes associated with prelamin a expression that are associated with aging and/or progerin 
expression. 

Phenotype associated with prelamin a expression Aging Progerin expression Reference(s) 

Autophagy Defects ✔ ✔ [27, 125] 

Cellular Senescence ✔ ✔ [10, 125–127] 

DNA Damage ✔ ✔ [21, 67, 125, 128] 

Dysmorphic Nuclei  ✔ [10, 126, 129, 130] 

Epigenetic Dysregulation ✔ ✔ [131] 

Heterochromatin Alterations ✔ ✔ [30, 56, 110] 

 

protein. If there is an imbalance with insufficient 

Zmpste24 to process all of the prelamin A, prelamin A 

accumulates in the nucleus [10]. 

 

The mutation most associated with Hutchinson-Gilford 

progeria syndrome is a non-coding single amino acid 

substitution that activates a rarely used splice site in the 

C-terminus of the protein. This interferes with C-

terminal cleavage of lamin A by Zmpste24 resulting in 

a permanently farnesylated lamin A, termed progerin, 

which acts in a dominant fashion to promote a range of 

accelerated aging phenotypes comprising Hutchinson 

Gilford progeria syndrome (HGPS) [2, 3]. Much debate 

has centered on whether progerin, which is generated at 

low levels in absence of HGPS mutations, contributes to 

normal aging [11–14]. Progerin expression has been 

observed at very low levels in normal cells and may 

accumulate with age, although the latter assertion has 

been hard to verify [15–17]. 

 

The toxic effects of nuclear prelamin A are similar to 

that of progerin and resemble aspects of premature 

aging, but with a slower onset than progerin [18, 19]. 

Here, we present evidence supporting the hypothesis 

that declining levels of Zmpste24 with age contribute 

to an elevated level of prelamin A and it may be this 

lamin A variant that drives aspects of normal aging 

pathology. 

 

Zmpste24 and accelerated aging 
 

In both human patients and animal models, mutations 

leading to the expression of progerin cause a segmental 

progeria syndrome in which a subset of features of 

accelerated aging are present [11, 20]. This is also the 

case for mice lacking ZMPSTE24−/−, which survive 

about 5 months of age [6] and show both molecular and 

physiologic features of accelerated aging. These include 

genome instability [21], age-related bone loss [18], 

oxidative damage [22], cell senescence [19], altered 

epigenetic patterns [23], similarities in skeletal muscle 

decline [24], reduced adult stem cell function [25, 26], 

and altered age-related cell signaling pathways [27, 28]. 

Many of these phenotypes are described in more detail 

below (Table 1). Patients with the laminopathy, 

restrictive dermopathy (RD), have mutations in either 

ZMPSTE24 or LMNA, the latter associated with altered 

processing and the accumulation of prelamin A [4, 29]. 

RD has some phenotypes of accelerated aging; 

however, the condition is often very early onset and 

severe, making comparison with normal aging more 

challenging. 

 

Evidence for reduced expression of zmpste24 

during aging – in vitro studies 

 

Much of the current data supporting a decline in 

Zmpste24 protein levels during the aging process comes 

from analysis of cells ex vivo. Here, we summarize that 

data while emphasizing the need for in vivo studies in 

mice and human tissue samples. Figure 1 details the 

regulatory events that dictate Zmpste24 levels and 

activity during aging. 

 

Skin fibroblasts of centenarians 

 

A study of skin fibroblasts collected from young (8–35) 

and older (65–80) individuals, as well as centenarians 

(95–105) was performed and, after 6 passages in 

culture, the cells were assayed for aging properties [30]. 

Evident in cells from centenarians (over 100), but not 

65–80 year old individuals, is reduced mRNA and 

protein levels of Zmpste24 and an accompanying 

increase in unprocessed lamin A. One challenge of 

studying centenarians is that the control group, people 

from the same generation who did not age well, are not 

around from which to collect material. Thus, when 

changes are observed such as those described above, 

two potential explanations are possible. First, it may be 

that ZMPSTE24 expression declines with age, implying 

that this is a property of normal aging. Since levels are 

not reduced in the 65–80 year old group, this would 

presumably be a late event in aging. Second, it is 

possible that centenarians have low levels throughout 

life and that this serves some protective role. We favor 

the former, given that other evidence indicates that 
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Zmpste24 levels decline with age, as discussed below, 

but clearly more studies need to be performed.  

 

Fetal lung fibroblasts 

 

Human primary fibroblasts derived from fetal lung are 

often used for cell senescence studies. These cells will 

undergo senescence after prolonged serial passaging, or 

in response to a range of other induction methods. The 

level to which in vitro replicative senescence resembles 

aspects of normal physiologic aging remains debated 

[31]; however, recent studies indicate that in vivo cell 

senescence is a significant driver of aging in large part 

because of their unique secretory profiles termed the 

Senescence Associated Secretory Profile (SASP) [32]. 

One report has indicated that ZMPSTE24 (FACE-1) 
mRNA levels decline during cell senescence induced 

through serial passaging in these cells [33]. This finding 

is intriguing and although correlative, the decrease of 

Zmpste24 protein and resulting increase in prelamin A 

indicate cause and effect, but studies should be repeated 

in other primary fibroblast isolates and also when 

senescence is induced through other methods. 

 

Mesenchymal stem cells 

 

Mesenchymal stem cells (MSCs), which can be isolated 

from bone marrow, adipose and other tissues, are multi-

potent, giving rise to cells in a range of tissues. These 

include bone, adipose, smooth muscle, cardiomyocytes, 

 

 
 

Figure 1. Prelamin a regulation in normal aging. Levels and activity of Zmpste24 are regulated in several ways related to aging. 

Reduced enzymatic activity is proposed to lead to increased levels of prelamin A and consequent aging phenotypes. These pathways are 
described throughout the text. 
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and other tissues that overlap significantly with those 

affected in laminopathies, making them interesting cells 

to study in this context. In addition, expression of 

progerin alters the differentiation properties of MSCs  

in vitro, impairing adipose differentiation. This is 

intriguing given that loss of adipose tissue is a hallmark 

of many laminopathies [34–36]. Also intriguing is that 

overexpression of wild-type lamin A conferred similar 

phenotypes to that of progerin, although to a lesser 

extent. One potential reason for this is that in the 

context of overexpression, the amount of lamin A 

produced may outpace the ability of Zmpste24 to confer 

processing, leading to elevated prelamin A. However, it 

cannot be ruled out that excess mature lamin A may 

disrupt nuclear functions through other mechanisms. 

 

Enforced overexpression of prelamin A in human MSCs 

has also been reported to lead to elevated levels of 

proteins associated with osteogenesis [37]. This is 

surprising since ZMPSTE24−/− mice have higher levels 

of adipogenesis [18, 38] and osteoporosis [39]. 

Moreover, cells in aging bone marrow are thought to 

skew toward adipogenesis and away from osteogenesis 

[40, 41]. One clue to explain this apparent discrepancy 

may come from observations that older wild-type mice 

were found to have low levels of mature lamin A/C in 

osteoblasts [38], which could be an indirect 

consequence of loss of ZMPSTE24, at least with regard 

to mature lamin A. Knockdown of Lamin A/C was 

associated with increased adipogenesis [38]. Low levels 

of mature lamin A may counteract the effects of 

increased osteogenic factors observed in prelamin A 

overexpression. The MSCs are not immortal in culture 

and undergo replicative senescence. As with fibroblasts, 

senescence in these cells is associated with down-

regulation of ZMPSTE24 and nuclear accumulation of 

prelamin A [42]. The mechanism involves upregulation 

of the microRNA miR-141-3p, which targets the 3′ 

UTR of ZMPSTE24, leading to reduced expression. 

Enforced expression of miR-141-3p induced senescence 

in cultured MSCs and injection of the microRNA in 

mice led to decreased liver expression of ZMPSTE24. 

The activity of HDAC1 and HDAC2 declines during 

replicative senescence and decreases the expression of 

ZMPSTE24 by upregulating miR-141-3p [42]. Increased 

prelamin A expression has also been proposed as a 

senescence marker to screen MSCs in vitro before 

clinical application [43]. These findings reinforce the 

studies in fibroblasts that reduced expression of 

ZMPSTE24 is associated with cell senescence and call 

for a wider analysis of the microRNA in tissues from 

aging animals. 

 
A more recent paper found reduced Zmpste24 levels 

and prelamin A accumulation during cell senescence  

in subchondral bone mesenchymal stem cells [44]. 

Enforced expression of prelamin A in these cells 

accelerated senescence, which was associated with 

DNA damage, including at telomeres, and increased 

expression of inflammatory factors. Interestingly, the 

accelerated senescence phenotype could be suppressed 

by vitamin C, which also reduced inflammatory factors. 

 

Endothelial cells 

 

Premature senescence in primary human epithelial cells 

isolated from human umbilical vein or cord blood, can 

also be induced by elevated levels of prelamin A, this 

time induced by exposure of cells to protease inhibitors 

that inhibit activity of Zmpste24 [45], which evokes a 

similar phenotype in human bone marrow-derived 

MSCs [46]. Interestingly, this phenomenon was 

observed in both precursor and mature endothelial cells. 

 

Vascular smooth muscle cells 

 

The Shanahan lab found that nuclear accumulation of 

prelamin A in VSMC of arterial media with age and  

in vitro was correlated with the down regulation of 

ZMPSTE24 (See Figure 1 in [47]). These effects 

occurred both in vitro and in cells from old individuals 

processed ex vivo. The decline of ZMPSTE24 and the 

increase in nuclear prelamin A occurred before cellular 

senescence. The presenescent phase in VSMC included 

modification of migrational characteristics [48] and 

calcification due to increased levels of the osteogenic 

markers Runx2, ALP, and osteocalcin resulting 

primarily from greater DNA damage [49]. SASP factors 

were secreted by VSMC with higher levels of prelamin 

A. This finding is consistent with an early study that 

protease inhibitors that impair Zmpste24 function lead 

to premature senescence in VSMC [50]. 

 

The importance of the role of VSMC in atherosclerosis 

is increased by the report that VSMC may 

transdifferentiate into macrophage-like cells when 

proliferating into plaque in the intima in response to 

arterial damage or stress [51]. VSMC contribute with 

macrophages to foam cells in lesions in arteries [51, 

52]. Prelamin A may have a role in these events. When 

endothelial cells from human umbilical vein or cord 

blood were treated with the HIV protease inhibitor 

Atazanavir, which inhibits Zmpste24, the authors 

observed nuclear accumulation of prelamin A leading 

to irregularly shaped nuclei, premature cellular 

senescence, and an increase in monocyte adhesion. 

The complexity of atherosclerosis involves many 

factors in addition to prelamin A in VSMC, foam cells, 

and endothelial cells as described in many articles  
[45, 53, 54]. The review of the role of lamins in 

atherosclerosis by Jiang and Ji provides additional 

useful information [55]. 
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In vivo studies 
 

Pilot studies 

 

We have recently examined the levels of Zmpste24 in 

several tissues comparing mice of 9 and 22 months of 

age. While not definitive at this point, the studies 

strongly suggest age-associated changes in a tissue-

dependent manner and call for further studies to be 

performed. We have included them to support the 

overall hypothesis and stimulate further research. Four 

tissues were examined: brain, liver, heart and 

gastrocnemius (skeletal muscle) and results are shown 

in Figure 2. In both brain and liver, we detect a 

significant decline in Zmpste24 levels, although this 

was not detected in heart and skeletal muscle. This 

finding calls for studies across a wider age range and in 

more tissues, and the levels of Zmpste24 should be 

correlated with prelamin A. 

 

Aging mechanisms 
 

Cellular senescence 

 

Studies above indicate that declining Zmpste24 levels 

lead to senescent pathology in a variety of cellular 

contexts, raising the question of how this occurs at the 

mechanistic level. Several models have been proposed. 

Classical pathways associated with senescence involve 

the p53 and pRB-p16INK4A pathways. Activation of p53 

and expression of p16INK4A lead to cell cycle arrest and 

senescence, and ablation of these pathways allow cells 

to escape senescence and become immortalized. 

p16INK4A is induced in multiple contexts associated with 

enhanced prelamin A expression [42, 47, 49, 56, 57], as 

is induction of p53 [19, 58]. Notably, induction of 

p16INK4A is associated with all methods to induce 

senescence in cell culture and, therefore, it is not 

surprising in the prelamin A context. This raises the 

question of what is happening upstream of induction of 

these factors. 

 

Casein kinase 2 may be a factor linking prelamin A 

accumulation to cellular senescence. CK2 has long 

been known to be nuclear matrix-associated [59], but 

a recent paper shows more direct connections with 

lamin A, which binds to CK2 and inhibits its activity. 

Loss of lamin A expression leads to enhanced CK2 

activity, where prelamin A accumulation is 

associated with its inhibition [60], in turn leading to 

senescence induction [60–62]. Down-regulation of 

CK2 is also associated with accelerated aging and 

oxidative stress in C. elegans [63]. Interestingly, the 

pro-longevity compound spermidine, which has been 

reported to activate CK2, was found to suppress 

cellular senescence in ZMPSTE24−/− MEFs and to 

extend the lifespan of the mice from which the cells 

were derived [60]. 

 

Another pathway linking prelamin A to senescence 

involves p62, a component of the autophagic machinery 

that has been linked to the aging process [64]. Enhanced

 

 
 

Figure 2. ZMPSTE24 protein expression during murine aging. ZMPSTE24 protein levels were determined by Western blots from 

brain, liver, heart, gastrocnemius, and subcutaneous fat of young (9 months of age, n = 5) and old (22 months of age, n = 5) female mice. 
Relative ZMPSTE24 levels (normalized to GAPDH) were quantified by densitometry using ImageJ software (http://rsb.info.nih.gov/ij/). All 
bars represent mean ± SEM. The statistical significance of differences between two groups (as indicated with P values) was determined 
using unpaired, two-tailed Student’s t-test. The antibody used was a Rabbit polyclonal to ZMPSTE24 from Abcam; Catalog number ab38450. 

http://rsb.info.nih.gov/ij/
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autophagy, a process that involves the clearance of 

damaged cellular macromolecules and structures, has 

been implicated as a mechanism by which progerin, and 

more recently prelamin A, is degraded by mTOR 

inhibition (see below). In the context of exogenous 

progerin expression or reduced ZMPSTE24 expression 

in MSCs, DNA damage permits GATA4 to avoid p62 

binding and selective degradation [65, 66]. Stabilization 

of the transcription factor GATA4 leads to monocyte 

chemoattractant protein-1 (MCP-1 expression), induction 

of the senescence-associated secretory phenotype and 

paracrine senescence [65]. 

 

DNA damage 

 

One major candidate mechanism for the manner by 

which prelamin A promotes cellular senescence 

involves the induction of DNA damage. DNA damage, 

in multiple forms, or the induction of the DNA damage 

response have long been reported to induce cellular 

senescence. Several reports link expression of 

prelamin A to DNA damage [67], and some 

mechanistic studies have been conducted. For instance, 

cells from mice lacking ZMPSTE24 were reported 

early on to have elevated levels of DNA damage [21]. 

This phenotype has also been observed in fibroblasts 

from Restrictive Dermopathy patients, which have 

homozygous mutations in the enzyme [68]. In 

particular, the latter study was able to identify an 

increase in DNA double strand breaks [68], and both 

studies found defective DNA damage responses. A 

later study also reported increased DNA damage in 

smooth muscle cells expressing prelamin A [47]. 

Follow up studies in these cells point to a possible 

mechanism whereby lamin A/C is part of the DNA 

damage response and accumulation of prelamin A 

interferes with the normal role of the intermediate 

filament proteins [69]. 

 

DNA replication stress, in some respects a specialized 

form of replication stress, is not often considered. 

However, studies of replicative lifespan in yeast have 

indicated that a major driver of aging is DNA 

replication stress [70, 71]. Nuclear lamins have long 

been suspected to facilitate DNA replication [72], and 

recent studies have indicated that progerin or prelamin 

A can induce replication fork stalling, which leads to 

DNA breaks [73–75]. Interestingly, this leads to 

activation of the cGAS/STING cytosolic DNA sensing 

pathway and an interferon response [76]. This is 

perhaps consistent with increased inflammation 

associated with loss of ZMPSTE24 or expression of 

progerin, which has been previously reported [77]. 
Treatment of progerin expressing cells with calcitrol, an 

active version of vitamin D, reduces replication stress 

and the associated innate inflammatory response [78]. 

cGAS/STING signaling has been recently linked to 

cellular senescence and aging [79, 80], making this a 

pathway to explore in more detail in progeria and 

normal aging. 

 

Oxidative stress 

 

Links between oxidative stress and aging date back to 

the famous hypothesis by Denham Harman [81], 

although whether oxygen free radicals drive aging 

remains a matter of debate. While free radicals drive 

damage to a variety of cellular molecules, they also 

mediate critical signaling pathways, making it difficult 

to interpret their net effect on the aging process. 

Oxidative stress is also linked to a range of age-related 

diseases and can induce cellular senescence [82]. 

 

Increased oxidative stress is linked to reduced 

Zmpste24 activity [57, 83, 84], and overexpression of 

prelamin A in mesenchymal stem cells [85]. 

Interestingly, oxidative stress leads to reduced levels of 

Zmpste24 [47, 84, 86], possibly through upregulation of 

miR-141 [42]. This creates a possible feed-forward loop 

with oxidative damage that accumulates during aging 

leading to a reduction in Zmpste24 activity, which, in 

turn, results in more oxidative damage. More studies 

need to be performed in physiologic oxygen of 2 to 5% 

rather than in atmospheric oxygen conditions, in order 

to more closely resemble the in vivo environment. 

 

Sirtuins 

 

A-type lamins have been reported to interact with 

multiple Sirtuins, protein deacetylases linked to control 

of healthspan and lifespan [87]. With regard to SIRT1, 

lamin A binding leads to SIRT1 activation; however, 

the interaction is reduced in the presence of prelamin A, 

contributing to adult stem cell decline in ZMPSTE24−/− 

mice [88]. Lamin A also binds to and activates SIRT6, 

which leads to enhanced DNA repair. Again, this 

interaction is compromised at least in the presence of 

progerin (prelamin A was not reported). This may be 

particularly relevant as SIRT6 deficiency leads to a 

progeroid phenotype and overexpression of the 

deacetylase leads to lifespan extension [89, 90]. In 

culture, HGPS fibroblasts have reduced SIRT6 levels 

and restoration of its expression led to reduced 

senescence phenotypes [91]. Interestingly, SIRT6 is 

known to suppress LINE1 retrotransposon activation 

[92], which has been shown to mediate progression of 

cellular senescence both in SIRT6−/− and aging wild-

type mice in a manner involving cGAS/STING 

signaling (see DNA damage section) [93, 94]. SIRT7 
also represses LINE1 elements and interacts with lamin 

A, although whether prelamin A shows altered binding 

has not been reported [95]. 
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Autophagy and mTOR signaling 

 

The mTOR signaling pathway, of which regulation of 

autophagy is one major downstream pathway, is highly 

linked to aging [96, 97]. mTOR is a nutrient-responsive 

kinase that evidence indicates is aberrantly upregulated 

during aging. Reduced mTOR signaling, mediated 

genetically or with the highly specific drug rapamycin, 

extends lifespan in a wide range of model organisms. 

Evidence suggests that mTOR inhibition can also 

reverse aspects of aging in human studies [98, 99]. 

 

These findings make it obvious that mTOR signaling 

would be examined in progeria models. Initial studies in 

fibroblasts expressing progerin indicate that rapamycin 

can enhance autophagy, which is beneficial at least in 

part because it facilitates clearance of progerin itself 

[100, 101]. It was later shown to enhance cellular 

proliferation and reduce levels of cell senescence [102]. 

These studies have primarily focused on progerin, but a 

recent study indicates that expression of prelamin A 

confers similar phenotypes, and adds to previous 

observations by showing that the protein stimulates 

mTOR activation and impairs autophagy [27]. These 

findings suggest that more studies are needed to 

understand the role of mTOR in progeria and prelamin 

A-related normal aging. 

 

Nucleoplasmic reticulum 

 

When there is insufficient Zmpste24 to process 

prelamin A to the mature form, the nucleus may become 

dysmorphic [68, 103], display evaginations [104], or 

contain nucleoplasmic reticulum [105–107]. The term 

nucleoplasmic reticulum is applied to long, tubular 

channels that extend deep into the nucleoplasm or even 

pass entirely through the nucleus [107]. Some are short 

stubs while others are complex, branching structures. 

Some terminate at or near nucleoli. The nucleoplasmic 

reticulum is of particular interest here because it is 

formed during interphase by excess nuclear prelamin A, 

as demonstrated when Interphase prelamin A was 

experimentally produced by suppressing ZMPSTE24, 

either by siRNA or by application of an HIV protease 

inhibitor (PI) such as saquinavir [105, 106]. When 

saquinavir was removed from the media, processing 

resulted in mature lamin A and the number of 

nucleoplasmic reticulum invaginations was markedly 

reduced [106]. The role of nucleoplasmic reticulum 

formation in aging remains poorly understood and more 

studies are needed in aging organisms. 

 

Stepping back, there are also numerous studies linking 
progerin, and to a lesser extent prelamin A, expression 

to loss of heterochromatin. Links to progerin are 

thoroughly described in a recent review [108]. 

Regarding prelamin A, early studies linked prelamin A 

to loss of chromatin organization [109, 110]. More 

recently, studies of lamina-associated domains (LADs) 

in Zmpste24−/− mice indicate altered associations with 

transcription factors, including Foxa2 that are similar  

to those of old wild-type mice [111]. More studies  

are needed, but understanding the heterochromatin 

alterations associated with altered lamin A function 

remains a vital area of research. 

 

Other functions of zmpste24 

 

Given that loss-of-function mutations in ZMPSTE24 

give rise to phenotypes resembling those associated 

with LMNA mutations, many have assumed that the role 

of Zmpste24 is restricted to modifying processing of 

Lamin A; yet this may be too simple as other functions 

of Zmpste24 are known. For instance, other substrates 

of Zmpste24 have been identified, including proteins 

that are not prenylated, although the significance of 

these events remain largely unknown [112]. Notably, 

Zmpste24 assists in helping translocon pores in the 

endoplasmic reticulum function smoothly [113, 114]. 

Translocons can become clogged when proteins enter 

but fail to properly transverse the pore. Under these 

conditions, Zmpste24 cleaves clogged proteins into 

peptide fragments for clearance. This function may have 

roles in aging, where protein misfolding is increased. A 

recent study, however, found that ZMPSTE24 disease 

mutations all affected lamin A processing but only some 

mutants interfered with the ability of the enzyme to 

clear clogged proteins from the translocon [115]. 

 

Independently of its enzymatic functions, Zmpste24 

also interacts with the interferon-induced trans-

membrane protein (IFITM) family and facilitates the 

role of these proteins in blocking entry of enveloped 

RNA and DNA viruses [116, 117]. Zmpste24 appears to 

impair entry of a range of viruses, including influenza 

A, Zika and COVID-19 [118, 119]. As a result, mice 

lacking ZMPSTE24 have increased viral loads and show 

sensitivity to influenza infection. Whether reduced 

Zmpste24 levels with age contribute to the increased 

sensitively of older individuals to viruses remains to be 

determined. 

 

Questions to be addressed 

 

We propose the following: (1) A-type nuclear lamins 

are involved in normal aging as well as progeria and (2) 

it is prelamin A resulting from declining levels of 

Zmpste24 that drives aspects of normal aging more than 

expression of progerin. We have described a variety of 
supporting evidence; however, comprehensive studies 

remain to be performed to validate this approach. It is 

critical to address this question given the dramatic 
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increase in the aging population worldwide and the 

accompanying chronic diseases for which aging is the 

biggest risk factor. If the lamin A processing pathway 

can be validated as a driver of normal aging, a variety of 

new therapeutic approaches will be feasible to extend 

healthspan. Moreover, this may explain the longevity 

benefits associated with known interventions, including 

mTOR inhibitors and Sirtuin activators, among others. 

 

To validate this theory, more comprehensive studies are 

needed to confirm that Zmpste24 levels and activity 

decline with aging in animal models and humans and that 

this is associated with elevated prelamin A levels. These 

studies need to be performed under optimal conditions 

(for instance physiological oxygen levels for cell culture) 

and with the best possible reagents without which 

interpretation of results is more complicated. Antibodies 

specific for prelamin A include 3C8 [120] and PL-1C7 

[9]. Antibodies specific for Zmpste24 include PA1-16965 

[113], 205-8C10 (Daiichi Chemical), and ab38450 

(Abcam). We also note that many publications show 

prelamin A levels without accompanying levels of lamin 

A and/or without detection of a slower migrating 

prelamin A band. This precludes determination of ratios 

of different lamin A isoforms. It may be the ratio of 

prelamin A to mature A-type lamins that best define 

associated phenotypes and this should be measured in 

research studies, if at all possible. 

 

In mice, Zmpste24 and prelamin A levels should be 

carefully examined in multiple tissues of mice at a 

variety of ages. Ideally, a variety of associated factors 

should be analyzed, including levels of (1) other lamin 

isoforms, (2) microRNAs associated with A-type lamin 

and ZMPSTE24 expression, (3) senescence factors and 

(4) markers of the activity of related pathways such as 

mTOR. If, as expected, declines in Zmpste24 levels are 

observed, it may be worth engineering mice lacking the 

3′UTR sites for miR-141-3p and miR-335 binding in 

ZMPSTE24 [42]. Another genetically modified mouse 

model of interest would be engineered to overexpress 

ZMPSTE24 systemically or in a tissue-specific manner. 

The prediction would be that these mice would have 

improved healthspan and lifespan. 

 

Human studies are also needed, including further 

analysis of cells isolated from humans at different age 

ranges for the same parameters as those described for 

murine studies. In addition, muscle or skin biopsies 

should be tested from different age ranges. Muscle may 

be of particular importance since mTOR signaling is 

known to increase in this tissue with age [121]. Finally, 

human longevity intervention studies should consider 
examining the levels of prelamin A and Zmpste24 

whenever possible. Interventions could include 

microRNA therapeutics, for instance mimicking the 

effects of miR-9 to reduce LMNA expression [122, 123] 

or inhibiting miR-141-3p through antimiRs [42, 124], 

strategies to enhance degradation of prelamin A, for 

instance by driving autophagic clearance [101], or 

altering transcription levels of ZMPSTE24. The 

appropriate strategy will clearly await a better 

mechanistic understanding regarding the reasons 

Zmpste24 levels decline with age. 

 

Understanding the pathways that modulate the aging 

process is critical toward developing strategies to 

extend human healthspan, and to assist individuals with 

progeroid disorders. It has long been debated to what 

extent the mechanisms of aging and progeria overlap. 

Loss of Zmpste24 may be a connecting feature and, if 

correct, serve as a target for present and future longevity 

interventions. 
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