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INTRODUCTION 
 

“Brief” treatment in flies and mice 

 

In September 2022, provocative headlines declared: 

Brief exposure to rapamycin has the same anti-aging 

effects as lifelong treatment, shows study in fruit flies 

and mice. 

 

Other news announced: Less is more: early short-course 

rapamycin effective in sustained anti-aging effects. 

 

“We have found a way to circumvent the need for 

chronic, long-term rapamycin intake, so it could be 

more practical to apply in humans,” says Dr. Yu-Xuan 

Lu, a co-author of one of the papers. 

 

This seems exciting on the surface. However, according 

to these well-executed studies in mice and flies, 

rapamycin treatment should be started at birth (or 

shortly after birth) to be most effective [1–3]. So, it’s 

definitely too late for anyone capable of reading this 

article. Noteworthy, the “brief” treatment is not brief, it 

is an equivalent to 3–20 years of human life, as we will 

discuss. Furthermore, started at birth, rapamycin 

treatment severely inhibited developmental growth 

[2, 3]. 

 

What is remarkable though is that lifelong treatment with 

rapamycin was safe (no increase in mortality) and 

effective (an increase in longevity) in mice [2] and 

Drosophila [1, 2]. The results of these studies agree with 

the predictions of hyperfunction theory of mTOR-driven 

quasi-program of aging. According to hyperfunction 

theory, the quasi-program of aging is a purposeless, 

unintended continuation of the developmental growth 

program that was not switched off upon its completion 

[4–8]. As mentioned in 2006, “Once development is 

completed, a program for development is not switched 

off, thus becoming a quasi-program for aging. This 

hyper-functional quasi- program is manifested as diseases 

of aging, leading to damage and secondary decline.” [4]. 

By slowing developmental growth, the quasi-program of 

aging can be re-programmed for a slower pace. (Note: 
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quasi-program or pseudo-program is an undirected 

continuation of a program for something else, e.g., 

developmental growth [4]). 

 

Rapamycin treatment (for a duration of 30 days and 15 

days) started at day 3 after eclosion (the emergence of 

an adult fly from its pupal case) and increased lifespan 

as much as lifelong treatment did in Drosophila [1]. 

(Note: Given the short lifespan of Drosophila, this can 

be compared to treatment in humans for 15 years). In 

young adult mice, a 3-month treatment with rapamycin 

produced a long-lasting effect on the deceleration of 

intestinal pathology. The effect of rapamycin on 

lifespan in mice was not measured in this study [1]. 

 

In a complementary study, Aiello et al. [2] found that 

rapamycin treatment immediately after birth increased 

lifespan in Mus musculus (house mouse); the same 

treatment started later had no effect on lifespan [2]. In 

mice, the treatment with high doses of rapamycin, from 

birth to age 30 days, increased median lifespan by 9.6% 

[2]. The dose was high enough to almost completely 

block mouse growth. By day 30, rapamycin-treated 

mice were three times smaller than control mice [2]. 

Treatment from 30 to 60 days did not increase lifespan 

[2]. By day 30, control untreated mice reached nearly 

half the weight of adult mice and that would roughly 

correspond to the weight of a 10-year-old human. 

 

To literally translate this study to human infants, doses 

of rapamycin should be high enough to halt growth of 

the body and the organs. The growth-restricted 

treatment should last until children are at least 10 years 

old, an age when normal (untreated) children weigh half 

that of their adult weight. This is not an option for 

human longevity. 

 

As shown by Shindyapina et al. [3], rapamycin treatment 

for 45 days (from the birth to day 45) increased median 

lifespan of UMHET3 male mice by 11.8% [3]. 

Rapamycin slowed down mouse growth, decreased organ 

size (spleen, brain, kidney, liver), and delayed 

reproduction. Age-related diseases were delayed, and 

glucose and insulin tolerance tests were improved in the 

older ages [3]. The study by Shindyapina et al. [3] lacks a 

lifelong rapamycin-treatment group, so it’s difficult to 

determine whether transient (45 days) treatment at birth is 

as effective as lifelong treatment and late-life treatment. 

 

However, based on previous work, we already know 

that it is not. For example, as shown by Miller et al. [9], 

started at the age of 9 months, continuous rapamycin 

treatment (at the same dose of 42 ppm) leads to a 26% 

increase in median lifespan in females and 23% in 

males [9] in the same UMHET3 mice as used by 

Shindyapina et al. [3]. 

 

Middle- and late-life treatment extends lifespan in 

mice 

 

In numerous studies, rapamycin treatment started at 

various ages prolonged lifespan and healthspan in mice 

[9–43]. 

 

Rapamycin also extends lifespan when given late in life 

[10, 11, 34], even transiently for 6 weeks [10] and 3 

 

 
 

Figure 1. Critical time window for reprograming of aging by inhibiting developmental growth. (A) Treatment with rapamycin 
immediately after birth extended lifespan of normal mice. (B) Treatment with GH immediately after birth shortened lifespan of GH-
deficient mice. GH-deficient mice have low activity of mTORC1. A and B are mirror images showing the same phenomenon. 
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months [34]. Started at the age of 20 months, 

continuous everyday treatment with rapamycin 

prolonged lifespan as efficiently as the identical 

treatment started at the age of 9 months [11, 14]. 

Impressively, when started at the age of 20 months, 

transient (for 90 days) treatment with high-dose 

rapamycin was sufficient to increase life expectancy by 

60% [34]. Started at the age of 2 months, intermittent 

(every other two weeks) treatment with rapamycin 

prevented age-related growth, extended lifespan and 

delayed cancer [12, 13]. 

 

Growth inhibition decelerates aging in growth 

hormone-deficient mice 

 

The existence of an early-life time window that 

determines the rate of aging [1–3] is supported by 

previous studies in growth hormone (GH)-deficient 

mice (Figure 1). GH receptor (GHR) knockout mice and 

GH-deficient dwarf mice live 40–50% longer than 

normal mice [44, 45]. Developmental growth of these 

mice is inhibited, aging is slowed down and the 

development of age-related diseases is postponed. In 

contrast, knockout of GHR at 6 weeks of age (when 

developmental growth is mostly completed) does not 

increase lifespan [46]. This reveals a “critical 

developmental time window” (a period of robust 

growth) that “programs” the rate of aging. In agreement, 

GH exposure during this period shortens lifespan [47, 

48]. Started at age of 2 weeks, administration of GH for 

a period of 6 weeks accelerated body growth and 

reverses longevity caused by GH deficiency [47, 49]. 

 

Treatment with GH activates mTOR [50]. Importantly 

the activity of mTOR complex 1 (mTORC1) is low in 

GH-deficient mice [51–53]. Figuratively, GH/GHR-

deficiency is equivalent to rapamycin treatment 

(Figure 1). Both rapamycin-treated mice and GH-

deficient mice have low mTORC1 activity, grow poorly 

and live longer. Sun et al. suggests that “developmental 

programming of aging contributes to the developmental 

origins of adult disease” [47]. The hyperfunction theory 

suggests the same [4]. 

 

Hyperfunction theory of quasi-programmed aging 

 

According to hyperfunction theory, aging is not caused 

by accumulation of molecular damage [4–8]. Molecular 

damage accumulates, of course, but it is not life limiting 

[54]. It can become life-limiting only when artificially 

accelerated by knockdown of repair enzymes, for 

instance [54]. However, in natural organisms, molecular 

damage is not life-limiting in natural conditions [55]. 

Instead, life-limiting aging and its diseases are driven by 

hyperfunctional signaling pathways such as mTOR [4, 5]. 

 

The mTOR-driven program is antagonistically-

pleotropic; it is beneficial early in life by promoting 

robust growth at the cost of accelerated aging [56, 57]. 

mTOR activity is optimal for developmental growth but 

excessive (hyperfunctional) for longevity. 

Hyperfunctional signaling pathways such as mTOR and 

MAPK cause cellular hyperfunctions (e.g., SASP) and 

systemic hyperfunctions (e.g., hypertension, 

hyperlipidemia, hyperinsulinemia, hyperglycemia, 

cellular and organ hypertrophy, hypercoagulation, 

hyper/autoimmunity, etc), driving age-related diseases. 

All these result in organ damage and secondary 

functional decline, a most prominent feature of 

advanced aging. For example, hyperfunctions such as 

atherosclerosis, hypertension, hypercoagulation and 

heart hypertrophy may lead to myocardial infarction 

and secondary functional decline. Early-stage aging is 

purely hyperfunctional [4]. Noteworthy, hyperfunction 

is not necessarily an increase of function. In rare cases, 

it may be even a decrease, but the function is still higher 

than needed when growth is completed. In my favorite 

car analogy, 55 mph on the highway is not 

hyperfunction but 40 mph on the driveway is. Also, 

hyperfunctions in some systems coincide with 

secondary (caused by initial hyperfunctions) functional 

decline in other systems. 

 

 
 

Figure 2. Timing of rapamycin treatment in some animal studies. (A) Inhibition of growth during development. (B) Treatment in the 
earliest post-development. (C) Late-life treatment. Green: growth; Yellow: pre-diseases; Red: age-related diseases. 
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Cellular hyperfunctions drive age-related quasi-

programmed diseases that eventually kill any 

organisms, from worms to humans. [4, 58–68]. 

 

Two approaches to slow aging with rapamycin 

 

Despite similar conclusions that transient early-life 

treatment is sufficient for life extension, three studies 

present two distinct phenomena and thus, two 

approaches for life-extension (Figure 2). 

 

Approach A. Aging reprogramming (Figure 2): 

Inhibiting developmental growth, to slow mTOR-driven 

aging, which is a continuation of developmental growth. 

“A critical time window during developmental growth” 

agrees with the view that aging is quasi-programmed in 

development [56]. In studies by Aiello et al. [2] and by 

Shindyapina et al. [3], mice were treated in the phase of 

rapid growth, immediately after the birth, and 

rapamycin severely inhibited mouse growth. These 

studies revealed a “reprogramming window” during 

developmental growth [2, 3], in agreement with studies 

in GH-deficient mice [47–49]. Similarly, for life 

extension, Daphnia magna was treated with rapamycin 

during developmental growth, resulting in a smaller 

body size [3]. In a study by [2], Drosophila was 

exposed to rapamycin for 3 days during the juvenile 

growth phase (larva stage till pupal stage), suppressing 

its growth. The larva was treated before eclosion of the 

adult fly, and this extended lifespan of the adult fly. A 

similar approach of treating mice before birth has been 

suggested [56]. In conclusion, the rate of aging can be 

decelerated by using rapamycin during the early 

developmental growth phase. This has important 

theoretical significance but cannot be implemented in 

humans. 

 

Approach B (Figure 2): Directly inhibiting mTOR-

driven aging in post-development, to postpone age-

related diseases and their progression. Aging can be 

viewed as progression of all age-related quasi-

programmed diseases from subclinical to clinical 

presentation. Direct deceleration of aging in post-

development, by inhibiting the same pathways that 

drive growth in development. In the study by Juricic 

et al. [1], rapamycin extended lifespan in Drosophila 

treated in early adulthood (for 15 days) but was 

ineffective late in life, when survival was already 

decreased. This is consistent with the notion that 

rapamycin decelerates development of age-related 

diseases but cannot cure advanced diseases when organs 

are damaged already. Rapamycin is expected to be most 

effective to decrease hyperfunction at early stages of 

diseases, rather than treat terminal stages of diseases 

associated with loss of function [4]. In fact, early 

treatment with rapamycin reduced age-related gut 

pathologies in Drosophila and mice later in life [1]. 

 

However, numerous studies in mice show that late-life 

treatment extends lifespan. For example, when started at 

the age of 20 months, transient (for 90 days) treatment 

with high-dose rapamycin was sufficient to increase life 

expectancy by 60% [34]. The difference between 

Drosophila and mice may be explained by different 

causes of death, since mice do not die from intestinal 

diseases, mice die from cancer. Also, I suggest that late-

life treatment requires higher doses of rapamycin than 

does early-life treatment. I agree with Matt Kaeberlein 

 

 
 

Figure 3. Hypothetical rapamycin treatment in humans for maximal longevity. Started early in post-development (for example, at 

21 yo), low doses of rapamycin decelerate progression of pre-diseases (slow aging). Side effects are more undesirable at younger ages and 
doses should be low. Doses are gradually increased, to avoid rapamycin adaptation and to maximize therapeutic potential. 
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that rapamycin was used at suboptimal doses in most 

studies [69]. 

 

Clinical application 

 

In mice, rapamycin treatment during development 

severely inhibits growth and decreases the size of 

organs, including the brain [2, 3]. The treatment is not 

so brief (30 days [2] and 45 days [3]) in mice. During 

these 30–45 days, untreated mice reach more than half 

of their adult weight (humans reach this weight by 

approximately 10 years old or older). Such an anti-

aging treatment would be unacceptable in healthy 

children because of growth retardation. In children with 

renal transplant, rapamycin treatment for 12 months 

significantly decelerated growth [70]. Height growth 

velocity was decreased from 6.11 cm/year (control) to 

4.44 cm/year (rapamycin group) [70]. 

 

In humans, anti-aging treatment with rapamycin should 

be started when growth is completed, to directly inhibit 

aging, without affecting developmental growth. In post-

development, mTOR is hyperfunctional (higher than 

necessary), a perfect target for inhibition. 

 

On the other hand, studies by Aiello et al. [2], 

Shindyapina et al. [3] and Juricic et al. [1] emphasize 

the importance of early-life treatment. One may suggest 

that treatment with rapamycin should not be 

unnecessarily delayed if we want to extend lifespan 

reliably. 

 

Similarly, as suggested in 2006, “As an anti-aging drug, 

rapamycin prevents age-related diseases rather than cure 

complications of diseases. Rapamycin will prevent 

organ failure but not reverse it. … rapamycin will be 

most useful to slow down senescence and to prevent 

diseases” [4]. Treatment should be started early in life 

but not earlier than growth is completed (Figure 3). For 

example, rapamycin may be considered from the age of 

21–25 (just an example). This may seem at odds with 

the work showing rapamycin treatment started at the 

age of 20 months (old mice) was as effective as 

treatment started at the age of 9 months [11, 14]. 

However, this result should not be overgeneralized, as 

the result may depend on specific conditions, mouse 

strains and doses. In fact, this was challenged by 

additional experiments (rapamycin plus acarbose) by 

the same authors [43]. Also, adaptation to rapamycin 

may explain the result. I suggest that an early-onset 

treatment in post-development with low doses that 

would be gradually increased to maximal anti-aging 

doses by the age of 50 (an arbitrary age) would be most 
effective. Whether rapamycin should be taken at high 

intermittent doses (for example, 12 mg every other 

week) or chronically (for example, 0.5–1 mg every day) 

will be discussed in my forthcoming paper. Both 

regimes have cons and pros, but not those that are 

commonly assumed. 

 

Disclaimer 

 

This article is intended for a professional audience. This 

article does not represent medical advice or 

recommendations to patients. 
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