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ABSTRACT 
 

Breast cancer is one of the leading deaths in all kinds of malignancies; therefore, it is important for early 
detection. At the primary tumor site, tumor cells could take on mesenchymal properties, termed the epithelial-
to-mesenchymal transition (EMT). This process is partly regulated by members of the cadherin (CDH) family of 
genes, and it is an essential step in the formation of metastases. There has been a lot of study of the roles of 
some of the CDH family genes in cancer; however, a holistic approach examining the roles of distinct CDH family 
genes in the development of breast cancer remains largely unexplored. In the present study, we used a 
bioinformatics approach to examine expression profiles of CDH family genes using the Oncomine, Gene 
Expression Profiling Interactive Analysis 2 (GEPIA2), cBioPortal, MetaCore, and Tumor IMmune Estimation 
Resource (TIMER) platforms. We revealed that CDH1/2/4/11/12/13 messenger (m)RNA levels are 
overexpressed in breast cancer cells compared to normal cells and were correlated with poor prognoses  
in breast cancer patients’ distant metastasis-free survival. An enrichment analysis showed that high  
expressions of CDH1/2/4/11/12/13 were significantly correlated with cell adhesion, the extracellular matrix 
remodeling process, the EMT, WNT/beta-catenin, and interleukin-mediated immune responses. Collectively, 
CDH1/2/4/11/12/13 are thought to be potential biomarkers for breast cancer progression and metastasis. 

mailto:cvcsky@cmu.edu.tw
mailto:chihyang@tmu.edu.tw
https://creativecommons.org/licenses/by/3.0/
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www.aging-us.com 8499 AGING 

INTRODUCTION 
 

Breast cancer is one of the most common malignancies 

among women and the second leading cause of death 

after lung cancer [1, 2]. The prognosis of breast cancer 

is better with early detection and improved treatment. 

Because of the poor prognosis of advanced breast 

cancer, research on breast cancer has recently focused 

on precise detection of invasion and metastasis with 

accurate tumorigenic biomarkers [3–9]. Despite 

progress in developing diagnostic screening tools, 

distant metastases at the time of diagnosis indicates a 

worse prognosis with only 23% of patients surviving 5 

years post-diagnosis [10]. Therefore, novel research on 

genetic alterations and signal transduction pathways is 

playing important roles in both early breast cancer 

detection and treatment in advanced stages [11–13]. 

 

The cadherins (CDHs) are a superfamily of calcium-

dependent adhesion molecules which have functions in 

cell recognition, tissue morphogenesis, and tumor 

suppression [14, 15]. The CDH family consists of 23 

members, from CDH1 to CDH26, as documented in the 

GeneCards database [16]. Basic characteristics of the 

CDH gene family, including gene IDs and aliases, are 

presented in Table 1. Classic cadherins have mostly been 

thoroughly studied, including epithelial (E)-cadherin 

(CDH1), neural (N)-cadherin (CDH2), placental (P)-

cadherin (CDH3), and retinal (R)-cadherin (CDH4) [17]. 

 

It is widely accepted that the epithelial-to-mesenchymal 

transition (EMT) of epithelial cells results in strong cell-

cell adhesion and more invasive features [18]. The EMT 

is essential for this phenomenon and is considered a 

promoter of metastasis, and metastatic processes 

associated with mesenchymal features are similar 

among various cancers such as advanced breast cancer. 

The EMT has also received a lot of interest in cancer 

research and is thought to be an important step in 

metastases [19, 20]. As a result, finding new molecules 

that can inhibit this mechanism is an important subject 

of scientific study. A feature of the EMT is in part a 

result of downregulation of CDH1 and parallel 

upregulation of other cadherins like CDH2, which plays 

an essential role during early invasion and metastasis 

[21]. Loss of CDH1 alone might be insufficient to 

induce the EMT [22]. Instead, CDH1 expression was 

observed in invasive lobular carcinomas (ILCs) and 

invasive ductal carcinomas (IDCs) [23]. Other 

cadherins and molecules such as β-catenin, which forms 

an important membrane complex, are often detached 

from the cell membrane and are translocated to the 

nucleus to induce EMT signaling events [24–26]. 

 

Previous studies reported the roles of cadherins in breast 

cancer. However, interactions and pathways among all 

CDH family members and related molecules in 

tumorigenesis are still unclear, and challenges remain in 

discovering suitable biomarkers for precision treatment 

and detection.  

 

The present study is the first study to perform a 

bioinformatics analysis of the entire CDH family in 

patients with breast cancer by analyzing several large 

online databases. A flowchart depicting the investigative 

strategies we utilized in this study, including expression 

levels, clinical survival, and functional enrichment 

analyses, of CDH family members in breast cancer is 

presented in Figure 1. First, original data were retrieved 

from the Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC) and The Cancer 

Genome Atlas (TCGA) databases. Second, differential 

expression levels were analyzed using the Oncomine and 

Tumor Immune Estimation Resource (TIMER) databases. 

Third, Kaplan-Meier (KM) plots were utilized to reveal 

the significance of CDH family in the prognosis of breast 

cancer patients. Incorporating these results, we selected 

targeted genes due to higher expression levels and lower 

survival for further analysis. Then, the Cancer Cell Lines 

Encyclopedia (CCLE) and Gene Expression Profiling 

Interactive Analysis 2 (GEPIA2) databases were used to 

discover differences in expressions between breast cancer 

and normal tissues [27–31]. Afterwards, we used the 

MethSurv database to determine single CpG methylation 

expression patterns. In addition, we studied the gene 

potential thoroughly through a functional enrichment 

analysis and micro (mi)RNA-regulated networks, 

including biological processes (BPs), cellular components 

(CCs), molecular functions (MFs), signaling pathways, 

and potentially regulated miRNAs. Ultimately, we 

utilized the TIMER2.0 database to uncover correlations 

between CDH genes and immune cell markers in breast 

cancer. The flowchart is presented to offer insights into 

our comprehensive approach and possibly suggest a 

theoretical foundation for future research. 

 

MATERIALS AND METHODS 
 

Oncomine analysis 

 

Oncomine (https://www.oncomine.com/) is an online 

database established to show information of gene 

expressions in major cancers compared to their respective 

normal samples [32]. In this study, individual expression 

levels of CDH family members in various cancers were 

obtained from the Oncomine database with p<0.05 and 

fold change (FC) defined as 1.5 [33–37]. 

 

TIMER and GEPIA2 analyses 

 

The TIMER database was utilized to identify 

complements or regulatory factors that are upregulated 

https://www.oncomine.com/
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Table 1. Basic characteristics of the CDH gene family. 

Approved symbol HGNC ID Gene ID Aliases 
Location on 

chromosome 

CDH1 1748 999 Cadherin 1; Uvomorulin; CD324; UVO; Cadherin 1, Type 1, E-Cadherin (Epithelial) 16q22.1 

CDH2 1759 1000 Cadherin 2; CDHN; CD325; NCAD; Cadherin 2, Type 1, N-Cadherin (Neuronal) 18q12.1 

CDH3 1762 1001 Cadherin 3; CDHP; PCAD; Cadherin 3, Type 1, P-Cadherin (Placental) 16q22.1 

CDH4 1763 1002 Cadherin 4; R-Cadherin; Cadherin 4, Type 1, R-Cadherin (Retinal) 20q13.33 

CDH5 1764 1003 Cadherin 5; VE-Cadherin; CD144; 7B4 16q21 

CDH6 1765 1004 Cadherin 6; Cadherin 6, Type 2, K-Cadherin (Fetal Kidney) 5p13.3 

CDH7 1766 1005 Cadherin 7; Cadherin 7, Type 2; Cadherin-7; CDH7L1 18q22.1 

CDH8 1767 1006 Cadherin 8; Cadherin 8, Type 2; Cadherin-8; Nbla04261 16q21 

CDH9 1768 1007 Cadherin 9; Cadherin-9; Cadherin 9, Type 2 (T1-Cadherin) 5p14.1 

CDH10 1749 1008 Cadherin 10; Cadherin-10; T2-Cadherin; Cadherin 10, Type 2, (T2-Cadherin) 5p14.2-p14.1 

CDH11 1750 1009 Cadherin 11; CAD11; OB; Cadherin 11, Type 2, OB-Cadherin (Osteoblast) 16q21 

CDH12 1751 1010 Cadherin 12; Br-Cadherin; CDHB; Neural Type Cadherin 2 5p14.3 

CDH13 1753 1012 Cadherin 13; CDHH; T-Cadherin; H-Cadherin (Heart) 16q23.3 

CDH15 1754 1013 Cadherin 15; CDH 14; CDH3; Cadherin 15, Type 1, M-Cadherin (Myotubule) 16q24.3 

CDH16 1755 1014 Cadherin 16; Cadherin 16, KSP-Cadherin; Kidney-Specific Cadherin 16q22.1 

CDH17 1756 1015 Cadherin 17; HPT-1; Intestinal Peptide-Associated Transporter HPT-1 8q22.1 

CDH18 1757 1016 Cadherin 18; CDH14; Cadherin 18, Type 2 5p14.3 

CDH19 1758 28513 Cadherin 19; CDH7; Cadherin 19, Type 2 18q22.1 

CDH20 1760 28316 Cadherin 20; CDH7L3; Cdh7 18q21.33 

CDH22 13251 64405 Cadherin 22; DJ998H6.1; C20orf25 20q13.12 

CDH23 13733 64072 Cadherin 23; CDHR23; Cadherin-Related Family Member 23 10q22.1 

CDH24 14265 64403 Cadherin 24; CDHH11L; Cadherin 24, Type 2 14q11.2 

CDH26 15902 60437 Cadherin 26; VR20; Cadherin-Like Protein VR20 20q13.33 

 

or downregulated in tumor samples compared to normal 

tissues. To analyze differences in gene expressions of 

each CDH family member between breast cancer and 

normal tissues, differentially expressed genes (DEGs) in 

breast invasive carcinoma (BRCA) in TCGA dataset 

were identified via TIMER. The threshold |log2[FC]| 

was set to 1, and the value of q was 0.05. GEPIA2 

(http://gepia2.cancer-pku.cn/#index) is a web platform 

that contains RNA sequencing (RNA-Seq) expression 

data from 9736 tumors and 8587 normal samples from 

TCGA and GTEx projects [38]. An independent t-test 

was used to calculate p values, and p<0.05 was 

considered statistically significant; Pr(>F) < 0.05 was 

based on Student’s t-test [39–44]. 

 

KM plotter survival analysis 

 

The KM plotter (http://kmplot.com/analysis/) contains 

54,000 genes associated with survival in 21 types of 

cancer [45], including breast cancer samples (n=7830), 

which can be analyzed to examine the effects of CDH 

gene family members on survival times of patients with 

breast cancer. Results are presented by plotting the 

survival curve and hazard ratios (HRs) with 95% 

confidence intervals (CIs) and log-rank p values [46]. 

To assess the prognosis of breast cancer patients, distant 

metastasis-free survival (DMFS) was applied to 

evaluate the survival of advanced breast cancer patients. 

Genetic alterations and protein expression analysis 

 

The cBioPortal (http://www.cbioportal.org/) is an open 

platform providing large-scale visualization, analysis, 

and downloading of cancer genomic datasets for various 

types of cancer [47, 48]. Cancer genome profiles can be 

obtained by a portal query interface, allowing 

researchers to explore and compare genetic alterations 

across samples. This study used the cBioPortal to 

explore alterations, correlations, and networks of the 

CDH gene family. CDH family protein expressions were 

evaluated by the Human Protein Atlas (HPA) platform. 

HPA contains images of pathologic tissues labeled with 

antibodies in conjunction with 11,250 human proteins. 

Microarrays include sections from forty-six normal 

tissues and more than twenty types of human cancers 

[49–51]. This study used the HPA to obtain the 

intensities of labeled antibodies in pathologic malignant 

tissues. Bar charts represent the quantification of four 

classifications, “negative”, “weak”, “moderate”, and 

“strong”, of IHC staining intensities in breast cancer 

samples with different antibodies. 

 

Expression modules in breast cancer gene-expression 

analysis 
 

“Breast cancer gene-expression miner” (bc-

GenExMiner), which contains published annotated breast 

http://gepia2.cancer-pku.cn/#index
http://kmplot.com/analysis/
http://www.cbioportal.org/


www.aging-us.com 8501 AGING 

 
 

Figure 1. Flowchart of the study design and analytical steps in the present study. Gene data were retrieved from TCGA and 

METABRIC databases. To select targeted genes among the cadherin (CDH) family, we observed results of simultaneous higher expression 
levels in cancer cells than normal tissues and poorer prognoses in breast cancer patients. Afterwards, through four steps of a “differential 
expression analysis”, “survival analysis, protein levels, and DNA methylation”, “functional enrichment analysis”, and “tumor 
microenvironment”, a comprehensive analysis was conducted with the following databases and analytical methods. TCGA, The Cancer 
Genome Atlas; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; TIMER, Tumor IMmune Estimation Resource; 
CCLE, Cancer Cell Line Encyclopedia; GEPIA2, Gene Expression Profiling Interactive Analysis 2; KM, Kaplan-Meier; IHC, immunohistochemistry; 
BPs, biological processes; MFs, molecular functions; CCs, cellular components; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, 
Gene Set Enrichment Analysis; miRNA, micro-RNA. 
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cancer transcriptomic data (DNA microarrays [n=11,359] 

and RNA-Seq [n=4421]), is a breast cancer-associated 

web portal (http://bcgenex.ico.unicancer.fr) that conducts 

several differential gene expression analyses. We 

obtained data from Affymetrix® median probe data. To 

evaluate the difference in a gene’s expression among 

different groups, Welch’s test was used. Moreover, 

Dunnett-Tukey-Kramer’s test was used for two-by-two 

comparisons (allowing determination of the significance 

levels but not giving a precise p value) when there were 

more than three different groups and Welch’s p value was 

significant. Variant corresponding clinical or pathological 

data is contained in bc-GenExMiner version 4.5, which 

stresses that the Expression Module can be utilized for 

both exploratory and validation purposes [52]. 

 

Cancer cell line encyclopedia (CCLE) analysis 

 

Over 1100 cell lines among 37 cancer types  

are contained in the CCLE database 

(https://portals.broadinstitute.org/ccle). The CCLE 

dataset provides extensive genomic data, computational 

analyses, and visualization [53]. For the present study, we 

used the CCLE dataset to investigate messenger (m)RNA 

expression levels of CDH family members to further 

verify their participation in cancer cell lines [54–57]. 

 

DNA methylation analysis 

 

The MethSurv (https://biit.cs.ut.ee/methsurv/) database 

was utilized to determine single CpG methylation 

expression patterns and establish a heatmap of the 

different DNA methylated regions [58]. DNA 

methylation values are presented as beta values (ranging 

from 0 to 1). We used the formula of M / (M + U + 100) 

to calculate each single methylation of CpG, where  

M and U respectively represent methylated and 

unmethylated intensity values. 

 

Functional enrichment and miRNA-regulated 

network analyses 

 

The METABRIC and TCGA datasets in the cBioPortal 

database were accessed for functional enrichment 

analyses [59, 60]. There were two parts of the MetaCore 

analysis (https://portal.genego.com). The first part was 

to find overlapping genes coexpressed in the two 

datasets with Venny version 2.1. The second part was to 

uncover BPs, disease biomarker networks, breast 

neoplasm signaling pathways, and drug target networks 

[61–65]. Moreover, a gene ontology (GO) analysis was 

implemented to discover the functional significance of 

genes with BPs, MFs, CCs, and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) with p values of <0.05 

indicating statistical significance [66–70]. Next, we 

used the median expression of targeted genes and then 

performed a differential analysis with an algorithm in 

the “DESeq2” package in R/Bioconductor. After the 

differential analysis, results were utilized for the gene 

set enrichment analysis (GSEA) with the Hallmark 

database [71–73]. Then, we used the “fgsea” packages 

in R Studio software to evaluate enriched pathways in 

transcriptional data by the GSEA, and online platform 

(http://www.bioinformatics.com.cn/) and used “SRplot” 

for visualization (http://www.bioinformatics.com.cn/ 

srplot) [74, 75]. The level of statistical significance was 

presented via p values, and a normalized enrichment 

score (NES) reflected the rank of gene classes. In 

addition, the gene potential of the CDH family  

was conducted using the miRWalk database 

(http://mirwalk.umm.uni-heidelberg.de/) to investigate 

the regulatory potential of miRNAs and to analyze 

regulated pathways and networks by an Ingenuity 

Pathway Analysis (IPA) [76–79]. 

 

Cox regression analysis in TIMER 

 

The TIMER web server was accessed for a Cox 

regression analysis [80, 81]. We used the “Survival” 

module to explore the clinical significance of covariates in 

a multivariable Cox proportional hazard model. Clinical 

factors such as age, gender, ethnicity, and tumor stage and 

gene expression were covariates in the analysis. TIMER 

presents Cox regression results including hazard ratios 

(HRs) and statistical significance. For outputs of the Cox 

model, Surv(CancerType)~variables is the formula of the 

user-defined Cox regression model, which is fitted by the 

function coxph() from the R package ‘survival’. In the 

results, the coefficient reads as a regression coefficient. 

The 95% confidence intervals (CIs) are shown. 

 

Data availability 

 

The present study is based on open-source data. Users 

could download relevant data in public databases for 

research. 

 

RESULTS 
 

Differential expressions of CDH family members in 

breast cancer 

 

To understand differences in expressions between breast 

cancer and normal tissues, all 24 CDH family members 

were investigated in the Oncomine database (Figure 2A, 

2B). Findings of this database revealed that at  

the transcriptional level, CDH1/2/4/6/7/11/12/13/15/22/ 

23/24 were overexpressed in breast cancer samples 

compared to normal tissues, while transcriptional  
levels of CDH1/3/5/8/9/10/16/17/18/19/20/26/28 were 

downregulated compared to normal tissues. In addition, 

complement expressions were explored across TCGA 

http://bcgenex.ico.unicancer.fr/
https://portals.broadinstitute.org/ccle
https://biit.cs.ut.ee/methsurv/
https://portal.genego.com/
http://www.bioinformatics.com.cn/
http://www.bioinformatics.com.cn/srplot
http://www.bioinformatics.com.cn/srplot
http://mirwalk.umm.uni-heidelberg.de/
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Figure 2. mRNA transcription levels of cadherin (CDH) gene family members (ONCOMINE). A red background with numbers 

indicates studies including expression levels of CDH family members corresponding to our selection standards (with p values <0.05, fold 
changes of >1.5, and the expressed gene rank in the top 10% as selection thresholds) in cancer tissues; blue (the same selection threshold) in 
normal tissues. The number for the significant unique analyses means that the queried genes significantly differed in these studies. The 
number for the total unique analyses means the total number of queried genes in these studies. (A) mRNA transcription levels of 
CDH1/2/4/6/7/11/12 were overexpressed in breast cancer samples compared to normal tissues, while transcriptional levels of 
CDH1/3/4/5/6/9/10/12 were downregulated compared to normal tissues. (B) mRNA transcription levels of CDH13/15/22/23/24 were 
overexpressed in breast cancer samples compared to normal tissues, while transcriptional levels of CDH13/16/17/19/20/22/23/24/26/28 
were downregulated compared to normal tissues. Red indicates upregulation, and blue indicates downregulation compared to normal 
tissues. 
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Figure 3. Expression levels of cadherin (CDH) gene family members in breast invasive carcinoma (BRCA). (A) In the TIMER 
database, a box plot shows transcripts of CDH gene family members in normal and breast cancer tissues. The Wilcoxon test was used to 
determine statistical significance; * p<0.05, *** p<0.001. (B) Expression levels of CDH gene family members in breast cancer cell lines are 
represented by a heatmap (CCLE). We used data from the CCLE database to generate mRNA expression values, which were then ranked. In 
CCLE, red denotes overexpression (top column), and blue denotes under-expression (bottom column). 
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database via the TIMER database (Figure 3A). We 

investigated expression levels of CDH family members 

in breast cancer cell lines using the CCLE database as 

well (Figure 3B). Results revealed that expression levels 

were upregulated or downregulated in BRCA samples 

compared to non-tumor samples. Compared to normal 

tissues, expression levels of CDH2/3/4/5/6/7/8/10/11/12/ 

13/15/17/19/20/22/23/24/26 were significantly higher in 

BRCA tissues. In contrast, expression levels of CDH1/18 

were significantly lower in BRCA tissues. The molecular 

subtypes of cell lines are also shown in Supplementary 

Figure 1. CDH1 and CDH7 were highly expressed in 

luminal A cell lines; CDH5 was mostly expressed in 

human epidermal growth factor receptor-2 (HER2) cell 

lines; CDH2/3/4/6/11/12/13/15/18/19/22/23 showed high 

expressions in multiple triple-negative breast cancer cell 

lines; and other CDH genes showed no specific 

expressions in molecular subtypes of breast cancer cell 

lines. 

 

Prognostic analysis of the CDH family via Kaplan-

Meier analyses 

 

The impact of the entire CDH family on breast cancer 

survival was evaluated through the KM plotter database. 

Distant metastasis-free survival (DMFS) was analyzed 

due to its significance in clinical prognosis of advanced 

breast cancer. Results demonstrated that most CDH 

family genes were associated with the prognosis of 

BRCA patients including CDH1/2/3/4/5/7/9/10/11/12/ 

13/15/16/19/26 (Figure 4 and Table 2). High expression 

levels of CDH1 (HR=1.32, 95% CI=1.13~1.55, 

p=0.0058), CDH2 (HR=1.39, 95% CI=1.17~1.64, 

p=0.00012), CDH3 (HR=1.55, 95% CI=1.32~1.82, 

p=6.4e-8), CDH4 (HR=1.27, 95% CI=1.08~1.5, 

p=0.0036), CDH7 (HR=1.34, 95% CI=1.14~1.58, 

p=0.00048), CDH9 (HR=1.21, 95% CI=1.03~1.43, 

p=0.02), CDH10 (HR=1.34, 95% CI=1.13~1.58, 

p=0.00059), CDH11 (HR=1.42, 95% CI=1.04~1.96, 

p=0.028), CDH12 (HR=1.21, 95% CI=1.03~1.41, 

p=0.019), CDH13 (HR=1.31, 95% CI=1.12~1.54, 

p=0.00089), CDH15 (HR=1.22, 95% CI=1.03~1.44, 

p=0.023), CDH16 (HR=1.28, 95% CI=1.09~1.5, 

p=0.003), and CDH26 (HR=1.68, 95% CI=1.28~2.19, 

p=0.00012) were correlated with poorer DMFS in BRCA 

patients. On the other hand, high expressions of CDH5 

(HR=0.84, 95% CI=0.71~0.98, p=0.031) and CDH19 

(HR=0.71, 95% CI =0.54~0.92, p=0.01) were associated 

with a good prognosis in BRCA patients. Other family 

members in the CDH family showed negative results. 

 

A univariate Cox regression analysis was conducted to 

validate our results from clinical breast cancer patients, 
data of which were obtained from the TIMER database. 

The univariate Cox regression demonstrated that high 

levels of CDH13 were an independent risk factor for 

poor overall survival (OS) (Supplementary Table 1A) in 

breast cancer patients. In addition, subtypes of breast 

cancer, including luminal, HER2, and basal, were 

analyzed. The luminal subtype showed no significance 

among CDHs (Supplementary Table 1B). CDH12 was a 

significant risk factor for poor OS in the HER2 subtype 

(Supplementary Table 1C). CDH11 and CDH12 were 

significant risk factors for poor OS in the basal subtype 

(Supplementary Table 1D). 

 

To further understand correlations of expression levels of 

CDH family members in breast cancer, some clinical and 

pathological factors were analyzed in specific genes 

among the CDH family. Among all CDH family 

members, CDH1/2/3/4/7/9/10/11/12/13/15/16/26 were 

significantly positively associated with a lower DMFS 

(Figure 4), and CDH1/2/4/6/7/11/12/13/15/22/23/24 

mRNA expression levels were higher in breast cancer 

than in normal tissues in the Oncomine database  

(Figure 2A, 2B). Results demonstrated that the eight 

CDH1/2/4/7/11/12/13/15 genes simultaneously expressed 

significance in the gene database and clinical survival 

analysis. Therefore, in this study, these eight specific 

genes were further analyzed with an extensive database, 

clinical factors, and bioinformatics tools and were 

demonstrated to be potential biomarkers for breast cancer. 

 

Correlations of CDH1, CDH2, CDH4, CDH7, 
CDH11, CDH12, CDH13, and CDH15 expressions 

with prognosis and different clinical and pathological 

factors 

 

As CDH1/2/4/7/11/12/13/15 were positive in terms of 

both gene expressions and with the KM survival analysis, 

immunohistochemical (IHC) patterns from the HPA were 

utilized to validate clinical applications by pathology 

(Figure 5A, 5B). CDH1, CDH2, and CDH12 exhibited 

strong intensities in cell nuclei in breast cancer samples. 

Otherwise, other members of the CDH family showed 

negative or weak intensities in pathological samples. The 

relative staining intensities of CDH1 were negative (two 

cases), moderate (one case), and strong (eight cases) in 

breast cancer samples. CDH2 staining intensities were 

negative (nine cases), weak (three cases), and strong (one 

case) in breast cancer samples. CDH12 staining 

intensities were negative (one case), weak (three cases), 

moderate (one case), and strong (seven cases) in breast 

cancer samples. There was no IHC pattern for CDH4 

obtained from the HPA. Other staining intensities of 

CDH family members are shown in Figure 5A, 5B. CDH 

staining expressions, magnification in 4x, were displayed 

among CDH family except CDH13 and CDH15 due to 

negative intensities. 

 

Correlations of expression levels of CDH1/2/4/7/11/12/ 
13/15 with pathological stages of breast cancer are 
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shown in violin plots in Figure 6A. mRNA levels  

of  CDH1/11/13  were relatively high in breast cancer 
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without statistical significance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Kaplan-Meier (KM) analysis of cadherin (CDH) family genes in the distant metastasis-free survival (DMFS) of breast 
cancer patients. The hazard ratio (HR) represents a prognostic value of breast cancer patients. Log[rank p] was utilized to find out the level 

of prognostic significance of breast cancer patients. In addition, log[rank p] of <0.05 was considered a significant difference in the prognosis 
of breast cancer patients. High expressions of CDH1/2/3/4/5/7/9/10/11/12/13/15/16/19/26 were significant compared to low expressions, 
which are highlighted with p values in red boxes. The HRs of CDH1/2/3/4/7/9/10/11/12/13/15/16/26 were significantly higher, which are 
marked in yellow boxes, indicating poor prognostic outcomes in breast cancer. In contrast, the HRs of CDH5/19 were significantly lower, 
which were marked in blue boxes, indicating better prognostic outcomes in breast cancer. 
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Table 2. Kaplan-Meier analysis of CDH family genes in distant metastasis-free 
survival (DMFS) in breast cancer. 

Gene HR (95% CI) p value Gene HR (95% CI) p value 

CDH1 1.32 (1.13~1.55) 0.0058 CDH12 1.21 (1.03~1.41) 0.019 

CDH2 1.39 (1.17~1.64) 0.00012 CDH13 1.31 (1.12~1.54) 0.00089 

CDH3 1.55 (1.32~1.82) 6.4e-08 CDH15 1.22 (1.03~1.44) 0.023 

CDH4 1.27 (1.08~1.5) 0.0036 CDH16 1.28 (1.09~1.5) 0.003 

CDH5 0.84 (0.71~0.98) 0.031 CDH17 1.09 (0.93~1.27) 0.29 

CDH6 1.09 (0.94~1.28) 0.25 CDH18 1.15 (0.98~1.35) 0.08 

CDH7 1.34 (1.14~1.58) 0.00048 CDH19 0.71 (0.54~0.92) 0.01 

CDH8 0.82 (0.62~1.1) 0.18 CDH22 0.89 (0.75~1.06) 0.2 

CDH9 1.21 (1.03~1.43) 0.02 CDH23 0.78 (0.6~1.01) 0.063 

CDH10 1.34 (1.13~1.58) 0.00059 CDH24 1.14 (0.87~1.5) 0.34 

CDH11 1.42 (1.04~1.96) 0.028 CDH26 1.68 (1.28~2.19) 0.00012 

High expressions of CDH1/2/3/4/5/7/9/10/11/12/13/15/16/19/26 were significant 
compared to low expressions. 

 

Scarff-Bloom-Richardson (SBR) grading is a clinical 

prognostic predictor associated with cell proliferation and 

an indicator of the response to chemotherapy (Figure 

6B). A determination of an association between the SBR 

grade and responsiveness would be clinically useful [82]. 

SBR1 indicates good differentiation, SBR2 moderate 

differentiation, and SBR3 poor differentiation. Figure 

6B demonstrates that CDH1, CDH2, and CDH11 with 

the poorest prognoses were assigned to grade SBR3. 

 

The Nottingham prognostic index (NPI) is used to 

predict a prognosis after breast cancer surgery, and is 

calculated by three pathological factors: the tumor size, 

the number of involved lymph nodes, and the tumor 

grade (Figure 6C). Values are used to define three 

subsets of patients with different survival chances of 

breast cancer: 1) good prognosis, comprising 29% of 

patients with an 80% chance of 15-year survival; 2) 

moderate prognosis, 54% of patients with a 42% chance 

of 15-year survival; and 3) poor prognosis, 17% of 

patients with a 13% chance of 15-year survival [83]. The 

NPI can also be used to evaluate the effect of adjuvant 

treatment like chemotherapy or radiotherapy. Figure 6C 

demonstrates that only CDH1 expression was correlated 

with higher NPI values, indicating poor prognoses in 

patients with CDH1 gene expression. Otherwise, 

CDH11 and CDH13 expressions demonstrated lower 

NPI values with better prognoses. Other CDH family 

members showed no significance. 

 

Other clinical predictors were also analyzed in terms of 

CDH family gene expressions in breast cancer 
(Supplementary Figure 2 in Supplementary Materials). 

Estrogen receptor (ER)/progesterone receptor (PR)-

positive samples showed a high probability of positive 

effects of hormone therapy such as with tamoxifen. 

HER2 samples corresponded to positive effects of 

targeted therapy with trastuzumab. Subtypes of breast 

cancer including basal-like, HER2-E, luminal A, and 

luminal B were correlated with different pathological 

characteristics and clinical prognoses. Mutations of breast 

cancer gene-1 (BRCA1) and BRCA2 were also analyzed 

with respect to CDH family gene expressions, which 

represent breast cancer oncogenes (Supplementary Figure 

2D). Supplementary Figure 2A demonstrates that ER-

/PR- expressions were correlated with higher expressions 

of CDH2 and CDH11, indicating a poorer response to 

hormone therapy. Supplementary Figure 2B 

demonstrates that HER2-negative expression was found 

to be associated with CDH7 and CDH11, suggesting a 

poorer response to targeted therapy. Supplementary 

Figure 2C demonstrates relationships of different 

subtypes of breast invasive carcinoma with CDH family 

gene expressions. CDH1 was highly expressed by the 

HER2-E and luminal B types; CDH2 was highly 

expressed by the HER2-E type; CDH4 was highly 

expressed by the basal-like type; CDH7 and CDH11 

were highly expressed by the luminal A type; CDH12 

and CDH13 were highly expressed by the basal-like and 

luminal A types; and CDH15 expression was 

significantly associated with no types. 

 

Gene mutation analysis of CDH1/2/4/7/11/12/13/15 in 

breast cancer 

 

Genomic changes in the CDH family were analyzed via 

the cBioPortal database, which demonstrated changes in 
CDH1 (14%), CDH2 (6%), CDH4 (11%), CDH7 (5%), 

CDH11 (5%), CDH12 (7%), CDH13 (4%), and CDH15 

(4%) (Figure 7A). Our results of mutated gene 
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Figure 5. Protein expression levels of members of cadherin (CDH) family genes in all clinical breast cancer specimens from 
the Human Protein Atlas (HPA). (A) Images of immunohistochemistry (IHC) of CDH1/2/7/11 show their staining intensities. IHC images 

and patients’ information were obtained from the HPA. Normal and tumor samples are listed, and bar charts represent the quantification of 
IHC staining in breast cancer samples. There were strong intensities of CDH1 and CDH2 in breast cancer samples. (B) IHC images of 
CDH12/13/15 show their staining intensities. IHC images and patient information were obtained from the HPA. Normal and tumor samples 
are listed, and bar charts present quantification of IHC staining in breast cancer samples. There were strong intensities of CDH12 in breast 
cancer samples. 
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Figure 6. Expression of cadherin (CDH) family genes in subgroups of breast cancer patients. (A) Gene expression analysis among 

the stages of CDH genes in a breast cancer (GEPIA2) database. The violin plot displayed comparisons of CDH genes expressions from TCGA 
dataset of breast cancer. An independent t-test was utilized for p values; p<0.05 meant statistically significant; Pr(>F) <0.05 was based on 
Student’s t-test. (B) Scarff-Bloom-Richardson (SBR) grading of CDH family genes. Associations between CDH1/2/4/7/11/12/13/15 and SBR 
grading were analyzed via the bc-GenExMiner dataset. (C) The Nottingham prognostic index (NPI) of CDH family genes. Associations between 
CDH1/2/4/7/11/12/13/15 and NPI values were analyzed via the bc-GenExMiner dataset. 
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frequencies demonstrated that those of CDH1 and CDH4 

were >10%. Altered genes at higher frequencies affect 

signaling pathways and cellular processes and can induce 

tumorigenesis based on previous studies [84–86]. CDH1 

showed more gene alterations of truncating mutations 

and deep deletions, and low mRNA expression, while  

in contrast, CDH4 showed more amplifications and  

high mRNA expression. In the METABRIC dataset, 

CDH1 acted more like a TSG, and CDH4 acted like  

an oncogene in breast cancer. A previous study 

demonstrated that loss of E-cadherin was a key hallmark 

of ILCs [87]. In Giovanni et al. [86], CDH1 was one of 

the most recurrently mutated genes in breast cancer. In 

mixed ILC-IDC samples, genetic alterations of ILC 

tumors were found at a frequency of 14%. Mutations 

targeting CDH1 were mostly truncated mutations, and 

this result was similar to our mutation analysis. 

We also used Pearson’s correlations to calculate 

correlations between CDH family members based on 

mRNA expressions (Figure 7B). CDH11 was 

significantly positively correlated with CDH13. Other 

genes in the CDH family otherwise showed no relative 

correlations with each other (Figure 7B). In addition,  

a protein-protein interacting (PPI) network analysis  

of the CDH family was conducted via STRING  

at various transcription levels to investigate potential 

relationships. The STRING analysis revealed that 

linkages among CDH gene family members were 

complicated. Using a three-group k-means algorithm, 

it was found that the group consisting of CDH1, 

CDH13, and CDH15 had a close relationship, and 

CDH2, CDH4, and CDH11 comprised another related 

group. A third group consisted of CDH7 and CDH12 

(Figure 7C). 

 

 
 

Figure 7. Genomic alterations of differentially expressed cadherin 1 (CDH1)/2/4/7/11/12/13/15 genes in breast cancer.  
(A) The cBioPortal database was used to reveal levels of gene amplification, deep deletions, and associated nucleotide substitutions of the 
CDH1/2/4/7/11/12/13/15 genes in breast cancer progression in the METABRIC dataset. (B) Correlation plot of the CDH1/2/4/7/11/12/13/15 
genes in breast cancer (cBioPortal) database. Insignificant correlation values were displayed by crosses; p<0.01 was considered statistically 
significant. (C) Protein-protein interactions (PPIs) of CDH1/2/4/7/11/12/13/15 (STRING database). Highly interacting proteins were 
represented as hub protein nodes in the PPI network. 
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DNA methylation analysis of CDH1/2/4/11/12/13 in 

breast cancer 

 

We present a heatmap of DNA methylated locations of 

CDH1/2/4/11/12/13 in breast cancer in Supplementary 

Figure 3 in “Supplementary Materials”. In total, 18 

methylated CpG sites were determined for CDH1, with 

six CpG sites presenting high expressions. Among 

them, cg26508465 and cg09220040 showed the highest 

levels of DNA methylation. In total, 20 methylated CpG 

sites of CDH2 were determined with six CpG sites 

presenting high expressions. Among them, cg24776465 

showed the highest level of DNA methylation. In total, 

there were 26 methylated CpG sites of CDH11, with 19 

CpG sites presenting high expressions. Among them, 

cg02724025 showed the highest level of DNA 

methylation. Over half of the CpG sites of CDH11 

presented high levels of methylation and relevance to 

breast cancer. These results provide a potential 

mechanism by which CDH11 can serve as an oncogene 

for breast cancer. 

 

Regulated networks of CDH1/2/4/7/11/12/13/15 in 

breast cancer 

 

To understand how DEG lists are linked to downstream 

CDH-regulated networks in various biological pathways 

and diseases, an enrichment analysis was performed 

using MetaCore software. After uploading genes 

coexpressed with CDH1 from Metabric and TCGA 

databases into MetaCore, we found that numerous 

pathways and networks were related to cell cycle 

(Figure 8 and Supplementary Table 2 in Supplementary 

Materials) including “Immune response_B cell antigen 

receptor (BCR) pathway”, “Oxidative stress ROS-

induced cellular signaling”, “Development_negative 

regulation of WNT/Beta-catenin signaling in the 

cytoplasm”, and “Immune response_IFN-alpha/beta 

signaling via PI3K and NF-κB pathways”. 

 

Similar pathway analyses of CDH2, CDH4, CDH7, 

CDH11, CDH12, CDH13, and CDH15 are displayed in 

“Supplementary Materials” (Supplementary Figures 4–9 

and Supplementary Tables 3–9). Genes coexpressed with 

CDH2 were correlated with “Cell adhesion_ECM 

remodeling” and “Cytoskeleton remodeling_Regulation 

of actin cytoskeleton organization by the kinase effectors 

of Rho GTPases” (Supplementary Figure 4). Genes 

coexpressed with CDH4 were correlated with “Protein 

folding and maturation POMC processing”, “Beta-

catenin-dependent transcription regulation in colorectal 

cancer”, and “Cell adhesion_ECM remodeling” 

(Supplementary Figure 5). Genes coexpressed with 
CDH7 were correlated with “Cell cycle_Chromosome 

condensation in prometaphase” and “Cell cycle_ 

the metaphase checkpoint” (Supplementary Figure 6).  

Genes coexpressed with CDH11 were correlated with 

“Cell adhesion_ECM remodeling”, “IL-1 beta-and 

endothelin-1-included fibroblast/myofibroblast migration 

and extracellular matrix production in asthmatic 

airways”, and “Development regulation of epithelial to 

mesenchymal transition (EMT)” (Supplementary Figure 

7). Genes coexpressed with CDH12 were correlated  

with “Cytoskeleton remodeling_Regulation of actin 

cytoskeleton organization by the kinase effectors of Rho 

GTPases” and “Development negative regulation of 

WNT/Beta catenin signaling in the cytoplasm”. Genes 

coexpressed with CDH13 were correlated with 

“Development_Regulation of epithelial-to-mesenchymal 

transition (EMT)”, “Role of stellate cells in progression  
of pancreatic cancer”, and “Cell adhesion ECM 

remodeling” (Supplementary Figure 8). Genes 

coexpressed with CDH15 were correlated with 

“Transcription_HIF-1 targets”, “Oxidative stress_ROS-

induced cellular signaling”, and “Development_negative 

regulation of WNT/Beta catenin signaling in the 

cytoplasm”. In summary, genes coexpressed with 

CDH11 and CDH13 were both correlated with regulation 

of the EMT, while genes coexpressed with CDH2, 

CDH4, CDH11, and CDH13 were all correlated with cell 

adhesion. 

 

Comprehensive results of CDH1/2/4/11/12/13 in the 

functional enrichment analysis 

 

Gene ontology (GO) enrichment analysis 

For comprehensive analysis, we obtained data from the 

METABRIC and TCGA datasets to acquire GO 

enrichment results including BPs, CCs, MFs, and KEGG 

(Supplementary Figures 9A–14A in Supplementary 

Materials). The BP analysis demonstrated that CDH1 

was correlated with T-cell activation; the CC analysis 

showed correlations with cell-cell junctions and vacuolar 

membranes; MFs revealed significant relationships with 

phospholipid binding and actin binding, while KEGG 

ontology indicated the role of the mitogen-activated 

protein kinase (MAPK) signaling pathway and cytokine-

cytokine receptor interactions (Supplementary Figure 

9A). For CDH2, BPs demonstrated correlations with 

positive regulation of catabolic processes; the CC 

analysis showed correlations with mitochondrial matrix 

and cell-cell junctions; MFs revealed significant 

relationships with actin binding and protein 

serine/threonine kinase activity, while KEGG ontology 

indicated the role of the phosphatidylinositol 3-kinase 

(PI3K)-Akt signaling pathway (Supplementary Figure 

10A). For CDH4, BPs demonstrated correlations with 

proteasomal protein catabolic process; the CC analysis 

showed correlations with the mitochondrial inner 
membrane and mitochondrial matrix; MFs revealed 

significant relationships with actin binding and ion 

channel activity, while KEGG ontology indicated the 
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role of pathways of multiple neurodegenerative diseases 

(Supplementary Figure 11A). For CDH11, BPs 

demonstrated correlations with non-coding (nc)RNA 

metabolic processes; the CC analysis showed 

correlations with the mitochondrial inner membrane and 

mitochondrial matrix; MFs revealed significant relation-

ships with transcription coregulator activity and actin 

binding, while KEGG ontology indicated the role of 

pathways of multiple neurodegenerative diseases 

(Supplementary Figure 12A). For CDH12, BPs 

demonstrated correlations with positive regulation of 

catabolic processes; the CC analysis showed correlations 

with cell-cell junctions and the mitochondrial matrix; 

MFs revealed significant relationships with phospholipid 

binding and actin binding, while KEGG ontology 

indicated the role of pathways of multiple 

neurodegenerative diseases (Supplementary Figure 13A). 

For CDH13, BPs demonstrated correlations with positive 

regulation of catabolic processes; the CC analysis 

showed correlations with cell-cell junctions and the 

mitochondrial matrix; MFs revealed significant 

relationships with transcription coregulator activity, 

while KEGG ontology indicated the role of neuroactive 

ligand-receptor interactions (Supplementary Figure 14A). 

 

High expression levels of CDH2/4/11/12 were related 

to the epithelial-mesenchymal transition (EMT) in the 

GSEA analysis 

GSEA results indicated that the Hallmark pathway 

analysis of CDH1 was significantly associated with 

 

 
 

Figure 8. MetaCore enrichment pathway analysis of genes coexpressed with cadherin 1 (CDH1). The top 10% of expressed genes 

coexpressed with CDH1 from both Metabric (1804 genes) and TCGA (2003 genes) were extracted. Overlapping (805) genes were integrated 
to implement a pathway analysis, which formed a pathway list ordered by the -log p value. “Immune response B cell antigen receptor (BCR) 
pathway” was at the top of the pathway list when performing the “biological process” analysis. The figure demonstrates interactions 
between genes and proteins. Symbols represent proteins. Arrows depict protein interactions (green, activation; red, inhibition). 
Thermometer-like histograms indicate microarray gene expressions (blue, downregulated; red, upregulated). 
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protein secretion, estrogen response_early, and 

mammalian target of rapamycin C1 (mTORC1) 

signaling (Supplementary Figure 9B in Supplementary 

Materials). Yet the EMT revealed negative correlations 

with CDH1. The Hallmark pathway analysis of CDH2 

revealed that it was significantly associated with the 

EMT, mTORC1 signaling, the G2M checkpoint, and 

E2F targets (Supplementary Figure 10B). The Hallmark 

pathway analysis of CDH4 showed that it was 

significantly associated with the EMT, myogenesis, and 

apical junctions (Supplementary Figure 11B). The 

Hallmark pathway analysis of CDH11 indicated that it 

was significantly associated with the EMT, UV 

response_DN, coagulation, and angiogenesis 

(Supplementary Figure 12B). The Hallmark pathway 

analysis of CDH12 revealed that it was significantly 

associated with the EMT, tumor necrosis factor (TNF)-

α signaling via nuclear factor (NF)-κB, and UV 

response_DN (Supplementary Figure 13B). The 

Hallmark pathway analysis of CDH13 showed that it 

was significantly associated with UV response_DN, 

DNA repair, adipogenesis, and IL-2-signal transduction 

and activator of transcription 5 (STAT5) signaling 

(Supplementary Figure 14B). CDH2/4/11/12 were all 

associated with EMT signaling in the GSEA and were 

seen to be important inflammation- and immune-related 

gene sets and cancer-related gene sets in tumor 

metastasis. 

 

Micro-(mi)RNA-regulated network analysis of 

CDH1/2/4/11/12/13 

We used the miRWalk database to identify associations 

with CDH1/2/4/11/12/13, and network regulation was 

analyzed by an IPA. Analysis of miRNA-regulated 

networks with CDHs (Supplementary Figure 15) 

indicated that hsa-miR-219a-2-3p regulated CDH1 and 

was thus associated with breast cancer development; 

hsa-miR-330-3p, has-miR-4429, and hsa-miR-199a-5p 

regulated CDH2; hsa-miR-4644, hsa-miR-211-5p, hsa-

miR-520f-3p, hsa-miR-34e-5p, and hsa-miR-34a-5p 

regulated CDH4; hsa-miR-486-5p, hsa-miR-200c-3p, 

hsa-miR-200b-3p, hsa-miR-26a-5p, hsa-miR-140-5p, 

hsa-miR-128-3p, and hsa-miR-19a-3p regulated 

CDH11; and hsa-miR-30c-5p regulated CDH13. In a 

previous study, the miRNA hsa-miR-200 family was 

identified as being a definitive factor of the epithelial 

phenotype of malignant cells, which targeted the E-

cadherin repressors, zinc finger E-box-binding 

homeobox 1 (ZEB1) and ZEB2 [88–90]. Meanwhile, 

hsa-miR-200 was identified as a repressor of the EMT 

and was downregulated in more-aggressive molecular 

subtypes of breast tumors such as HER2 and triple-

negative [91]. Our results of miRNA-regulated 

networks that hsa-miR-200c-3p and hsa-miR-200b-3p 

regulated CDH11 were consistent with previous 

studies. 

Levels of immune infiltration in breast cancer were 

related to CDH1/2/4/7/11/12/13/15 Expressions 

 

The TIMER database was utilized to investigate the 

immunological microenvironment. We identified 

correlations of immune infiltration levels with 

expressions of CDH gene family members in breast 

cancer (Figure 9). Results of the analysis showed 

significant correlations of CDH1 with cluster of 

differentiation 4-positive (CD4+) T cells; CDH2 with 

CD4+ T cells, macrophages, neutrophils, and dendritic 

cells (DCs); CDH4 with CD8+ T cells, CD4+ T cells, 

macrophages, neutrophils, and DCs; CDH7 with CD8+ 

T cells; CDH11 with CD8+ T cells, CD4+ T cells, 

macrophages, neutrophils, and DCs; CDH12 with B 

cells and DCs; CDH13 with CD8+ T cells, CD4+ T 

cells, macrophages, neutrophils, and DCs; and CDH15 

with CD8+ T cells. 

 

Drug target network analysis of CDH1/2/4/11/12/13 

 

After comprehensive research on CDH family 

members, we were curious about drug targets and 

related mechanisms of drug resistance. Hence, drug 

target networks of CDH1/2/4/11/12/13 were analyzed 

by the MetaCore and MetaDrug system (Supplementary 

Figure 16 in Supplementary Materials). We found  
that “Signal transduction_c-myc, CREB1 signaling” 

was the top drug target of CDH1; “Cell 

adhesion_Fibrinogen, collagen signaling” was the top 

drug target of CDH2; “Metabolism_PPAR, RXR, VDR 

regulation of metabolism” was the top drug target of 

CDH4; “Cell adhesion_Fibrinogen, collagen signaling” 

was the top drug target of CDH11; “Transport_Potassium 

transport (core work 1)” was the top drug target of 

CDH12; and “Cell adhesion_Intergrin signaling” was the 

top drug target of CDH13. 

 

DISCUSSION 
 

In previous studies, the CDH family was proven to be 

associated with invasiveness and metastasis [92–95]. 

The cadherin family as transmembrane glycoproteins 

mediate calcium-dependent cell-cell adhesion and 

regulates cell growth and differentiation. In the process 

of cell adhesion, cadherins act as essential factors to 

maintain stable homeostasis of tissue structures [96–

98]. Once cell-cell adhesion is disturbed, adhesion-

related pathways are subsequently interfered with. 

Disruption of cadherin signaling has determining 

influence on tumor progression and tumor immune 

responses [99–104]. 

 

In the present study, to determine whether CDH family 

members can serve as suitable biomarkers for breast 

cancer and pathways related to the EMT and metastasi
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Figure 9. (A–H) Correlations between differentially expressed cadherin 1 (CDH1)/2/4/7/11/12/13/15 genes and immune cell infiltration in 
breast cancer. The figure showed that CDH1 (A); CDH2 (B); CDH4 (C); CDH7 (D); CDH11 (E); CDH12 (F); CDH13 (G); CDH15 (H) gene 
expressions were associated with tumor purity and tumor-infiltrating immune cell markers, such as cluster of differentiation 8-positive (CD8+) 
T cells, B cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells. Spearman correlations were applied to describe correlations 
between the CDH1/2/4/7/11/12/13/15 genes and the abovementioned immune cells (p<0.05 was accepted as statistically significant). 



www.aging-us.com 8515 AGING 

comprehensive integrative data mining was utilized, 

including gene expressions, survival analyses, clinical 

and pathological factors, immune infiltration, and 

enrichment pathway analyses. In the Oncomine, TIMER, 

and prognostic analyses, significantly high expression 

levels of CDH1/2/4/7/11/12/13/15 were observed in 

breast cancer compared to normal tissue samples, and 

these were associated with poor DMFS outcomes. These 

results were confirmed by IHC staining in which CDH1, 
CDH2, and CDH12 exhibited strong intensities. 

Furthermore, results of the bc-GenExMiner database 

demonstrated that increased CDH4/12/13 expressions 

were associated with basal-like breast cancer, and 

increased CDH1/2/11 expressions suggested a high SBR 

grade status in patients. Genetic mutations of CDH1 and 

CDH4 at frequencies of >10% showed higher 

possibilities of altering cell signaling pathways and 

promoting proliferation in malignancies. CDH2, CDH4, 

and CDH11 had close relationships via the PPI network, 

and this was further confirmed by the MetaCore 

enrichment pathway analysis. These three CDH family 

genes, CDH2, CDH4 and CDH11, and genes 

coexpressed with CDH13 were correlated with the “Cell 

adhesion_ECM remodeling” process. CDH11 and 

CDH13 were also found to be closely related to CDH1 

due to its roles in regulating of the EMT. The 

enrichment pathway results suggested that in addition to 

CDH1, genes coexpressed with CDH11 and CDH13 

were also correlated with “Development_Regulation of 

the epithelial-to-mesenchymal transition (EMT)”. These 

correlations of CDH family genes could lead to a better 

understanding of breast cancer development and 

metastasis. 

 

The ability to infiltrate different tissues is a critical step in 

cancer because it defines the metastatic potential of 

tumor cells [105–108]. This capacity can be achieved by 

the EMT [109–111]. Previous studies reported that the 

EMT is featured by the loss of CDH1 expression and the 

concomitant upregulation or de novo expression of 

CDH2, the so-called “cadherin switch”, which is 

associated with increased migration and invasiveness and 

thus poor prognoses [112–115]. The EMT causes 

disorganization of cell-cell adhesive junctions, thereby 

facilitating cancer metastasis. Irrespective of CDH1 

expression, the migratory and invasive capacities are 

present in tumor cells by CDH2 expression. Therefore, 

CDH2 seems to be the key factor in epithelial cancer 

metastasis and disease progression. Those studies 

demonstrated the key roles of CDH2 in cancer 

metastasis, corresponding to our results with poor 

survival prognoses, strong intensities in pathological 

samples, and advanced SBR grading, indicating poor cell 
differentiation. Furthermore, we found that CDH2/4/11 

had similar signaling pathways with cell adhesion, which 

was further correlated with the EMT. In other words, 

high expression levels of CDH2/4/11 are crucial for the 

EMT and cancer metastasis. To validate our results of 

positive correlations between CDH genes and the EMT, 

Pearson’s correlations were utilized to calculate 

correlations between CDH1/2/4/7/11/12/13/15 and EMT-

regulated genes such as TWIST and SNAIL based on 

mRNA expression levels (Supplementary Figure 17 in 

Supplementary Materials). Other EMT-core genes 

associated with cell adhesion and migration were 

obtained from a previous study [116]. CDH11 displayed 

the greatest correlations with COL3A1, COL1A1, 
COL5A1, and ADAM12 with Spearman’s rank 

correlation coefficients of >0.5 among these eight genes. 

CDH13 showed mild positive correlations with COL3A1, 
COL1A1, COL5A1, ADAM12, SNAI2, COL6A1, and 

TWIST2. Conversely, traditional EMT markers, CDH1 

and CDH2, demonstrated nearly no correlations with 

these common EMT-regulated genes. CDH1 only 

showed mild negative correlations with TWIST2 and 

SNAI3. Other genes otherwise showed relatively no 

correlations with EMT-core genes. It was interesting to 

discover that CDH11/13 demonstrated greater 

correlations with EMT-core genes rather than the 

traditional EMT-related cadherins, E-cadherin and N-

cadherin, as mentioned in previous research [117, 118]. 

Our results supported the roles of CDH11 in inducing the 

EMT, which corresponded to other research not only in 

cancer [119] but in other diseases including melasma 

[120] and pulmonary fibrosis [121]. 

 

To understand drug targets of CDH family genes, we 

implemented a drug target network analysis 

(Supplementary Figure 16). Since drug target network 

analyses of the CDH2, CDH11, and CDH13 genes were 

all targeted to cell adhesion, we thus discussed the roles 

of cell adhesion in drug resistance. Cancer cells 

attaching to microenvironment components such as 

collagen type 1 (COL1) weakens the sensitivity of 

chemotherapeutic drugs like mitoxantrone, which is 

called cell adhesion-mediated drug resistance (CAM-

DR) [122]. In consideration of the extensive presence of 

COL1 in mammary glands, breast cancer appears to 

have a high probability of presenting CAM-DR. The 

importance of COL1 is proven that patients with high-

density breast tissues have higher risks of breast cancer 

[123–125] and poorer outcomes due to metastatic 

processes [126]. Regarding CAM-DR, the EMT plays a 

crucial part in drug resistance to breast cancer as well. 

The epithelial cell adhesion molecule (EpCAM) was 

implicated in tumor progression and drug resistance in 

breast cancer [127]. It was proven that EpCAM-

knockdown resulted in upregulation of CDH1 and 

attenuation of CDH2 expression, which reversed the 
EMT. This process demonstrated that the EpCAM might 

possess the capability to induce the EMT in breast 

cancer to promote multidrug resistance. In addition, 
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transcriptional silencing of CDH1 was associated with 

the EMT in human breast cancer cells [128]. Previous 

research demonstrated that upregulation of E-cadherin 

by miR-200b and miR-200c via direct targeting the 

transcriptional repressors of E-cadherin, ZEB1 and 

ZEB2, inhibited the EMT [129]. In summary, 

CDH1/2/11/13 were associated with the cell adhesion 

network on drug targets and were thus associated with 

important factors in drug resistance. 
 

CDH4 hypermethylation was significantly associated 

with increased risks for breast cancer in peripheral 

blood leukocyte DNA [130]. CDH11 was also known 

as one of the mediators that interacted with malignant 

cells and normal cells and was detected in various 

cancers, especially in metastatic cancer cell lines  

[131–133]. In particular, CDH11 was involved in the 

maintenance of high endogenous Rac activity and 

cytoskeletal reorganization in migratory breast cancer 

cells [134]. Moreover, because of the role of CDH11 as 

an inducer of metastatic signaling, targeting CDH11 

triggered re-expression of the miR-335 tumor 

suppressor, which limited the CDH11-induced EMT. 

This phenomenon repressed cancer stem cell activities. 

CDH11-related pathways demonstrated the miR-335-

mediated therapeutic value of anti-CDH11 antibody 

treatment and provided a therapeutic option in patients 

with metastatic breast cancer. Downregulation of 

CDH12 could inhibit the process of angiogenesis. 

Previous research implied that CDH12 might be 

influential in colorectal tumor metastasis [135]. CDH13 

expression exhibited functions in cell adhesion and 

migration which were promoted by DNA polymerase 

beta (Pol β) by augmenting DNA demethylation of the 

CDH13 promoter [136]. Abnormal methylation of 

CDH13 promoter was observed in breast, colorectal, 

cervical and lung cancers, and chronic myeloid 

leukemia [137–139]. Those studies supported our 

results of the importance of CDH4/11/12/13 in 

tumorigenesis. We supposed that high mRNA 

expression levels of CDH4/11/12/13 were associated 

with breast cancer and poor survival. 

 

As the tumor microenvironment plays important roles in 

tumorigenesis, we conducted an immune infiltration 

analysis in Figure 9. Previous studies also supported the 

associations between cadherin and immune pathways 

[140–142]. One of the most important pathways related 

to cadherin in immune responses is the Wnt pathway, 

which regulates cellular signaling by a canonical 

pathway with β-catenin [143]. β-Catenin plays a 

fundamental role in the cadherin protein complex, 

whose stabilization is crucial to activate the Wnt/β-
catenin pathway. The WNT/β-catenin pathway mediates 

the self-renewal and relocation of cancer stem cells, 

promoting malignant progression and metastasis in 

breast cancer [144]. Our results of the enrichment 

pathway analysis were consistent with the importance 

of Wnt/β-catenin in breast cancer. Genes co-expressed 

with CDH1/12/15 were correlated with the pathway of 

“Development negative regulation of WNT/Beta 

catenin signaling in the cytoplasm”. Induction of Wnt/β-

catenin signaling was crucial in maintenance of 

stemness of memory CD8+ T cells by blocking T-cell 

differentiation [145]. Clinical responses to immune 

checkpoint inhibitors were correlated with tumors in the 

immune cell microenvironment [146, 147]. The Wnt/β-

catenin pathway is considered to be a potential target 

for cancer treatment. In pancreatic cancer, effective 

immunotherapy is likely to require upregulation of 

CDH1 expression [148]. The roles of cadherin and 

Wnt/β-catenin signaling in regulating immune cell 

infiltrations of the tumor microenvironment aroused 

interest in immunotherapy treatment. 

 

This study performed a comprehensive and systematic 

review of the genetic expressions, prognostic values, 

mutation levels, immune infiltration, and enrichment 

pathways of the CDH family. CDH1/2/4/11/12/13 

expressions are significantly increased in breast cancer 

and are associated with poor clinical prognoses of 

DMFS. We concluded that CDH1/2/4/11/12/13 may be 

crucial for breast cancer tumorigenesis, providing novel 

insights into developing detection biomarkers or 

targeted therapies for breast cancer. Nevertheless, 

evidence from clinical applications such as in vitro data 

or large patient cohorts should be produced to validate 

associations between CDH1/2/4/11/12/13 and breast 

cancer. 

 

CONCLUSIONS 
 

CDH1/2/4/11/12/13 were overexpressed in breast 

cancer and were associated with poor prognoses in the 

distant metastasis-free survival analysis. Genes 

coexpressed with these CDH family members were 

correlated with regulation of the EMT and cell 

adhesion ECM remodeling, which were validated as 

playing critical roles in tumor metastasis. Although 

further evidence of clinical correlations for validation 

in the future should be determined to support our 

hypothesis, CDH1/2/4/11/12/13 are expected to be 

potential biomarkers for breast cancer progression and 

metastasis. 
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Supplementary Figure 1. (A–D) Molecular subtypes of breast cancer cell lines with expressions of CDH family. Colored columns on the 
right side displayed the molecular subtypes of each cell line. “Inconsistent” denoted cell lines that are inconsistently annotated regarding the 
status of markers. “Others” included two cell lines that were not breast cancers (HMEL, engineered breast; HS274T, breast fibroblast). TNBC, 
triple negative breast cancer. 
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Supplementary Figure 2. Clinical indicators for treatment and subtypes of breast invasive carcinoma patients with cadherin 1 
(CDH1)/2/4/7/11/12/13/15 expressions. (A) Estrogen receptor (ER)/progesterone (PR) expression with CDH family genes co-expression. 

(B) Human epidermal growth factor receptor-2 (HER2) expression with CDH family genes co-expression. (C) Subtypes of breast invasive 
carcinoma with CDH family genes co-expression. (D) Breast cancer gene-1 (BRCA1)/ BRCA2 mutations with CDH family genes co-expression. 
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Supplementary Figure 3. Heatmap of DNA methylation expression levels of CDH1/2/4/11/12/13 in breast cancer by the 
MethSurv platform. Blue bars indicated low expressions, while red bars indicated high expressions. Different colored boxes indicated 
different ethnicities, races, ages, events, relation to UCSC CpG island and UCSC RefGene Groups. DNA methylation status was represented as 
β-values (ranging from 0 to 1). (A) Among CDH1, cg26508465 and cg09220040 showed the highest levels of DNA methylation; cg24776465 
showed the highest level among CDH2; cg6140152 showed the highest level among CDH4; (B) cg02724025 showed the highest level among 
CDH11; cg17681524 showed the highest level among CDH12; cg16387516 showed the highest level among CDH13. 
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Supplementary Figure 4. MetaCore enrichment pathway analysis of genes co-expressed with cadherin 2 (CDH2). Top 10% of 

expression gene lists from both Metabric (1804 genes) and TCGA (2003 genes) were extracted. Overlapped (933) genes were integrated to 
implement pathway analysis, which formed a pathway list ordered by the -log p-value. “Cell adhesion_ECM remodeling” was at the top of the 
pathway list when performing the “biological process” analysis. The figure demonstrates the interactions between genes and proteins. 
Symbols represent proteins. Arrows depict protein interactions (green, activation; red, inhibition). Thermometer-like histograms indicate 
microarray gene expression (blue, down-regulation; red, up-regulation). 
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Supplementary Figure 5. MetaCore enrichment pathway analysis of genes co-expressed with cadherin 4 (CDH4). Top 10% of 
expression gene lists from both Metabric (1804 genes) and TCGA (2003 genes) were extracted. Overlapped (558) genes were integrated to 
implement pathway analysis, which formed a pathway list ordered by the -log p-value. “Protein folding and maturation_POMC processing” 
was at the top of the pathway list when performing the “biological process” analysis. The figure demonstrates the interactions between 
genes and proteins. Symbols represent proteins. Arrows depict protein interactions (green, activation; red, inhibition). Thermometer-like 
histograms indicate microarray gene expression (blue, down-regulation; red, up-regulation). 
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Supplementary Figure 6. MetaCore enrichment pathway analysis of genes co-expressed with cadherin 7 (CDH7). Top 10% of 

expression gene lists from both Metabric (1804 genes) and TCGA (2003 genes) were extracted. Overlapped (225) genes were integrated to 
implement pathway analysis, which formed a pathway list ordered by the -log p-value. “Cell cycle_Chromosome condensation in 
prometaphase” was at the top of the pathway list when performing the “biological process” analysis. The figure demonstrates the 
interactions between genes and proteins. Symbols represent proteins. Arrows depict protein interactions (green, activation; red, inhibition). 
Thermometer-like histograms indicate microarray gene expression (blue, down-regulation; red, up-regulation). 
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Supplementary Figure 7. MetaCore enrichment pathway analysis of genes co-expressed with cadherin 11 (CDH11). Top 10% 
of expression gene lists from both Metabric (1804 genes) and TCGA (2003 genes) were extracted. Overlapped (997) genes were integrated to 
implement pathway analysis, which formed a pathway list ordered by the -log p-value. “Cell adhesion_ECM remodeling” was at the top of the 
pathway list when performing the “biological process” analysis. The figure demonstrates the interactions between genes and proteins. 
Symbols represent proteins. Arrows depict protein interactions (green, activation; red, inhibition). Thermometer-like histograms indicate 
microarray gene expression (blue, down-regulation; red, up-regulation). 
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Supplementary Figure 8. MetaCore enrichment pathway analysis of genes co-expressed with cadherin 13 (CDH13). Top 10% 

of expression gene lists from both Metabric (1804 genes) and TCGA (2003 genes) were extracted. Overlapped (1015) genes were integrated 
to implement pathway analysis, which formed a pathway list ordered by the -log p-value. “Development_Regulation of epithelial-to-
mesenchymal transition (EMT)” was at the top of the pathway list when performing the “biological process” analysis. The figure 
demonstrates the interactions between genes and proteins. Symbols represent proteins. Arrows depict protein interactions (green, 
activation; red, inhibition). Thermometer-like histograms indicate microarray gene expression (blue, down-regulation; red, up-regulation). 
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Supplementary Figure 9. (A, B) Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) based on genes co-expressed 

with CDH1. (A) Dot plots display biological processes, cellular components, molecular functions, and KEGG. The dot size is determined by the 
count of enriched genes in the pathway, and the color of the dots represents the significance of enrichment pathway. “clusterProfiler” 
package in R/Bioconductor was used to perform the GO analyses of dot plots. (B) Hallmark signaling pathway analysis of CDH1 in breast 
cancer. Results of the analysis showed significant values of gene classes in the Hallmark database. Statistical significance was presented by p 
value, and the normalized enrichment score (NES) reflected the rank of gene classes. 



www.aging-us.com 8538 AGING 

 



www.aging-us.com 8539 AGING 

 
 

Supplementary Figure 10. (A, B) Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) based on genes co-expressed 
with CDH2. (A) Dot plots display biological processes, cellular components, molecular functions, and KEGG. The dot size is determined by the 
count of enriched genes in the pathway, and the color of the dots represents the significance of enrichment pathway. “clusterProfiler” 
package in R/Bioconductor was used to perform the GO analyses of dot plots. (B) Hallmark signaling pathway analysis of CDH2 in breast 
cancer. Results of the analysis showed significant values of gene classes in the Hallmark database. Statistical significance was presented by p 
value, and the normalized enrichment score (NES) reflected the rank of gene classes. 
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Supplementary Figure 11. (A, B) Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) based on genes co-expressed 
with CDH4. (A) Dot plots display biological processes, cellular components, molecular functions, and KEGG. The dot size is determined by the 
count of enriched genes in the pathway, and the color of the dots represents the significance of enrichment pathway. “clusterProfiler” 
package in R/Bioconductor was used to perform the GO analyses of dot plots. (B) Hallmark signaling pathway analysis of CDH4 in breast 
cancer. Results of the analysis showed significant values of gene classes in the Hallmark database. Statistical significance was presented by p 
value, and the normalized enrichment score (NES) reflected the rank of gene classes. 
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Supplementary Figure 12. (A, B) Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) based on genes co-expressed 

with CDH11. (A) Dot plots display biological processes, cellular components, molecular functions, and KEGG. The dot size is determined by the 
count of enriched genes in the pathway, and the color of the dots represents the significance of enrichment pathway. “clusterProfiler” 
package in R/Bioconductor was used to perform the GO analyses of dot plots. (B) Hallmark signaling pathway analysis of CDH11 in breast 
cancer. Results of the analysis showed significant values of gene classes in the Hallmark database. Statistical significance was presented by p 
value, and the normalized enrichment score (NES) reflected the rank of gene classes. 
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Supplementary Figure 13. (A, B) Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) based on genes co-expressed 
with CDH12. (A) Dot plots display biological processes, cellular components, molecular functions, and KEGG. The dot size is determined by the 
count of enriched genes in the pathway, and the color of the dots represents the significance of enrichment pathway. “clusterProfiler” 
package in R/Bioconductor was used to perform the GO analyses of dot plots. (B) Hallmark signaling pathway analysis of CDH12 in breast 
cancer. Results of the analysis showed significant values of gene classes in the Hallmark database. Statistical significance was presented by p 
value, and the normalized enrichment score (NES) reflected the rank of gene classes. 
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Supplementary Figure 14. (A, B) Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) based on genes co-expressed 

with CDH13. (A) Dot plots display biological processes, cellular components, molecular functions, and KEGG. The dot size is determined by the 
count of enriched genes in the pathway, and the color of the dots represents the significance of enrichment pathway. “clusterProfiler” 
package in R/Bioconductor was used to perform the GO analyses of dot plots. (B) Hallmark signaling pathway analysis of CDH13 in breast 
cancer. Results of the analysis showed significant values of gene classes in the Hallmark database. Statistical significance was presented by p 
value, and the normalized enrichment score (NES) reflected the rank of gene classes. 
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Supplementary Figure 15. Analysis of micro-(mi)RNA networks with CDH1/2/4/11/13 in breast cancer. (A) CDH1 
demonstrated network interaction with hsa-miR-219a-2-3p in breast cancer development; (B) CDH2 demonstrated network interaction 
with hsa-miR-330-3p, has-miR-4429, and hsa-miR-199a-5p; (C) CDH4 demonstrated network interaction with hsa-miR-4644, hsa-miR-211-
5p, hsa-miR-520f-3p, hsa-miR-34e-5p, and hsa-miR-34a-5p; (D) CDH11 demonstrated network interaction with hsa-miR-486-5p, hsa-miR-
200c-3p, hsa-miR-200b-3p, hsa-miR-26a-5p, hsa-miR-140-5p, hsa-miR-128-3p, and hsa-miR-19a-3p; (E) CDH13 demonstrated network 
interaction with hsa-miR-30c-5p. 
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Supplementary Figure 16. (A, B) Drug target networks analysis of genes co-expressed with cadherin (CDH) 1/2/4/11/12/13. Genes co-

expressed with CDH1/2/4/11/12/13 were integrated to implement drug target networks analysis, which formed a pathway list ordered by 
the -log p-value on the left. (A) “Signal transduction_c-myc, CREB1 signaling” was at the top of the drug target of CDH1; “Cell 
adhesion_Fibrinogen, collagen signaling” was at the top of the drug target of CDH2; “Metabolism_PPAR, RXR, VDR regulation of metabolism” 
was at the top of the drug target of CDH4; (B) “Cell adhesion_Fibrinogen, collagen signaling” was at the top of the drug target of CDH11; 
“Transport_Potassium transport (core work 1)” was at the top of the drug target of CDH12; “Cell adhesion_Intergrin signaling” was at the top 
of the drug target of CDH13. The figure demonstrates the interactions between genes and proteins. Symbols represent proteins. Arrows 
depict protein interactions (green, activation; red, inhibition). 
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Supplementary Figure 17. Correlations between cadherin (CDH) family and epithelial-mesenchymal transition (EMT)-
regulated genes in breast cancer using TCGA dataset. The symmetric correlation matrix was created by the “corrplot” R package. The 

color represents the degree of pairwise correlation regarding Spearman’s rank correlation coefficient. Darker red and larger dot size mean 
stronger positive correlation, while orange indicates stronger negative correlation. The cross symbols represent non-significant correlation 
coefficient values (p value > 0.01). 
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Supplementary Tables 
 

Supplementary Table 1A. Univariate Cox regression analysis of 
CDH1/2/4/11/12/13 and age, gender, tumor stage with overall 
survival in breast cancer (BRCA) patients. 

 BRCA 

Univariate 
Overall survival 

Coefficient HR (95% CI)  p value 

Age  0.036 1.037 (1.023-1.050)   0.000*** 

gender male -0.49 0.613 (0.084-4.450) 0.628 

stage2  0.668 1.951  (1.117-3.405) 0.019* 

stage3  1.374 3.95 (2.189-7.126) 0.000*** 

stage4  2.718 15.143 (7.074-32.417) 0.000*** 

CDH1  0.014 1.014 (0.913-1.127) 0.792 

CDH2  0.101 1.106 (0.944-1.297) 0.213 

CDH4  -0.066 0.936 (0.609-1.439) 0.764 

CDH11  -0.025 0.976 (0.828-1.150) 0.769 

CDH12  -0.291 0.747 (0.431-1.295) 0.299 

CDH13  0.264 1.302 (1.053-1.611) 0.015* 

The coefficient represents the regression coefficient. HR represents the 
hazard ratio, and 95% confidential interval are showed in (95% CI). 

 

Supplementary Table 1B. Univariate Cox regression analysis of 
CDH1/2/4/11/12/13 and age, gender, tumor stage with overall 
survival in molecular subtype-Luminal of breast cancer (BRCA) 
patients. 

 BRCA-luminal 

Univariate 
Overall survival 

Coefficient HR (95% CI)  p value 

Age  0.039 1.039 (1.020-1.059)  0.000*** 

gender male -15.811 0 (0.000-Inf) 0.995 

stage2  0.559 1.749 (0.899-3.403) 0.1 

stage3  1.106 3.021 (1.448-6.303) 0.003** 

stage4  2.223 9.232 (3.471-24.552) 0.000*** 

CDH1  0.069 1.071 (0.917-1.252) 0.387 

CDH2  0.159 1.172 (0.947-1.451) 0.144 

CDH4  -0.197 0.821 (0.312-2.160) 0.69 

CDH11  -0.032 0.969 (0.761-1.234) 0.798 

CDH12  -0.419 0.658 (0.297-1.454) 0.3 

CDH13  0.331 1.392 (0.973-1.992) 0.071 

The coefficient represents the regression coefficient. HR represents the 
hazard ratio, and 95% confidential interval are showed in (95% CI). 
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Supplementary Table 1C. Univariate Cox regression analysis of 
CDH1/2/4/11/12/13 and age, gender, tumor stage with overall 
survival in molecular subtype-HER2 of breast cancer (BRCA) 
patients. 

 BRCA-HER2 

Univariate 
Overall survival 

Coefficient HR (95% CI)  p value 

Age  0.086 1.09 (1.018-1.168)  0.014* 

stage2  -1.178 0.308 (0.022-4.285) 0.381 

stage3  0.474 1.606 (0.112-22.999) 0.727 

stage4  3.033 20.763 (1.181-365.073) 0.038* 

CDH1  -0.404 0.668 (0.429-1.040) 0.074 

CDH2  0.459 1.583 (0.653-3.835) 0.309 

CDH4  -29.735 0 (0-0.072) 0.032* 

CDH11  0.4 1.492 (0.351-6.339) 0.587 

CDH12  3.279 26.541 (1.308-538.706) 0.033* 

CDH13  -0.442 0.643 (0.043-9.605) 0.749 

The coefficient represents the regression coefficient. HR represents the 
hazard ratio, and 95% confidential interval are showed in (95% CI). 

 

Supplementary Table 1D. Univariate Cox regression analysis of 
CDH1/2/4/11/12/13 and age, gender, tumor stage with overall 
survival in molecular subtype-Basal of breast cancer (BRCA) 
patients. 

 BRCA-basal 

Univariate 
Overall survival 

Coefficient HR (95% CI)  p value 

Age  0.023 1.023 (0.986-1.063)  0.226 

stage2  18.162 77244950 (2.8e+07-2.1e+08) 0.000*** 

stage3  19.179 2.13e+08 (7.5e+07-6.1e+08) 0.000*** 

stage4  22.124 4.06e+09 (3.7e+08-4.5e+10) 0.000*** 

CDH1  -0.048 0.953 (0.651-1.395) 0.805 

CDH2  -0.26 0.771 (0.553-1.074) 0.124 

CDH4  -0.089 0.915 (0.617-1.358) 0.659 

CDH11  0.427 1.533 (1.064-2.209) 0.022* 

CDH12  0.899 2.457 (1.224-4.935) 0.012* 

CDH13  0.156 1.169 (0.684-2.000) 0.567 

The coefficient represents the regression coefficient. HR represents the 
hazard ratio, and 95% confidential interval are showed in (95% CI). 
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Supplementary Table 2. Pathway analysis of genes co-expressed cadherin 1 (CDH1) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 2 and Figure 8). 

# Maps p-Value Network objects from active data 

1 

Immune response_B 

cell antigen receptor 

(BCR) pathway 

1.298E-16 

STIM1, Calcineurin A (catalytic), GRB2, alpha-4/beta-1 integrin, ICAM1, c-Rel (NF-kB subunit), H-Ras, 

NF-kB p50/c-Rel, ERK1/2, EGR1, c-Raf-1, BCAP, Fibronectin, CD19, VAV-1, Rac1, IP3 receptor, 

BAD, Syk, Cyclin D2, Shc, PI3K reg class IA (p85), GSK3 beta, Rb protein, CD79A, CDK4, FKHR, 

MEK6(MAP2K6), VAV-2, MEK2(MAP2K2), GSK3 alpha/beta, Bcl-XL, MEK1/2, CDC42, WASP, 

Actin cytoskeletal, NF-kB, AKT(PKB), NF-kB p50/p65, PDK (PDPK1), TAK1(MAP3K7), NF-

AT2(NFATC1), MEKK4(MAP3K4), MEK1(MAP2K1), VCAM1, RelA (p65 NF-kB subunit), LRRK1, 

B-Raf, NF-kB1 (p50), K-RAS, ETS1, Lyn, PIP5KIII, CIN85, CD79 complex, PP2A catalytic, PIP5KI, 

PKC-beta2, NFKBIA, PI3K cat class IA (p110-delta), CARD11, CDK6, HPK1(MAP4K1), PKC-beta, 

p70 S6 kinase1, Calmodulin, CalDAG-GEFIII, CKLFSF7, MEKK1(MAP3K1), ATF-2, MALT1, IKK-

beta, PLC-gamma, CD79B, Bcl-10, Calcineurin B (regulatory), PLC-gamma 2, p38 MAPK, Elk-1 

2 

Oxidative stress_ROS-

induced cellular 

signaling 

6.173E-16 

Casein kinase II, alpha chains, p38alpha (MAPK14), Tuberin, SREBP1 (nuclear), SCD, ERK1/2, EGR1, 

VEGF-A, PKA-reg (cAMP-dependent), TXNIP (VDUP1), p21, Bak, Cytochrome c, FASN, E2I, Syk, 

Bax, GSK3 beta, FTH1, IRP2, GRP75, MDM2, IL-6, NF-kB, AKT(PKB), Catalase, NF-kB p50/p65, 

Cyclin B1, c-Src, TNF-alpha, NOTCH1 (NICD), Thioredoxin, Chk2, ACACA, RelA (p65 NF-kB 

subunit), KEAP1, IRP1, HIF1A, SRX1, AMPK alpha subunit, Pin1, NIK(MAP3K14), Isoform p66 Shc, 

Glutaredoxin 1, NFKBIA, HSPA1A, GSTP1, COX-2 (PTGS2), ELAVL1 (HuR), HSF1, PKC-beta, 

NOTCH3 (3ICD), PRKD1, p70 S6 kinase1, GPX1, PKC, LKB1, PTEN, MEKK1(MAP3K1), HES1, 

HSP27, IKK-beta, DLC1 (Dynein LC8a), c-Abl, Cyclin D1, JNK(MAPK8-10), HIF-prolyl hydroxylase, 

HDAC1, SAE2, SP1, p53, NRF2, ADAM17, p38 MAPK, APEX, PAI1, NALP3 

3 

Development_Negative 

regulation of 

WNT/Beta-catenin 

signaling in the 

cytoplasm 

6.950E-16 

Casein kinase I delta, NOTCH1 receptor, CXXC4, VHL, DP1, NKD1, PP1-cat, RIPK4, Presenilin 1, 

Alpha-1 catenin, Laforin, FAF1, Casein kinase I epsilon, Beta-catenin, CYLD, CXXC5, DAB2, 

Nucleoredoxin, Dsh, Casein kinase I alpha, Rac1, YAP1 (YAp65), G-protein alpha-13, WWP1, STK4, 

SIAH1, GSK3 alpha/beta, LATS2, G-protein beta/gamma, WDR26, Skp2/TrCP/FBXW, TAZ, Axin, 

RACK1, HECTD1, LRP5/LRP6, Prickle-1, c-Cbl, STK3, Tcf(Lef), E2F1, Amer1, PP2A catalytic, 

SENP2, RNF185, A20, Cul1/Rbx1 E3 ligase, YAP1/TAZ, CDK6, ELAVL1 (HuR), PEG3, WNT5A, 

Malin, PKC-alpha, Porf-2, WNT, Beclin 1, Cyclin D1, p53, NKD2, DACT3, Frizzled, DACT1 

4 

Immune response_IFN-

alpha/beta signaling via 

PI3K and NF-kB 

pathways 

1.750E-15 

Tuberin, AKT1, Cyclin D3, ISG15, IRS-2, Tyk2, RPS6, DHFR, NMI, eIF4E, ERK1/2, c-Raf-1, CDC25A, 

IFN-alpha/beta receptor, p21, IFNAR1, PKC-epsilon, CDK1 (p34), I-kB, p70 S6 kinases, PI3K reg class 

IA (p85), GSK3 beta, NF-kB2 (p100), Rb protein, CDK4, EMSY, IFN-alpha, p19, ISG54, CAK complex, 

CREB1, p130, MEK1/2, RSAD2, b-Myb, NF-kB, AKT(PKB), PDK (PDPK1), p107, PU.1, pRB/E2F4, 

IFI17, PI3K cat class IA, RelA (p65 NF-kB subunit), NF-kB2 (p52), PKC-delta, TRAF2, p130/E2F4, 

E2F1, p107/E2F4, IFNAR2, eIF4B, p90RSK1, eIF4G1/3, NIK(MAP3K14), MNK1, CDK2, PCNA, 4E-

BP1, GBP1, IFIT1, E2F4, PKC-alpha, Cyclin E, eIF4A, FOXO3A, IRF7, MNK2(GPRK7), Cyclin A 

5 

Immune response_IL-4-

induced regulators of 

cell growth, survival, 

differentiation and 

metabolism 

2.174E-14 

ATP6V1B2, RARbeta, DHA2, MCM5, IL-4R type I, CCR2, PPAR-alpha, SOCS1, CDC25A, p21, 

Cytochrome c, STAT1, Loricrin, CPT-1A, Filaggrin, EGR2 (Krox20), Bax, CDK4, FKHR, SOCS3, Bcl-

XL, ACADM, FasL(TNFSF6), Osteoprotegerin, AKT(PKB), PPAR-gamma, GATA-3, A-FABP, MMP-

13, PLEKHF1, ANGPTL4, MCM4, IL-4R type II, Cyclin D, CYP2E1, IL4RA, Bcl-6, SK4/IK1, 

Cathepsin V, CDK2, CDK6, AP-1, Cyclin E, HSD3B1, FOXO3A, PERC, STAT5, Cyclin A, STAT6, 

LPL 

6 

Neurogenesis_NGF/ 

TrkA MAPK-mediated 

signaling 

1.343E-13 

SPHK1, NEFL, TrkA, ERK5 (MAPK7), CDK5, GRB2, APS, Fra-1, H-Ras, ERK1/2, MEF2C, CrkL, 

EGR1, PP2A regulatory, SGK1, PKA-reg (cAMP-dependent), CRK, c-Raf-1, FRS2, DNAJA3 (TID1), 

p21, VGF, PKC-epsilon, Ephrin-A receptor 2, IP3 receptor, TY3H, Shc, MAPKAPK2, PLC-gamma 1, 

MEK6(MAP2K6), MAP2K5 (MEK5), KIDINS220, CREB1, MEK1/2, PLAUR (uPAR), M-Ras, RGS2, 

p107, Stromelysin-1, c-Src, KCTD11, GAB2, SHPS-1, MATK, RIN, B-Raf, NF-kB1 (p50), JunB, K-

RAS, PKC-delta, PP2A catalytic, C3G, SH2B, p90Rsk, p130CAS, NGF, AP-1, Calmodulin, MAGI-2, 

PKC-lambda/iota, SHP-2, Cyclin D1, SORBS1, MMP-10, SP1, PVR, JMJD3, RIT, p38 MAPK, Elk-1, 

PKA-cat (cAMP-dependent), FosB 

7 

Development_Different

iation of white 

adipocytes  

4.070E-13 

p38alpha (MAPK14), SREBP1 (nuclear), GRB2, BMP4, H-Ras, ERK1/2, FOXC2, c-Raf-1, SMAD4, 

PRKAR1A, SREBP1 precursor, Shc, HIVEP2, Rb protein, Resistin, FTase-alpha, MEK2(MAP2K2), 

CREB1, MEK1/2, PPARGC1 (PGC1-alpha), INSIG1, p107, PPAR-gamma, TAK1(MAP3K7), 

MEK1(MAP2K1), A-FABP, CIDEC, p90RSK1, LIPS, RIP140, PSAT, Factor D, FTase, TAB1, 

Angiotensinogen, LXR-alpha, BMPR1A, SMAD1, Leptin, BMP2, LPL, Perilipin, C/EBPalpha, 

C/EBPdelta 

8 

Role of activation of 

WNT signaling in the 

progression of lung 

cancer 

1.531E-12 

DVL-3, RUNX3, WNT3A, FZD6, Oct-3/4, NKD1, SFRP2, Krm1, Lef-1, DVL-1, TCF7L2 (TCF4), 

DKK1, FZD8, Beta-catenin, Matrilysin (MMP-7), VEGF-A, p21, Dsh, Rac1, ING4, GSK3 beta, FZD2, 

Survivin, Axin2, EZH2, SKP2, FZD9, FZD7, DVL-2, Axin, CD147, RUVBL1, WNT4, ROR2, hASH1, 

WNT9A, Tcf(Lef), Porcn, WNT3, FZD3, ARD1, WNT1, SFRP4, WNT2B, WNT5A, LKB1, 

MEKK1(MAP3K1), WNT, WNT10B, LRP6, SUZ12, Cyclin D1, SFRP1, p38 MAPK, Frizzled, 

NOTCH3 



www.aging-us.com 8555 AGING 

9 

Development_Negative 

regulation of 

WNT/Beta-catenin 

signaling in the nucleus 

2.248E-12 

ZNF703, Casein kinase I delta, AKT1, Calcineurin A (catalytic), RUNX3, Oct-3/4, VHL, Lef-1, PGAM5, 

Alpha-1 catenin, TCF7L2 (TCF4), 14-3-3, Jade-1, Casein kinase I epsilon, Beta-catenin, VEGF-A, 

BCL9/B9L, PC1-CTT, TLE, Dsh, Menin, GSK3 beta, Nephrocystin-4, HDAC2, HIC1, LATS2, 

RANBP3, CtBP, PJA2, HIC5, PPAR-gamma, Axin, TAK1(MAP3K7), SOX9, TCF7 (TCF1), KDM2, 

LRP5/LRP6, TRRAP, WWOX, NARF, c-Cbl, PKC-delta, Tcf(Lef), E2F1, SOX17, SENP2, Cul1/Rbx1 

E3 ligase, NLK, RNF43, WNT5A, SOX2, WNT, FOXO3A, eNOS, CHIBBY, HDAC1, Plakoglobin, 

RUVBL2, CDX1, Frizzled, Histone H1, DACT1 

10 
Stellate cells activation 

and liver fibrosis 
2.435E-12 

COL1A1, GRO-2, Biglycan, TNF-R2, GRB2, ICAM1, WNT3A, CCL2, H-Ras, Beta-catenin, c-Raf-1, 

TRADD, SMAD4, PDGF-R-alpha, DAB2, Dsh, Smoothened, I-kB, Shc, PI3K reg class IA (p85), GSK3 

beta, RIPK1, MEK2(MAP2K2), MMP-2, COL1A2, ERK2 (MAPK1), AKT(PKB), PDGF receptor, NF-

kB p50/p65, TNF-R1, ERK1 (MAPK3), TNF-alpha, MEK1(MAP2K1), PI3K cat class IA, PTCH1, 

TRAF2, Tcf(Lef), TGF-beta receptor type II, IL1RAP, KLF6, NIK(MAP3K14), TIMP1, TRAF1, 

ACTA2, Cyclin D1, IRAK1/2, SMAD3, SP1, Elk-1, Frizzled, TLR2, PDGF-R-beta 

11 

Development_Positive 

regulation of 

WNT/Beta-catenin 

signaling in the 

cytoplasm 

3.380E-12 

Casein kinase II, alpha chains, Bcl-9, EGF, BIG1, GRB2, IRS-2, NKD1, UBE2B, PP1-cat, RIPK4, Alpha-

1 catenin, 14-3-3, Beta-catenin, TGIF, SMAD4, Dsh, Rac1, YAP1 (YAp65), CDK1 (p34), PPP2R2A, 

SIAH1, USP25, GSK3 alpha/beta, ERK2 (MAPK1), AKT(PKB), Axin, GSKIP, HECTD1, ITGB1, 

LRP5/LRP6, SIAH2, Tcf(Lef), 14-3-3 zeta/delta, TGT, HSP105, PKA-reg type II (cAMP-dependent), 

PP2A catalytic, RNF220, COX-2 (PTGS2), Trabid, BIG2, Miz-1, USP9X, WNT, USP7, Jouberin, PP2C 

alpha, JNK(MAPK8-10), SMAD3, NKD2, MITF, PKA-cat (cAMP-dependent), Frizzled, SET7, DACT1 

12 

Apoptosis and 

survival_Regulation of 

apoptosis by 

mitochondrial proteins 

4.849E-12 

p38alpha (MAPK14), Maspin, PLSCR3, Calcineurin A (catalytic), MPTP complex, Apaf-1, Cathepsin H, 

Granzyme B, ROCK1, ERK1/2, MUL1, RAD9A, PP2C, VDAC 2, Bik, Bak, Cytochrome c, Caspase-8, 

OPA1, Endonuclease G, NIP3, BAD, GZMH, Bax, SOD1, RASSF1, PINK1, PP1-cat alpha, AMBRA1, 

Mitofusin 1, Caspase-2, Bcl-XL, MTCH2, VDAC 1, MIDUO, Calpain 1(mu), Mcl-1, Cathepsin D, 

Granzyme K, Cathepsin L, IFI27, Aif, GC1QBP, PKC-delta, 14-3-3 zeta/delta, MAP1, Pin1, PP2A 

catalytic, PARL, Caspase-9, Metaxin 1, BMF, JSAP1, RAD9, CDK2, ATF-2, SLC25A3, TIMM8A, tBid, 

Beclin 1, HtrA2, Cyclin A, JNK(MAPK8-10), JNK2(MAPK9), Caveolin-1, DNM1L (DRP1), Calcineurin 

B (regulatory), Smac/Diablo, p38 MAPK, Bid 

13 
T follicular helper cell 

dysfunction in SLE 
4.885E-12 

IL-7 receptor, MHC class II, ICOS-L, IL-7, Tyk2, IFN-gamma, BATF, CXCR5, CD28, 

OX40(TNFRSF4), KLF2, SLAM, IFN-alpha/beta receptor, STAT1, TRIM, I-kB, PI3K reg class IA (p85), 

FKHR, IFN-alpha, RIPK1, CD4, CD84, IL-6, CTLA-4, Fyn, NF-kB, AKT(PKB), ICOS, IL-2, 

CD40L(TNFSF5), BAFF(TNFSF13B), CD80, Osteopontin, PI3K cat class IA, DDX6, PI3K reg class IA 

(p85-alpha), MCPIP, TRAF2, BAFF-R, IL4RA, NIK(MAP3K14), Bcl-6, A20, JAK3, CARD11, RC3H2, 

4E-BP1, Hedls, c-Maf, p70 S6 kinase1, MALT1, IKK-beta, CXCL13, SAP, PD-1, Bcl-10, TLR7, 

CD40(TNFRSF5), IL-21 receptor, STAT6, CD86, BLIMP1 (PRDI-BF1) 

14 

Signal 

transduction_Angiotens

in II/ AGTR1 signaling 

via p38, ERK and PI3K 

2.049E-11 

RECK, ERK5 (MAPK7), GRB2, CCL2, H-Ras, eIF4E, ERK1/2, MEF2C, EGR1, MSK1/2 (RPS6KA5/4), 

c-Raf-1, HDAC4, p21, Angiotensin II, p47-phox, Syk, Shc, p70 S6 kinases, FKHR, cPLA2, 

MEK6(MAP2K6), MAP2K5 (MEK5), MMP-2, CREB1, IL-6, MEK1/2, G-protein beta/gamma, 

PPARGC1 (PGC1-alpha), Fyn, AKT(PKB), Catalase, PDK (PDPK1), c-Src, PDGF-D, 

MEKK4(MAP3K4), Pyk2(FAK2), JAK2, Osteopontin, PI3K cat class IA, PI3K reg class IA (p85-alpha), 

PKC-delta, ETS1, EGFR, AGTR1, MNK1, PLD2, p90Rsk, CaMK II delta, COX-2 (PTGS2), ELAVL1 

(HuR), 4E-BP1, p130CAS, Calmodulin, SOD3 (EC-SOD), MMP-14, G-protein alpha-q, Cyclin D1, 

ATOX1, SP1, ADAM17, p38 MAPK, Elk-1, PAI1, PKA-cat (cAMP-dependent), PDGF-R-beta, ATP7A 

15 

Transcription_Negative 

regulation of HIF1A 

function 

3.026E-11 

FHL3, Casein kinase I delta, Sirtuin3, MCM5, RUNX3, VHL, FBXW7, SART1, KLF2, VCP, SKP1, 

UBXD7, Ubiquitin, ING4, GSK3 beta, MCM7, LAMP2, OS-9, EAF2, MDM2, HSP40, MCM2, HSP90, 

Calpain 1(mu), HSP70, SAT2, EGLN1, RACK1, DEC2, HSC70, PRDX2, CITED2, HIF1A, ARD1, 

PSMA7, Sirtuin2, HSP90 beta, Cul1/Rbx1 E3 ligase, AML1 (RUNX1), FHL1 (SLIM1), PTEN, Sirtuin7, 

SSAT, Elongin C, HIF-prolyl hydroxylase, PRDX4, CHIP, RUVBL2, p53, CITED4 
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Supplementary Table 3. Pathway analysis of genes co-expressed cadherin 2 (CDH2) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 3 and Supplementary Figure 4). 

# Maps p-Value Network objects from active data 

1 Cell adhesion_ECM remodeling 2.504E-18 

MMP-13, TIMP3, SERPINE2, MSN (moesin), MMP-1, IL-8, 

MMP-14, MMP-2, Versican, MMP-12, IGF-1 receptor, Matrilysin 

(MMP-7), PLAUR (uPAR), alpha-5/beta-1 integrin, Actin 

cytoskeletal, MMP-10, Collagen IV, TIMP2, Fibronectin, Nidogen, 

Stromelysin-1, LAMA4, MMP-9, PAI1, PLAU (UPA), Syndecan-

2, Collagen I, Kallikrein 3 (PSA), Collagen III 

2 

Cytoskeleton 

remodeling_Regulation of actin 

cytoskeleton organization by the 

kinase effectors of Rho GTPases 

2.188E-15 

Talin, RhoA, WRCH-1, MRCKalpha, Rac1-related, Cdc42 

subfamily, RhoJ, Vinculin, MSN (moesin), ERM proteins, F-Actin 

cytoskeleton, Spectrin, MRLC, ARPC1B, RhoA-related, 

Caldesmon, Actin cytoskeletal, Alpha-actinin, Filamin A, RhoC, 

LIMK1, RhoB, TC10, MyHC, LIMK, MLCK, MRCK 

3 

IL-1 beta- and Endothelin-1-

induced fibroblast/ myofibroblast 

migration and extracellular 

matrix production in asthmatic 

airways 

1.775E-12 

COL1A1, COL4A1, EDNRB, TIMP3, MMP-1, ERK1/2, MMP-2, 

Versican, IL-1RI, COL1A2, CTGF, PDGF-R-alpha, 

Thrombospondin 1, Fibronectin, Stromelysin-1, PAI1, EDNRA, 

Collagen I, PDGF-R-beta, Collagen III 

4 

TGF-beta-induced fibroblast/ 

myofibroblast migration and 

extracellular matrix production in 

asthmatic airways 

4.672E-12 

COL1A1, Biglycan, TGF-beta 2, ITGB1, COL4A1, MMP-13, 

TIMP3, Tenascin-C, MMP-1, ERK1/2, MMP-2, COL1A2, 

COL5A1, Collagen IV, TIMP2, ITGA5, Fibronectin, Stromelysin-

1, MMP-9, PAI1, Collagen I, MEK4(MAP2K4), Collagen III, 

Thrombospondin 2 

5 

Role of TGF-beta 1 in fibrosis 

development after myocardial 

infarction 

6.420E-12 

COL1A1, Biglycan, EDNRB, Tenascin-C, MMP-1, MMP-2, 

ACTA2, COL1A2, CTGF, Angiotensin II, TIMP2, 

Thrombospondin 1, Fibronectin, Prolyl endopeptidase, MMP-9, 

PAI1, EDNRA, Collagen I, Collagen III 

6 

Glucocorticoid-induced elevation 

of intraocular pressure as 

glaucoma risk factor 

1.080E-11 

RhoA, ITGB1, WNT5A, ROR2, COL4A1, MMP-1, Filamin B 

(TABP), Antileukoproteinase 1, SERPINA3 (ACT), WNT2, MMP-

2, Actin cytoskeletal, Alpha-actinin, Filamin A, Srp40, Collagen 

IV, Thrombospondin 1, Fibronectin, Stromelysin-1, PKC-epsilon, 

alpha-V/beta-5 integrin, PAI1, LAMA1, MLCK 

7 Transcription_HIF-1 targets 3.805E-10 

G3P2, TfR1, TGF-beta 2, Adipophilin, Carbonic anhydrase XII, 

Lysyl oxidase, ROR-alpha, Adrenomedullin, HIF1A, P4HA2, 

REDD1, MMP-2, Galectin-1, PLAUR (uPAR), P4HA1, 5’-NTD, 

GLUT3, ENO1, Angiopoietin 2, CTGF, Thrombospondin 1, MMP-

9, PAI1, Carbonic anhydrase IX, Stanniocalcin 2, LRP1, PKM2, 

IBP3 

8 

Protein folding and 

maturation_Posttranslational 

processing of neuroendocrine 

peptides 

2.237E-09 

PAM, Trypsin, AVP-NPII, OT-NPI, GRP(1-27), AVP-Gly, 

GRP(18-27), GRP(1-27)Gly, AVP extracellular region, GRP 

precursor, OT, PCSK5, OT-Gly, GRP(1-17), Neurophysin-II, OT-

Gly-Lys-Arg, NPI, ProGRP, AVP-Gly-Lys-Arg 

9 

Development_Positive regulation 

of WNT/Beta-catenin signaling at 

the receptor level 

7.111E-09 

Biglycan, RECK, ROR2, FZD2, WNT7B, LYPD6, Tenascin-C, 

Glypican-3, Tcf(Lef), SFRP2, WNT, ERK1/2, WLS, TMEM59, 

RAP-2A, Filamin A, MKK7 (MAP2K7), GPR124, Stromelysin-1, 

WNT5B, Frizzled 

10 Cell adhesion_Tight junctions 1.170E-08 

RhoA, Rich1, JAM3, Cingulin, Tubulin alpha, F-Actin, ARP3, 

INADL, MRLC, ACTR3, CGNL1, ZO-3, Actin cytoskeletal, 

PARD6, Claudin-1, Actin, Tubulin (in microtubules) 

11 

Beta-catenin-dependent 

transcription regulation in 

colorectal cancer 

2.542E-08 

MTS1 (S100A4), LAMC2, LAMC2 (80kDa), Calcyclin, Tenascin-

C, IL-8, TCF7L2 (TCF4), Fascin, MMP-14, Lamin A/C, Beta-

catenin, PLAUR (uPAR), LAMC2 (100kDa), Claudin-1, PLAU 

(UPA) 
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12 

Cytoskeleton 

remodeling_Regulation of actin 

cytoskeleton nucleation and 

polymerization by Rho GTPases 

2.568E-08 

RhoA, RhoD, DRF, RhoF (Rif), Profilin, Rac1-related, Cdc42 

subfamily, BAIAP2, FMNL3, FMNL2, F-Actin cytoskeleton, 

RhoA-related, Actin cytoskeletal, RhoC, RhoB, TC10, FNBP1 

13 
Cell adhesion_Integrin-mediated 

cell adhesion and migration 
3.065E-08 

Talin, RhoA, p130CAS, ITGB1, p190-RhoGEF, VCAM1, PKC, 

Vinculin, PINCH, Zyxin, F-Actin cytoskeleton, alpha-5/beta-1 

integrin, Actin cytoskeletal, Alpha-parvin, Alpha-actinin, Collagen 

IV, Fibronectin, PARD6, Collagen I, Collagen III 

14 

Development_Negative 

regulation of WNT/Beta-catenin 

signaling in the cytoplasm 

3.961E-08 

WWP1, Prickle-1, WNT5A, STK4, SIAH1, PKC-alpha, Tcf(Lef), 

WNT, Amer1, beta-TrCP, Alpha-1 catenin, Beclin 1, NEDD4L, 

LATS2, Beta-catenin, Skp2/TrCP/FBXW, Nucleoredoxin, SENP2, 

NKD2, DACT3, Frizzled, DACT1, CDK6 

15 FAK1 signaling in melanoma 4.004E-08 

Talin, RhoA, p130CAS, ITGB1, ARCGAP22, PKC-alpha, 

ERK1/2, MMP-14, MMP-2, alpha-5/beta-1 integrin, Actin 

cytoskeletal, TIMP2, RhoC, ITGA5, Fibronectin, PLAU (UPA) 
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Supplementary Table 4. Pathway analysis of genes co-expressed cadherin 4 (CDH4) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 4 and SupplementaryFigure 5). 

# Maps p-Value Network objects from active data 

1 
Protein folding and maturation_POMC 

processing 
2.428E-13 

PAM, proACTH, POMC, N-POMC, beta-Endorphin 

extracellular region, gamma-LPH, ACTH 1-17, Joining 

peptide (JP), DA-alphaMSH, gamma-MSH, beta-LPH, 

gamma2-MSH, beta-MSH, N-POC, gamma3-MSH, 

ACTH, alpha-MSH, CLIP 

2 
Beta-catenin-dependent transcription 

regulation in colorectal cancer 
1.638E-11 

COX-2 (PTGS2), ID2, MTS1 (S100A4), LAMC2, 

LAMC2 (80kDa), Calcyclin, Tenascin-C, IL-8, CDX2, 

L1CAM, Fascin, MMP-14, PLAUR (uPAR), LAMC2 

(100kDa), SOX9, PLAU (UPA), MDR1, YAP1 (YAp65) 

3 Cell adhesion_ECM remodeling 2.422E-11 

MMP-13, SERPINE2, Caveolin-2, MSN (moesin), 

MMP-1, IL-8, EGFR, MMP-14, MMP-2, MMP-12, HB-

EGF, Matrilysin (MMP-7), PLAUR (uPAR), Actin 

cytoskeletal, Collagen IV, TIMP2, Kallikrein 1, 

Stromelysin-1, LAMA4, PLAU (UPA), Syndecan-2, 

Kallikrein 3 (PSA) 

4 Transcription_HIF-1 targets 2.755E-08 

ID2, Adipophilin, Lysyl oxidase, Transferrin, ROR-

alpha, Endothelin-1, Adrenomedullin, HIF1A, P4HA2, 

LOXL4, MMP-2, Galectin-1, PLAUR (uPAR), 5’-NTD, 

GLUT3, ENO1, CTGF, p21, IBP1, MGF, HGF receptor 

(Met), PGK1, SDF-1, MDR1, IBP3 

5 
Development_Regulation of epithelial-to-

mesenchymal transition (EMT) 
2.916E-08 

N-cadherin, Endothelin-1, E2A, WNT, TGF-beta receptor 

type II, SLUG, EGFR, SIP1 (ZFHX1B), MMP-2, PDGF-

A, IL-1RI, Caldesmon, ACTA2, Tropomyosin-1, PDGF-

R-alpha, TWIST1, HGF receptor (Met), Vimentin, 

Frizzled, TGF-beta receptor type I 

6 
Role of stellate cells in progression of 

pancreatic cancer 
5.083E-08 

RECK, MMP-13, CCL2, IL-8, TGF-beta receptor type II, 

EGFR, ERK1/2, MMP-2, PDGF-A, HB-EGF, IL-6, 

Galectin-1, ACTA2, CTGF, PDGF-R-alpha, PDGF 

receptor, OSF-2, Stromelysin-1, TGF-beta receptor type I 

7 
Development_YAP/TAZ-mediated co-

regulation of transcription 
8.820E-08 

ID2, TEF-3, Endothelin-1, FKHR, SOD2, HIF1A, CDX2, 

SLUG, SIP1 (ZFHX1B), Cyr61, ID3, HBP17, TAZ, 

CTGF, TWIST1, SOX9, YAP1 (YAp65), CDK6 

8 
Role of Tissue factor-induced Thrombin 

signaling in cancerogenesis 
2.122E-07 

MLCP (cat), MMP-13, PKC-alpha, IL-8, EGFR, G-

protein alpha-i family, MRLC, ERK1/2, MMP-2, 

Angiopoietin 1, Actin cytoskeletal, Coagulation factor X, 

ERK2 (MAPK1), G-protein alpha-q/11, Tissue factor, 

PLC-beta3, ERK1 (MAPK3), MLCK, IP3 receptor 

9 
Expression targets of Tissue factor 

signaling in cancer 
1.791E-06 

ITGB1, VEGF-C, GFPT2, IL-8, Cyr61, PLAUR (uPAR), 

Coagulation factor X, CTGF, Tissue factor, PLAU (UPA) 

10 
Role of TGF-beta 1 in fibrosis 

development after myocardial infarction 
2.492E-06 

TMSB4X, EDNRB, Endothelin-1, Tenascin-C, MMP-1, 

TGF-beta receptor type II, MMP-2, ACTA2, Ac-SDKP, 

CTGF, TIMP2, Thymosin beta-4, TGF-beta receptor type I 

11 
MAPK-mediated proliferation of normal 

and asthmatic smooth muscle cells 
2.689E-06 

Amphiregulin, EDNRB, PLC-beta, Endothelin-1, PKC-

alpha, EGFR, G-protein alpha-i family, ERK1/2, PDGF-

A, HB-EGF, PDGF-C, PDGF-R-alpha, PDGF receptor, 

p90Rsk, IP3 receptor, TGF-beta receptor type I 

12 
G protein-coupled receptors signaling in 

lung cancer 
2.940E-06 

PGE2R4, Amphiregulin, EDNRB, Endothelin-1, IL-8, 

EGFR, G-protein alpha-i family, NTSR1, ERK1/2, 

MMP-2, PGE2R1, HB-EGF, Galpha(i)-specific peptide 

GPCRs, TGF-alpha, Galanin, Galpha(q)-specific peptide 

GPCRs, G-protein alpha-q/11, HB-EGF(mature), SDF-1 
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13 Cell adhesion_Desmosomes 3.919E-06 
Keratin 17, Desmocollin 3, Keratin 14, Keratin 5, Keratin 

1, Plakophilin 1, Desmoglein 3, Vimentin, DSC2 

14 Bone metastases in Prostate Cancer 4.695E-06 

Endothelin-1, CCL2, WNT, G-protein alpha-i family, 

DKK1, PTHR1, PTHrP, SDF-1, Frizzled, IBP3, 

Kallikrein 3 (PSA) 

15 
Signal transduction_PDGF signaling via 

MAPK cascades 
5.014E-06 

COX-2 (PTGS2), SPHK1, MMP-13, ERK1/2, MMP-2, 

PDGF-A, PDGF-C, IL-6, EGR1, PDGF-R-alpha, ERK2 

(MAPK1), p21, PDGF receptor, Tissue factor, 

Stromelysin-1, p90Rsk, Phox1 (PRRX1) 
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Supplementary Table 5. Pathway analysis of genes co-expressed cadherin 7 (CDH7) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 5 and Supplementary Figure 6). 

# Maps p-Value Network objects from active data 

1 
Cell cycle_Chromosome 

condensation in prometaphase 
2.632E-18 

Condensin, TOP1, Cyclin B, Histone H3, CAP-G, CAP-G/G2, 

CAP-H/H2, CAP-C, Cyclin A, CNAP1, CAP-D2/D3, Aurora-B, 

TOP2, BRRN1, Aurora-A, CAP-E, CDK1 (p34) 

2 
Cell cycle_The metaphase 

checkpoint 
2.852E-16 

HZwint-1, ZW10, Survivin, Nek2A, CENP-A, CDC20, 

MAD2a, CENP-H, SPBC25, BUB3, Aurora-B, HEC, CENP-E, 

BUB1, Aurora-A, PLK1, CDCA1, CENP-F, Zwilch, AF15q14 

3 
Cell cycle_Role of APC in cell 

cycle regulation 
2.885E-16 

Cyclin B, ORC1L, CKS1, Nek2A, CDC20, MAD2a, BUB3, 

Tome-1, Cyclin A, Aurora-B, CDC25A, BUB1, Geminin, 

Emi1, Aurora-A, PLK1, Securin, CDK1 (p34), CDK2 

4 

DNA damage_ATM/ATR 

regulation of G2/M checkpoint: 

cytoplasmic signaling 

9.173E-15 

p38alpha (MAPK14), Chk2, Chk1, Brca1, Histone H3, 

CDC25C, UBE2C, PP1-cat, Nucleolysin TIAR, 14-3-3, B56G, 

JAB1, PP2A regulatory, Aurora-B, JNK2(MAPK9), CDC25A, 

Cyclin B1, Aurora-A, PLK1, p38 MAPK, DCK, CDK1 (p34) 

5 
Cell cycle_Spindle assembly and 

chromosome separation 
1.398E-14 

Tubulin alpha, Cyclin B, Separase, ZW10, Nek2A, CDC20, 

MAD2a, Importin (karyopherin)-alpha, KNSL1, Aurora-B, 

HEC, TPX2, CSE1L, Aurora-A, Securin, Ran, CDK1 (p34), 

Tubulin (in microtubules) 

6 
DNA damage_Intra S-phase 

checkpoint 
2.323E-13 

PCNA, Chk2, MCM3, Chk1, MCM7, Brca1, SMC3, CDC7, 

Histone H3, MCM5, FANCD2, DTL (hCdt2), MCM4, FANCI 

(KIAA1794), PP1-cat, MCM10, PP1-cat alpha, Histone H2AX, 

Cyclin A, CDC25A, MCM2, Claspin, p38 MAPK, CDK2, 

CDC45L 

7 

DNA damage_ATM/ATR 

regulation of G2/M checkpoint: 

nuclear signaling 

1.213E-11 

HSF1, Chk2, Chk1, Brca1, Wee1, Cyclin B, Cyclin B2, 

CDC25C, PALB2, MDM2, Histone H2AX, Cyclin A, RBBP8 

(CtIP), Cyclin B1, Claspin, PLK1, CDK1 (p34), CDK2 

8 
Cell cycle_Role of Nek in cell cycle 

regulation 
4.024E-11 

Tubulin beta, Tubulin gamma, PI3K cat class IA, Tubulin alpha, 

Histone H3, Nek2A, MAD2a, HEC, Cyclin B1, TPX2, PDK 

(PDPK1), Aurora-A, Ran, CDK1 (p34), Tubulin (in 

microtubules) 

9 
Cell cycle_Start of DNA replication 

in early S phase 
5.728E-10 

MCM3, CDC7, ORC1L, MCM5, RPA3, DP1, MCM4, 

MCM10, ORC6L, MCM4/6/7 complex, MCM2, Geminin, 

CDK2, CDC45L 

10 Abnormalities in cell cycle in SCLC 1.651E-09 
PCNA, E2F2, Histone H3, CKS1, CDK4, BMI-1, MDM2, 

Cyclin A, Aurora-B, Cyclin B1, CDK1 (p34), Cyclin E2, CDK2 

11 Ubiquinone metabolism 2.963E-09 

NDUFA8, NDUFB3, NDUFS8, NDUFS3, DAP13, NDUFS5, 

NDUFAB1, NDUFB1, NDUFB5, NDUFC1, NDUFV3, 

NDUFA7, NDUFA9, NDUFS4, COQ3, NDUFB2, coenzyme 

Q2 homolog, prenyltransferase (yeast), NDUFA4, NDUFB6, 

NDUFB8 

12 
Cell cycle_Cell cycle (generic 

schema) 
3.800E-09 

Cyclin B, E2F2, CDC25C, CDK4, E2F5, DP1, Cyclin A, 

CDC25A, p107, CDK1 (p34), CDK2 

13 ATP/ITP metabolism 4.216E-09 

AK2, CSL4, POLR1A, RRP4, RRM2B, PPA5, RRM2, RRP46, 

ADSS, ACYP2, Ribonucleotide reductase, POLR2I, POLR2B, 

RRP40, POLR2G, RPA16, RPA39, POLR2D, POLR2J, 

Adenosine kinase, PM/SCL-75, HPRT, POLR3K, Small RR 

subunit, RRM1, 5’-NT1B 

14 Cell cycle_Initiation of mitosis 4.695E-09 

Wee1, Cyclin B2, Histone H3, CDC25C, FOXM1, Kinase 

MYT1, Lamin B, KNSL1, Cyclin B1, PLK1, CDK1 (p34), 

CDK7 

15 
Cell cycle_Sister chromatid 

cohesion 
1.312E-08 

PCNA, TOP1, SMC3, Cyclin B, RFC3, Separase, Histone H3, 

DERPC, DCC1, Securin, CDK1 (p34) 
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Supplementary Table 6. Pathway analysis of genes co-expressed cadherin 11 (CDH11) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 6 and Supplementary Figure 7). 

# Maps p-Value Network objects from active data 

1 Cell adhesion_ECM remodeling 2.784E-19 

MMP-13, TIMP3, SERPINE2, Caveolin-2, PLAT (TPA), 

MSN (moesin), MMP-1, IL-8, IGF-2, MMP-14, MMP-2, 

Versican, MMP-12, Matrilysin (MMP-7), PLAUR 

(uPAR), alpha-5/beta-1 integrin, MMP-10, TIMP2, IGF-1, 

Fibronectin, Kallikrein 1, Nidogen, Stromelysin-1, 

LAMA4, PAI1, PLAU (UPA), Syndecan-2, Collagen I, 

Kallikrein 3 (PSA), Collagen III 

2 

IL-1 beta- and Endothelin-1-induced 

fibroblast/ myofibroblast migration and 

extracellular matrix production in 

asthmatic airways 

2.862E-18 

COL1A1, IL-1 beta, AP-1, EDNRB, TIMP3, Decorin, 

CCL2, MMP-1, HAS2, c-Jun, MMP-2, Versican, IL-1RI, 

c-Jun/c-Fos, COL1A2, CTGF, PDGF-R-alpha, 

Thrombospondin 1, Fibronectin, Stromelysin-1, PAI1, 

EDNRA, Collagen I, PDGF-R-beta, Collagen III 

3 
Development_Regulation of epithelial-to-

mesenchymal transition (EMT) 
6.645E-18 

IL-1 beta, HEY1, VE-cadherin, N-cadherin, TGF-beta 2, 

TGF-beta 3, WNT, TGF-beta receptor type II, SLUG, ZO-

1, Lef-1, c-Jun, Sno-N, SIP1 (ZFHX1B), MMP-2, IL-1RI, 

Caldesmon, ACTA2, Tropomyosin-1, PDGF-R-alpha, 

TWIST1, Fibronectin, Vimentin, TCF8, Claudin-1, PAI1, 

PDGF-D, Frizzled, EDNRA, FGFR1, PDGF-R-beta 

4 
Role of TGF-beta 1 in fibrosis 

development after myocardial infarction 
4.860E-14 

COL1A1, Biglycan, TMSB4X, EDNRB, Tenascin-C, 

MMP-1, SMAD7, TGF-beta receptor type II, MMP-2, 

ACTA2, Ac-SDKP, COL1A2, CTGF, TIMP2, Thymosin 

beta-4, Thrombospondin 1, Fibronectin, PAI1, EDNRA, 

Collagen I, Collagen III 

5 

TGF-beta-induced fibroblast/ 

myofibroblast migration and extracellular 

matrix production in asthmatic airways 

8.853E-14 

COL1A1, Biglycan, TGF-beta 2, ITGB1, AP-1, MMP-13, 

TIMP3, Decorin, TGF-beta 3, Tenascin-C, MMP-1, 

HAS2, TGF-beta receptor type II, c-Jun, MMP-2, c-Jun/c-

Fos, COL1A2, COL5A1, TIMP2, ITGA5, Fibronectin, 

Stromelysin-1, PAI1, Collagen I, Collagen III, 

Thrombospondin 2 

6 
Development_TGF-beta-dependent 

induction of EMT via SMADs 
1.227E-12 

ID2, HEY1, N-cadherin, TGF-beta 2, TGF-beta 3, ETS1, 

TGF-beta receptor type II, SLUG, Lef-1, SIP1 (ZFHX1B), 

MMP-2, TGF-beta, TWIST1, Fibronectin, Vimentin, 

TCF8, Claudin-1, PAI1, ILK 

7 
Role of adhesion of SCLC cells in tumor 

progression 
1.634E-11 

RhoA, N-cadherin, ITGB1, VCAM1, alpha-4/beta-1 

integrin, Tenascin-C, alpha-V/beta-1 integrin, MMP-14, 

MMP-2, CDC42, alpha-5/beta-1 integrin, PTHrP, CD9, 

Caveolin-1, Fibronectin, Stromelysin-1, SDF-1, CXCR4 

8 

TGF-beta 1-mediated induction of EMT 

in normal and asthmatic airway 

epithelium 

2.237E-11 

COL1A1, IL-1 beta, N-cadherin, AP-1, Tenascin-C, 

SMAD7, ETS1, TGF-beta receptor type II, SLUG, ZO-1, 

c-Jun, MMP-2, ACTA2, c-Jun/c-Fos, CTGF, TWIST1, 

DAB2, Fibronectin, Vimentin, PAI1 

9 
Development_Role of proteases in 

hematopoietic stem cell mobilization 
2.666E-11 

Cathepsin G, VCAM1, alpha-4/beta-1 integrin, MMP-14, 

MMP-2, alpha-5/beta-1 integrin, DPP4, MGF, 

Fibronectin, c-Kit, Cathepsin K, SDF-1, CXCR4 

10 
Role of stellate cells in progression of 

pancreatic cancer 
5.084E-11 

COL1A1, RECK, MMP-13, c-Fos, CCL2, IL-8, TGF-beta 

receptor type II, c-Jun, MMP-2, Galectin-1, ID1, ACTA2, 

alpha-5/beta-1 integrin, COL1A2, CTGF, PDGF-R-alpha, 

PDGF receptor, OSF-2, Fibronectin, Stromelysin-1, 

Collagen I, PDGF-R-beta, Collagen III 

11 
Signal transduction_WNT/Beta-catenin 

signaling in tissue homeostasis 
7.895E-11 

Cyclin D2, FGF18, Cyclin A2, FKHR, BACE1, Tcf(Lef), 

IL-8, WNT, SLUG, Lef-1, Pitx2, TCF7L2 (TCF4), 

Connexin 43, MMP-2, Versican, Beta-catenin, KLF4, 

PAI1, Frizzled 
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12 
TGF-beta signaling via SMADs in breast 

cancer 
9.851E-11 

TGF-beta 2, MMP-13, MTS1 (S100A4), RUNX2, NOX4, 

JunB, TGF-beta 3, IL-8, ETS1, TGF-beta receptor type II, 

SLUG, Fascin, MMP-14, ITGB5, PTHrP, CTGF, 

TWIST1, FOXQ1 (HFH1), PAI1, GLI-2 

13 

Glucocorticoid-induced elevation of 

intraocular pressure as glaucoma risk 

factor 

1.112E-10 

RhoA, ITGB1, ROCK, WNT5A, ROR2, GCR Beta, GCR, 

PLAT (TPA), MMP-1, Elastin, Filamin B (TABP), 

WNT2, MMP-2, CDC42, GCR Alpha, Thrombospondin 

1, Fibronectin, Stromelysin-1, alpha-V/beta-5 integrin, 

PAI1, LAMA1, MLCK, FGFR1 

14 
Production and activation of TGF-beta in 

airway smooth muscle cells 
1.946E-10 

RhoA, TGF-beta 2, ROCK, AP-1, c-Fos, TGF-beta 3, 

TGF-beta receptor type II, PAR2, G-protein alpha-i 

family, c-Jun, EGR1, c-Jun/c-Fos, TGF-beta, Beta-

tryptase 2, Tryptase, PAI1, PLAU (UPA) 

15 

Development_TGF-beta-dependent 

induction of EMT via RhoA, PI3K and 

ILK 

5.404E-10 

RhoA, TGF-beta 2, TGF-beta 3, PINCH, TGF-beta 

receptor type II, SLUG, ZO-1, Lef-1, ROCK1, Beta-

catenin, Caldesmon, ACTA2, Tropomyosin-1, HIC5, 

Fibronectin, Vimentin, Claudin-1, Actin, ILK 
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Supplementary Table 7. Pathway analysis of genes co-expressed cadherin 12 (CDH12) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 7). 

# Maps p-Value Network objects from active data 

1 

Cytoskeleton remodeling_Regulation 

of actin cytoskeleton organization by 

the kinase effectors of Rho GTPases 

1.414E-09 

RhoA, WRCH-1, DMPK, PAK, Rac1-related, Cdc42 

subfamily, RhoJ, ERM proteins, Spectrin, MRLC, SLC9A1, 

RhoA-related, Alpha adducin, RhoC, RhoB, TC10, MyHC, 

MRCK 

2 

Development_Negative regulation of 

WNT/Beta-catenin signaling in the 

cytoplasm 

5.128E-07 

ELAVL1 (HuR), KLHL12, WWP1, STK4, Porf-2, WNT, 

beta-TrCP, Itch, Alpha-1 catenin, NEDD4L, GSK3 

alpha/beta, Skp2/TrCP/FBXW, TAZ, Cyclin D1, CXXC5, 

RNF185, Axin, YAP1/TAZ 

3 
LRRK2 in neurons in Parkinson’s 

disease 
1.038E-06 

GSK3 beta, AP-2 alpha subunits, Beta-adaptin 2, PKC-zeta, 

MARKK, Tau (MAPT), RAB-5B, AP2A2, CHIP, PKA-cat 

(cAMP-dependent), VIL2 (ezrin) 

4 

Development_Positive regulation of 

WNT/Beta-catenin signaling in the 

cytoplasm 

3.932E-06 

PPP2R2A, TBL1X, Bcl-9, Trabid, USP25, WNT, USP7, 

Alpha-1 catenin, Jouberin, FAK1, GSK3 alpha/beta, IGF-1 

receptor, SMAD3, Makorin-1, Axin, PKA-cat (cAMP-

dependent) 

5 

Cytoskeleton remodeling_Regulation 

of actin cytoskeleton nucleation and 

polymerization by Rho GTPases 

6.154E-06 

RhoA, RhoD, RhoF (Rif), CYFIP2, Rac1-related, Cdc42 

subfamily, BAIAP2, RhoA-related, RhoC, RhoB, TC10, 

FNBP1 

6 

Development_Positive regulation of 

STK3/4 (Hippo) pathway and negative 

regulation of YAP/TAZ function 

7.507E-06 

RhoA, STK4, AMPK beta subunit, Adenylate cyclase, beta-

TrCP, CCDC85C, Itch, Alpha-1 catenin, EBP50, 

Skp2/TrCP/FBXW, TAZ, MARKK, Axin, PKA-cat (cAMP-

dependent), Alpha-catenin 

7 

Development_Negative regulation of 

WNT/Beta-catenin signaling in the 

nucleus 

7.966E-06 

NF-AT5, TBL1X, GSK3 beta, Oct-3/4, WNT, Alpha-1 

catenin, Jade-1, P15RS, CHIBBY, BCL9/B9L, GLI-3R, PC1-

CTT, CHD8, TLE, HIC5, Axin, Histone H1 

8 PI3K signaling in gastric cancer 1.560E-05 

ELAVL1 (HuR), PI3K reg class IA (p85), GSK3 beta, PI3K 

reg class IA, PTEN, HSP27, FAK1, ErbB3, Cyclin D1, 

PRNP, G-protein alpha-q/11, MDR1 

9 
Signal transduction_mTORC2 

downstream signaling 
2.056E-05 

RhoA, Tuberin, GSK3 beta, SREBP1 (nuclear), PKC, STK4, 

NEDD4L, GSK3 alpha/beta, PKC-zeta, IGF-1 receptor, 

Cyclin D1, Adenylate cyclase type IX, PKA-cat (cAMP-

dependent), PREX1 

10 
Signal transduction_Cyclic AMP 

signaling 
3.383E-05 

PKC, cAMP-GEFI, PHK alpha, PHK gamma, GSK3 

alpha/beta, Adenylate cyclase type VI, PKC-zeta, CREB1, 

Adenylate cyclase type IX, PKA-cat (cAMP-dependent) 

11 

Regulation of lipid 

metabolism_Regulation of lipid 

metabolism via LXR, NF-Y and 

SREBP 

3.383E-05 

SREBP1 precursor, Importin (karyopherin)-beta, ACLY, 

SREBP1 (nuclear), AMPK beta subunit, RARalpha, RXRA, 

CREB1, SP1, SREBP1 (Golgi membrane) 

12 
Signal transduction_IGF-1 receptor 

signaling pathway 
7.566E-05 

Androgen receptor, PI3K reg class IA (p85), GSK3 beta, 

SREBP1 (nuclear), Bcl-2, Cyclin D, FAK1, PKC-zeta, IGF-1 

receptor, MNK2(GPRK7), MKK7 (MAP2K7), ACSA 

13 WNT signaling in gastric cancer 1.292E-04 
GSK3 beta, CD44, WNT, beta-TrCP, WNT3, 

Skp2/TrCP/FBXW, Cyclin D1, Axin, FBXW11 

14 
DNA damage_ATM/ATR regulation 

of G1/S checkpoint 
1.306E-04 

ELAVL1 (HuR), Chk2, SMG1, FBXW7, PP2A structural, 

beta-TrCP, PP2A regulatory, Cyclin D1, PER3, FBXW11 

15 

Main pathways of Schwann cells 

transformation in neurofibromatosis 

type 1 

1.344E-04 

Tuberin, PI3K reg class IA (p85), Amphiregulin, GSK3 beta, 

ErbB2, PTEN, Bcl-2, FAK1, ErbB3, Neurofibromin, IGF-1 

receptor, BRD4, Cyclin D1, ErbB4 
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Supplementary Table 8. Pathway analysis of genes co-expressed cadherin 13 (CDH13) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 8 and Supplementary Figure 8). 

# Maps p-Value Network objects from active data 

1 

Development_Regulation of 

epithelial-to-mesenchymal transition 

(EMT) 

3.068E-16 

IL-1 beta, HEY1, VE-cadherin, N-cadherin, TGF-beta 2, WNT, 

TGF-beta receptor type II, SLUG, ZO-1, SIP1 (ZFHX1B), 

MMP-2, PDGF-A, Caldesmon, ACTA2, Tropomyosin-1, 

PDGF-R-alpha, TWIST1, Fibronectin, Jagged1, Vimentin, 

TCF8, DLL4, Claudin-1, PAI1, PDGF-D, Frizzled, EDNRA, 

FGFR1, PDGF-R-beta 

2 
Role of stellate cells in progression 

of pancreatic cancer 
3.846E-16 

COL1A1, MEK1(MAP2K1), NGF, RECK, MMP-13, c-Fos, IL-

8, TGF-beta receptor type II, alpha-V/beta-3 integrin, 

MEK2(MAP2K2), MMP-2, PDGF-A, HB-EGF, Galectin-1, 

ID1, ACTA2, alpha-5/beta-1 integrin, SOS, COL1A2, CTGF, 

PDGF-R-alpha, PDGF receptor, OSF-2, Fibronectin, NFKBIA, 

Collagen I, PDGF-R-beta, Collagen III 

3 Cell adhesion_ECM remodeling 2.966E-15 

MMP-13, TIMP3, SERPINE2, Caveolin-2, PLAT (TPA), IL-8, 

MMP-2, Versican, MMP-12, HB-EGF, PLAUR (uPAR), alpha-

5/beta-1 integrin, Actin cytoskeletal, MMP-10, Collagen IV, 

TIMP2, Fibronectin, Kallikrein 1, Nidogen, LAMA4, PAI1, 

PLAU (UPA), Syndecan-2, Collagen I, Kallikrein 3 (PSA), 

Collagen III 

4 

IL-1 beta- and Endothelin-1-induced 

fibroblast/ myofibroblast migration 

and extracellular matrix production 

in asthmatic airways 

9.808E-14 

COL1A1, IL-1 beta, AP-1, COL4A1, EDNRB, TIMP3, 

Decorin, HAS2, MMP-2, Versican, COL1A2, NF-kB, CTGF, 

PDGF-R-alpha, Thrombospondin 1, Fibronectin, PAI1, 

EDNRA, Collagen I, PDGF-R-beta, Collagen III 

5 

TGF-beta-induced fibroblast/ 

myofibroblast migration and 

extracellular matrix production in 

asthmatic airways 

2.572E-11 

COL1A1, Biglycan, TGF-beta 2, ITGB1, AP-1, COL4A1, 

MMP-13, TIMP3, Decorin, Tenascin-C, HAS2, TGF-beta 

receptor type II, MMP-2, COL1A2, COL5A1, Collagen IV, 

TIMP2, ITGA5, Fibronectin, PAI1, Collagen I, Collagen III, 

Thrombospondin 2 

6 

Role of TGF-beta 1 in fibrosis 

development after myocardial 

infarction 

5.509E-11 

COL1A1, Biglycan, EDNRB, Tenascin-C, TGF-beta receptor 

type II, MMP-2, AGTR1, ACTA2, COL1A2, CTGF, 

Angiotensin II, TIMP2, Thrombospondin 1, Fibronectin, PAI1, 

EDNRA, Collagen I, Collagen III 

7 

MAPK-mediated proliferation of 

normal and asthmatic smooth 

muscle cells 

3.070E-10 

LPAR2, Rb protein, EDNRB, c-Fos, PLAT (TPA), G-protein 

alpha-I family, MKP-1, PDGF-A, HB-EGF, PDGF-C, MEK1/2, 

G-protein beta/gamma, SOS, PDGF-R-alpha, PDGF receptor, 

Elk-1, PAI1, p90Rsk, EDNRA, FGFR1, PDGF-R-beta 

8 
Stimulation of TGF-beta signaling 

in lung cancer 
7.310E-10 

IL-1 beta, N-cadherin, TGF-beta 2, I-kB, ITGB1, Vinculin, 

TGF-beta receptor type II, SLUG, MMP-2, ACTA2, EGR1, 

VEGF-A, TGF-beta, Tropomyosin-1, MMP-28, Fibronectin, 

Vimentin, PAI1, Tropomyosin-2 

9 Cell adhesion_PLAU signaling 1.144E-09 

STAT3, MEK1(MAP2K1), LAMC2, NF-kB2 (p52), alpha-

V/beta-1 integrin, alpha-V/beta-3 integrin, G-protein alpha-I 

family, F-Actin cytoskeleton, MRLC, PLAUR (uPAR), alpha-

5/beta-1 integrin, VEGFR-2, SOS, NF-kB, Caveolin-1, 

MYLK1, sUPAR, alpha-V/beta-5 integrin, PLAU (UPA), 

MLCK, STAT1, PDGF-R-beta 

10 

Glucocorticoid-induced elevation of 

intraocular pressure as glaucoma 

risk factor 

2.691E-09 

ITGB1, WNT5A, COL4A1, GCR Beta, GCR, PLAT (TPA), 

ITGB3, alpha-V/beta-3 integrin, WNT2, MMP-2, Actin 

cytoskeletal, GCR Alpha, LAMB3, Collagen IV, 

Thrombospondin 1, Fibronectin, alpha-V/beta-5 integrin, PAI1, 

LAMA1, MLCK, FGFR1 

11 
Stromal-epithelial interaction in 

Prostate Cancer 
3.849E-09 

Keratin 17, TGF-beta 2, Tenascin-C, TGF-beta receptor type II, 

MMP-2, Versican, PDGF-A, ACTA2, PDGF-R-alpha, HIC5, 

TIMP2, Fibronectin, Vimentin, PDGF-D, FGFR1, Collagen I, 

PDGF-R-beta 
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12 
Development_TGF-beta-dependent 

induction of EMT via MAPK 
3.859E-09 

MEK1(MAP2K1), TGF-beta 2, ITGB1, MLK3(MAP3K11), 

AP-1, c-Fos, NOX4, ITGB3, alpha-V/beta-1 integrin, TGF-beta 

receptor type II, MEK2(MAP2K2), MMP-2, TGF-beta, SOS, 

Fibronectin, Vimentin, Claudin-1, PAI1 

13 

TGF-beta 1-mediated induction of 

EMT in normal and asthmatic 

airway epithelium 

8.956E-09 

COL1A1, IL-1 beta, N-cadherin, AP-1, Tenascin-C, ITGB3, 

TGF-beta receptor type II, SLUG, ZO-1, MMP-2, ACTA2, 

CTGF, TWIST1, Fibronectin, Jagged1, Vimentin, PAI1 

14 
Development_TGF-beta-dependent 

induction of EMT via SMADs 
1.255E-08 

HEY1, N-cadherin, TGF-beta 2, TGF-beta receptor type II, 

SLUG, SIP1 (ZFHX1B), MMP-2, TGF-beta, TWIST1, 

Fibronectin, Jagged1, Vimentin, TCF8, Claudin-1, PAI1 

15 

Signal transduction_Angiotensin 

II/AGTR1 signaling via Notch, 

Beta-catenin and NF-kB pathways 

2.318E-08 

COL1A1, HEY1, I-kB, PRKD1, NF-kB2 (p100), NF-kB2 

(p52), IL-8, Connexin 43, MMP-2, AGTR1, Axin2, Beta-

catenin, ACTA2, HEY2, Angiotensinogen, VEGF-A, NF-kB, 

CTGF, NIK(MAP3K14), Angiotensin II, Fibronectin, YAP1 

(Yap65) 
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Supplementary Table 9. Pathway analysis of genes co-expressed cadherin 15 (CDH15) from the MetaCore 
database (with p-value< 0.05 set as the cutoff value) (Supplementary Table 9 and Supplementary Figure 9). 

# Maps p-Value Network objects from active data 

1 Transcription_HIF-1 targets 6.658E-17 

PDK1, NIX, P4HA2, PFKL, REDD1, SLC9A1, VEGF-A, Cyclin G2, 5’-NTD, GLUT3, 

ENO1, p21, MSH6, Carbonic anhydrase IX, PGK1, Stanniocalcin 2, NIP3, MDR1, AK3, 

IBP3, ID2, Adipophilin, LOXL4, MMP-2, PLAUR (uPAR), WT1, Alpha-1B adrenergic 

receptor, DEC1 (Stra13), ALDOC, c-Myc, Epo, SDF-1, CXCR4, LRP1, PKM2, G3P2, ARNT, 

Heme oxygenase 1, TGF-beta 2, Ceruloplasmin, Lysyl oxidase, ROR-alpha, Adrenomedullin, 

CITED2, HIF1A, HXK1, HIF-1, GPI, P4HA1, FGF2, Angiopoietin 2, IBP1, MGF, 

Thrombospondin 1, TfR1, GLUT1, Carbonic anhydrase XII, Transferrin, SOX2, CX3CR1, 

TGM2, Galectin-1, NOXA, CTGF, MCT4, LDHA, ABCG2, p53, HGF receptor (Met), Leptin, 

MMP-9, PAI1 

2 
Oxidative stress_ROS-induced 

cellular signaling 
7.281E-17 

Casein kinase II, alpha chains, Tuberin, SREBP1 (nuclear), SCD, ERK1/2, EGR1, VEGF-A, 

PKA-reg (cAMP-dependent), TXNIP (VDUP1), IKK (cat), p21, Bak, Cytochrome c, FASN, 

E2I, Carbonic anhydrase IX, Syk, IL-1 beta, Bax, GSK3 beta, FTL, IKK-alpha, FTH1, IRP2, 

GRP75, MDM2, IL-6, GADD45 alpha, NF-kB, AKT(PKB), Catalase, Cyclin B1, c-Src, 

PUMA, NOTCH1 (NICD), Thioredoxin, Heme oxygenase 1, PLK3 (CNK), Chk2, 

Adrenomedullin, HIF1A, IL-8, SRX1, AMPK alpha subunit, Pin1, NIK(MAP3K14), 

Glutaredoxin 1, p300, NFKBIA, HSPA1A, GSTP1, TfR1, ELAVL1 (HuR), HSF1, PKC-beta, 

PRKD1, Sirtuin1, GPX1, PKC, LKB1, PTEN, MEKK1(MAP3K1), HES1, IKK-beta, DLC1 

(Dynein LC8a), NOXA, Cyclin D1, HIF-prolyl hydroxylase, HDAC1, SAE2, SP1, p53, NRF2, 

ADAM17, p38 MAPK, APEX, PAI1, mTOR, NALP3 

3 

Development_Negative 

regulation of WNT/Beta-

catenin signaling in the 

cytoplasm 

6.919E-14 

Casein kinase I delta, NOTCH1 receptor, CXXC4, NKD1, PP1-cat, RIPK4, APC protein, 

Alpha-1 catenin, Casein kinase I epsilon, Beta-catenin, CYLD, CXXC5, Nucleoredoxin, Dsh, 

Casein kinase I alpha, WWP1, STK4, SIAH1, Itch, GSK3 alpha/beta, Ankyrin-G, G-protein 

beta/gamma, WDR26, Skp2/TrCP/FBXW, TAZ, Axin, KCTD1, RACK1, KLHL12, E-

cadherin, HECTD1, Prickle-1, HIPK2, STK3, Tcf(Lef), HUWE1, Amer1, beta-TrCP, PP2A 

catalytic, PR72, SENP2, A20, Cul1/Rbx1 E3 ligase, YAP1/TAZ, MAP1LC3A, CDK6, 

ELAVL1 (HuR), PEG3, WNT5A, PKC-alpha, Porf-2, WNT, Beclin 1, NEDD4L, Cyclin D1, 

p53, NKD2, DACT3, Frizzled, Siah1/SIP/Ebi E3 ligase, DACT1 

4 

Neurophysiological 

process_Dynein-dynactin 

motor complex in axonal 

transport in neurons 

8.348E-13 

NudE, ERK1/2, DCTN1(p150Glued), Importin (karyopherin)-alpha, HDAC6, APP, DYNC1I1, 

Vimentin, Ubiquitin, Hap-1, TMEM108, Centractins, DYNLL, ORP1, Dynein 1, cytoplasmic, 

heavy chain, Tctex-1, Alpha-centractin, MAPRE3(EB3), DYNLT, HAP40, PRNP, 

AKT(PKB), Snapin, PAFAH alpha (LIS1), MAPRPE1(EB1), DYI2, Tubulin (in 

microtubules), Importin (karyopherin)-beta, Dynein 1, cytoplasmic, light chains, TrkC, 

Sortilin, BPAG1, TrkB, JSAP1, NGF, RILP (Rab interacting lysosomal protein), Kinesin 

heavy chain, Bassoon, Kinesin light chain, Carboxypeptidase H, Dynein 1, cytoplasmic, 

intermediate chains, BDNF, NUDEL, SPTBN2 

5 
G protein-coupled receptors 

signaling in lung cancer 
1.444E-12 

SSTR2, c-Fos, CD44, ERK1/2, PGE2R1, HB-EGF, VEGF-A, PKA-reg (cAMP-dependent), 

BDKRB2, Galanin, G-protein alpha-q/11, CCL5, I-kB, GRP-R, CaMK II, Amphiregulin, 

CNR1, IKK-alpha, GALR2, NTSR1, MMP-2, Bcl-XL, G-protein beta/gamma, Galpha(i)-

specific peptide GPCRs, VIP, TGF-alpha, Galpha(i)-specific cannabis GPSRs, AKT(PKB), 

PDK (PDPK1), c-Src, SDF-1, CXCR4, RhoA, Pyk2(FAK2), PGE2R4, G-protein alpha-12 

family, IL-8, G-protein alpha-12, EGFR, G-protein alpha-i family, Galpha(q)-specific peptide 

GPCRs, PGE2R3, HB-EGF(mature), SSTR3, STAT3, EDNRB, Calmodulin, GRP(1-27), NT, 

VIP receptor 1, Cyclin D1, VIP receptor 2, SSTR5, ADAM17, PKA-cat (cAMP-dependent), 

EDNRA 

6 
Transcription_Negative 

regulation of HIF1A function 
2.066E-12 

FHL3, p14ARF, Casein kinase I delta, Sirtuin3, MCM5, RUNX3, COMMD1 (MURR1), 

FBXW7, SART1, KLF2, VCP, Sirtuin6, SKP1, UBXD7, Ubiquitin, ING4, GSK3 beta, 

EGLN2, MCM7, Elongin B, LAMP2, EAF2, MDM2, MCM2, HSP90, Calpain 1(mu), HSP70, 

SAT2, EGLN1, RACK1, PLK3 (CNK), HSC70, PRDX2, CITED2, HIF1A, MTG16 

(CBFA2T3), ARD1, PSMA7, Sirtuin2, HSP90 beta, Cul1/Rbx1 E3 ligase, AML1 (RUNX1), 

Sirtuin1, HIF3A, PTEN, SSAT, Elongin C, HIF-prolyl hydroxylase, PRDX4, CHIP, p53, 

CITED4 

7 
Chemotaxis_Lysophosphatidic 

acid signaling via GPCRs 
4.803E-12 

LPAR3, c-Fos, H-Ras, LARG, ROCK1, ERK1/2, PRK1, HB-EGF, Beta-catenin, EGR1, 

HDAC7, G-protein alpha-q/11, p21, PKC-epsilon, TRIP6, IP3 receptor, LPAR2, PI3K reg 

class IA (p85), Bax, GSK3 beta, PLC-beta, FKHR, PLEKHG2, DIA1, HAS2, Caspase-3, 

Cyr61, CREB1, Bcl-XL, MEK1/2, G-protein beta/gamma, CDC42, Actin cytoskeletal, N-CoR, 

TAZ, MSK1, AKT(PKB), PDK (PDPK1), c-Src, RhoA, Tiam1, E-cadherin, cPKC 

(conventional), G-protein alpha-12 family, PLC-eta 1, PKC-delta, Tcf(Lef), IL-8, EGFR, G-

protein alpha-i family, F-Actin cytoskeleton, MKL2, mTORC1, Caspase-9, LIMK, PLD2, 

CD36, G-protein gamma 12, MEK4(MAP2K4), 4E-BP1, p130CAS, ROCK, PRKD1, PAK, 

PDZ-RhoGEF, PKC, Vinculin, ATF-2, PLC-delta 1, Bcl-2, FasR(CD95), SIVA1, Rho GTPase, 

MKL1, CTGF, p53, PLC-beta3, ADAM17, p38 MAPK, Elk-1, mTOR, PREX1 
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8 

Development_Positive 

regulation of WNT/Beta-

catenin signaling in the 

cytoplasm 

7.694E-12 

Casein kinase II, alpha chains, TBL1X, Bcl-9, BIG1, IRS-2, NKD1, IRS-1, UBE2B, PP1-cat, 

RIPK4, APC protein, Alpha-1 catenin, 14-3-3, Beta-catenin, TGIF, SMAD4, Makorin-1, Dsh, 

USP47, ZBED3, CDK1 (p34), PPP2R2A, SIAH1, USP25, PR130, Insulin receptor, GSK3 

alpha/beta, IGF-1 receptor, ERK2 (MAPK1), AKT(PKB), Axin, HECTD1, ITGB1, SIAH2, 

HIPK2, Tcf(Lef), 14-3-3 zeta/delta, TGT, HSP105, PKA-reg type II (cAMP-dependent), PP2A 

catalytic, Trabid, BIG2, USP9X, WNT, Jouberin, PP2C alpha, SMAD3, Parathyroid hormone, 

NKD2, MITF, PKA-cat (cAMP-dependent), Frizzled, SET7, DACT1 

9 

Immune response_IFN-

alpha/beta signaling via 

MAPKs 

1.507E-11 

IP10, ISG15, TCF7L2 (TCF4), RIG-G, ERK1/2, GCH1, Beta-catenin, Matrilysin (MMP-7), 

PRMT1, ZNF145, SMAD4, PIAS1, Apo-2L(TNFSF10), p21, IFNAR1, VAV-1, STAT1, PL 

scramblase 1, ULK1, IKK-epsilon, Ubiquitin, TAP1 (PSF1), MAPKAPK2, PKC-theta, IFN-

alpha, ISG54, Axin2, p130, MSK1, RSAD2, AKT(PKB), p27KIP1, FZD7, HIP-2, Lck, CD45, 

PKR, PKC-delta, MEK3(MAP2K3), IRF9, MEK4(MAP2K4), Ku80, MEKK1(MAP3K1), 

SP5, Filamin B (TABP), FOXO3A, FasR(CD95), IRF7, Cyclin D1, HDAC1, SMAD3, p38 

MAPK, mTOR 

10 

Immune response_Antigen 

presentation by MHC class I: 

cross-presentation 

2.580E-11 

CLEC12A, Fc epsilon RI gamma, MSR1, Endoplasmin, gp91-phox, FCGR3A, Rac2, 

CLEC4C, VCP, TAP, Rab-3C, VAV-1, p47-phox, Syk, Rab-6, IP-30, Adipophilin, HYOU1, 

IRAP, MyD88, C1q, cPLA2, Calreticulin, MHC class I, HSP60, TLR9, HSP90, Syntaxin 4, 

HSP70, Rab8B, LRP1, EHD1, Cathepsin L, Dectin-1, Rab-4A, SEC61 complex, FCGRT, 

LLIR, Cytochrome b-558, CLEC9A, HSP105, Rab-32, Fc gamma RII alpha, Rab-35, 

RanBPM, Rab-33A, Cathepsin B, HSPA1A, SEC22B, Fc gamma RI, DAP12, CD74, Rab-

11A, CD8, UFO, Rab-10, OLR1, IKK-beta, TLR7, CD40(TNFRSF5), RAB-5B, TRIF 

(TICAM1), CHIP, SNAP-23, Rab-34, TLR2 

11 HGF signaling in melanoma 8.917E-11 

GAB1, CD44, ERK1/2, Beta-catenin, EGR1, Fibronectin, PI3K reg class IA (p85), GSK3 beta, 

N-Ras, Bcl-XL, TWIST1, AKT(PKB), alpha-MSH, MC1R, HGF, MEK1(MAP2K1), N-

cadherin, E-cadherin, PI3K cat class IA, Desmoglein 1, HIF1A, C/EBPbeta, RXRA, PKC-

beta2, PKC-alpha, ATF-2, SLUG, Cyclin D1, Plakoglobin, HGF receptor (Met), p38 MAPK, 

Elk-1, MITF 

12 

CHDI_Correlations from 

Replication data_Causal 

network (positive correlations) 

9.062E-11 

MHC class II, IL-1 alpha, Calcineurin A (catalytic), ICAM1, CD44, CD28, MSK1/2 

(RPS6KA5/4), HDAC7, IP3 receptor, I-kB, PI3K reg class IA (p85), PKC-theta, MyD88, IKK-

alpha, PLC-gamma 1, NR2, ITK, Caspase-3, IL-1RI, CREB1, G-protein beta/gamma, CD83, 

NF-kB, AKT(PKB), HSP70, SDF-1, CXCR4, RhoA, Pyk2(FAK2), CD80, PI3K cat class IA, 

Lck, CD45, Slp76, HIP1, MEK3(MAP2K3), PSMC2, MEF2, NIK(MAP3K14), LAT, NR2A, 

RhoGDI alpha, MEK4(MAP2K4), ROCK, Calmodulin, PKC-alpha, CD3, IKK-beta, IP3R1, 

PSD-95, IRAK1/2, CD40(TNFRSF5), Calcineurin B (regulatory), p38 MAPK, TLR2 

13 
Neurogenesis_NGF/ TrkA 

MAPK-mediated signaling 
9.356E-11 

SPHK1, NEFL, c-Fos, Fra-1, H-Ras, ERK1/2, MEF2C, HB-EGF, EGR1, PP2A regulatory, 

SGK1, PKA-reg (cAMP-dependent), FRS2, p21, VGF, PKC-epsilon, Ephrin-A receptor 2, IP3 

receptor, TY3H, MAPKAPK2, PLC-gamma 1, CalDAG-GEFII, N-Ras, SNX26 (TCGAP), 

MAP2K5 (MEK5), KIDINS220, CREB1, MEK1/2, PLAUR (uPAR), Flotillin-1, M-Ras, 

MSK1, RGS2, p107, Stromelysin-1, c-Src, GAB2, Sequestosome 1(p62), SHPS-1, MATK, 

Efs/Sin, RIN, NF-kB1 (p50), K-RAS, PKC-delta, MEK3(MAP2K3), SOS, PP2A catalytic, 

C3G, SH2B, p90Rsk, p130CAS, NGF, Calmodulin, MAGI-2, SHP-2, SUR-8, Cyclin D1, 

SORBS1, SP1, PVR, JMJD3, SHB, RIT, p38 MAPK, Elk-1, PKA-cat (cAMP-dependent), 

FosB 

14 
Role of tumor-infiltrating B 

cells in anti-tumor immunity 
1.033E-10 

MIG, IL-18R1, MHC class II, IP10, CTAG2, DHFR, Granzyme B, IFN-gamma, MAGE-1 

antigen, Apo-2L(TNFSF10), CD19, Dsk2 (ubiquilin-2), Perforin, STAT1, MAGE-3, IFN-

alpha, ACAT2, CD4, CD27(TNFRSF7), MHC class I, MAGE-4 antigen, G-protein 

beta/gamma, NXF2, Kappa chain (Ig light chain), MAGEB2, FasL(TNFSF6), NF-kB, CT47A, 

SDF-1, CXCR4, IL-2, CD40L(TNFSF5), G3P2, Syndecan-1, MAGEC1, GAS11, CD38, I-

TAC, T-bet, G-protein alpha-i family, AID, IL4RA, Bcl-6, IRF4, RGS1, Btk, CXCR3, STAT3, 

CD8, CXorf61, SOX2, ATF-2, FasR(CD95), CXCL13, KTN1, CD40(TNFRSF5), STAT6, 

MAGEC2, p53, IL-21, BLIMP1 (PRDI-BF1) 

15 
IL-6 signaling in breast cancer 

cells 
1.105E-10 

gp130, IP10, c-Fos, GAB1, ESR1 (nuclear), H-Ras, ERK1/2, HSD17B1, Vimentin, Carbonic 

anhydrase IX, MDR1, STAT1, MUC1, Survivin, PI3K reg class IA, CYP19, IL-6, Bcl-XL, 

MEK1/2, TWIST1, AKT(PKB), c-Myc, N-cadherin, E-cadherin, PI3K cat class IA, NF-kB1 

(p50), C/EBPbeta, JAB1, SOS, IL6RA, STAT3, SHP-2, Bcl-2, Fascin, S100A7, AKT2, Cyclin 

D1, SNAIL1, Jagged1, IL-6 receptor, C/EBPdelta 

 

 


