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INTRODUCTION 
 

Worldwide, liver cancer is one of the most common 

cancers, and its morbidity and mortality are on the rise [1, 

2]. It has a mortality-to-morbidity ratio of 0.91 and is 2.3 

times more common in men than in women [3]. Notably, 

the outlook for patients is even grimmer in Asia, where 

72% of new cases are reported to be diagnosed (over 

50% in China), with five-year survival rates as low as 

12% [4, 5]. Hepatocellular carcinoma (HCC) is the  

most common type of primary liver cancer and often 

develops from chronic liver disease caused by hepatitis 

B virus or hepatitis C virus infection, alcoholism, or 

metabolic syndrome [6]. Currently, surgical resection, 

liver transplantation, and locoregional therapy (including 

radiofrequency ablation) are recommended as curative 

treatments for only one-third of HCC patients. The 

remaining 60%–70% of patients receive noncurative 
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ABSTRACT 
 

As a multicomponent, multitarget empirical therapy, traditional Chinese medicine (TCM) has been used clinically in 
Asia for thousands of years. Due to this unique feature, TCM therapy is considered a promising therapeutic strategy 
for the treatment of hepatocellular carcinoma (HCC). Er-Zhi-Wan (EZW), a well-known TCM formula containing two 
herbs, Fructus Ligustri Lucidi (FLL, Nü-Zhen-Zi) and Ecliptae Herba (EH, Mo-Han-Lian), is commonly used in clinical 
practice to prevent and treat liver diseases. Modern pharmacological studies have shown that both EH and FLL can 
inhibit HCC proliferation. However, the pharmacological mechanism, potential targets, and clinical value of EZW in 
inhibiting HCC have not been fully elucidated. We used multilevel databases (Gene Expression Omnibus (GEO), 
Traditional Chinese Medicine Systems Pharmacology (TCMSP), High-throughput Experiment- and Reference-guided 
database (HERB), and SwissTargetPrediction) to show that EZW suppresses HCC through 19 active components 
acting on 66 potential targets. Enrichment analysis revealed that EZW mainly regulates HCC progression through 
various metabolic pathways, the cell cycle, and cellular senescence. Furthermore, we used The Cancer Genome 
Atlas (TCGA)-LIHC database to analyze the expression patterns and clinical characteristics of cellular senescence-
related genes and identified CDK1, CDK4, CHEK1, and G6PD as key therapeutic molecular targets in EZW-
suppressed HCC. Molecular docking revealed that EZW could exert its anti-HCC effect by binding various active 
components to the above cellular senescence-related genes and regulating their activities. In conclusion, we 
systematically revealed the potential pharmacological mechanisms and molecular targets of EZW against HCC 
based on multilevel data integration and a molecular docking strategy. 
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treatments, such as molecularly targeted agents, 

monoclonal antibodies, or immune checkpoint inhibitors, 

as initial therapy [7]. However, due to the heterogeneity 

and complexity of HCC, most patients are diagnosed at 

an advanced stage; therefore, systemic therapy is often 

recommended as the standard of care [8]. Although it is 

more effective than monotherapy, it is only suitable for 

use in a small number of patients and is associated with 

severe toxicity [9].  

 

The pathological mechanism of HCC is very complex, 

and multiple targets and signaling pathways are involved 

in its development [10]. This complexity requires the 

development of a therapeutic strategy that modulates 

multiple targets in HCC to improve patient outcomes.  

As a multicomponent and multitarget empirical  

therapy, traditional Chinese medicine (TCM) has been 

recognized worldwide in recent years for its multitarget 

synergistic intervention effect on HCC. Clinically,  

as an adjuvant drug, TCM has shown good efficacy in 

HCC patients, significantly reducing the incidence, 

preventing the recurrence, and improving the overall 

survival of HCC patients [11–14]. In addition, modern 

pharmacological studies have shown that TCM or TCM-

derived natural medicines can effectively suppress the 

development and progression of HCC in vitro and  

in vivo [15–18]. Due to this unique feature, TCM is 

considered a promising therapeutic strategy for the 

treatment of complex diseases, including liver cancer. 

 

Er-Zhi-Wan (EZW), a well-known TCM formula, was 

first recorded in the ‘Fu Shou Jing Fang’ in the Ming 

Dynasty [19]. It consists of an equal weight mixture of 

two herbs, Fructus Ligustri Lucidi (FLL, Nü-Zhen-Zi) 

and Ecliptae Herba (EH, Mo-Han-Lian). According to 

Chinese medicinal theory, EZW is commonly used 

clinically in China for the treatment of liver-kidney yin 

deficiency syndrome (LKYDS), which is a pathological 

and diagnostic pattern caused by an imbalance of yin and 

yang and is more common in primary liver cancer, 

diabetes, and hypertension [20]. Therefore, EZW is 

commonly used clinically in China to prevent or treat 

various liver and kidney diseases. Yao et al. [21] 

uncovered the hepatoprotective effect of EZW based on a 

metabolomic strategy. Hu et al. [22] revealed that FLL 

extract induced apoptosis and cellular senescence in 

human hepatoma cells by upregulating p21, confirming 

that FLL is a potential anticancer herb for the treatment of 

HCC. Moreover, our previous study showed that EH 

extract could inhibit the proliferation of HCC cells by 

inhibiting PI3K-AKT signaling [18]. However, few 

studies have comprehensively investigated the molecular 

mechanisms involved in EZW in the treatment of HCC. 
 

Since TCM prescriptions comprise many kinds of  

herbs and contain many kinds of ingredients, it is 

difficult to systematically and comprehensively study 

the pharmacological mechanism of TCM with the 

existing experimental methods. With the successful 

establishment of multiple biological databases and the 

rapid development of systems biology, the emergence 

of network pharmacology has brought great 

opportunities for breakthroughs in TCM research  

[23, 24]. To date, this method has been successfully 

used to elucidate the multitarget efficacy of TCM  

in the treatment of various diseases, effectively 

bridging the gap between Western medicine and 

Chinese medicine [25, 26]. In this study, we employed 

various biological databases and biocomputational 

approaches to investigate the pharmacological network 

involved in EZW in the treatment of HCC to predict 

potential molecular targets and pharmacological 

mechanisms. The overall research flowchart is shown 

in Figure 1. 

 

RESULTS 
 

Identification of pathological genes in HCC 

 

To identify which genes are involved in the progression 

of HCC, we analyzed the Gene Expression Omnibus 

(GEO) dataset GSE84402 to identify genes that were 

differentially expressed in 14 pairs of HCC tissues and 

corresponding noncancerous tissues. As shown in the 

volcano plot, a total of 1199 differentially expressed 

genes (DEGs) were identified in these 14 pairs of liver 

tissues, of which 632 genes were upregulated and 567 

genes were downregulated in cancerous tissues 

compared with noncancerous liver tissues (Figure 2A 

and Supplementary File 1). It is speculated that the 

progression of HCC involves extensive and complex 

pathological gene regulation. 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analyses of 

DEGs in HCC 

 

To further investigate the underlying molecular 

mechanisms involved in HCC progression, we performed 

enrichment analysis on 1199 DEGs, including GO and 

KEGG analyses. We used bubble plots to display the top 

20 GO (Figure 2B) and KEGG (Figure 2C) enrichment 

analysis results. GO functions can be divided into three 

categories: biological process (BP), molecular function 

(MF), and cellular component (CC), and the top 20 GO 

annotation results show that these DEGs are mainly 

enriched in the BP category. These BPs mainly involve 

metabolic and cellular processes, including the following: 

“carboxylic acid metabolic process (GO:0019752)”, 

“organic acid metabolic process (GO:0006082)”, 

“oxoacid metabolic process (GO:0043436)”, “mitotic  

cell cycle (GO:0000278)”, “mitotic cell cycle process 
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(GO:1903047)”, “cell cycle (GO:0007049)”, and “cell 

division (GO:0051301)”. 

 

In addition, the results of the top 20 KEGG pathways 

indicated that the progression of HCC is closely related 

to 6 categories, including metabolism, cellular 

processes, human diseases, genetic information 

processing, organismal systems, and environmental 

information processing. In particular, 12 of the 20 

pathways were involved in the metabolism category, 

including “Metabolic pathways (ko01100)”, “Fatty acid 

degradation (ko00071)”, “Retinol metabolism 

(ko00830)”, “Tryptophan metabolism (ko00380)”, 

“Tyrosine metabolism (ko00350)”, “Alanine, aspartate 

and glutamate metabolism (ko00250)", "Valine, leucine 

and isoleucine degradation (ko00280)”, “Drug 

metabolism – cytochrome P450 (ko00982)”, “Caffeine 

metabolism (ko00232)”, “Metabolism of xenobiotics by 

cytochrome P450 (ko00980)”, “Carbon metabolism 

(ko01200)”, and “Biosynthesis of amino acids 

(ko01230)”. Notably, metabolic pathways (ko01100) 

were enriched with multiple downregulated DEGs, 

including multiple metabolic enzymes (PFKFB1, 

AKR1D1, CYP1A2, XDH, ALDH8A1, LDHD, GCDH, 

ADH6, ADH4, ABAT, and HOGA1). The heatmap 

results showed that abnormal changes in various 

metabolic enzymes occurred during the progression of 

HCC, which suggested that abnormal expression of 

metabolic enzymes affected the development of HCC 

(Figure 2D). Furthermore, HCC progression is regulated 

by the cell cycle (ko04110), and multiple upregulated 

DEGs were found to be significantly enriched in this 

pathway, including multiple cell cycle-related 

regulatory genes (CCNB3, PCNA, CDK1, CDK4, 

CCNB1, CCNB2, and CHEK1). The combined heatmap 

analysis indicated that the cell cycle is abnormally 

activated in HCC, leading to the indefinite growth of 

HCC (Figure 2E). 

 

Screening of active compounds and potential 

therapeutic targets of EZW 

 

EZW is produced by mixing Fructus Ligustri Lucidi 

and Ecliptae Herba in equal proportions. According to 

the two criteria of drug-likeness (DL) ≥ 0.18 and oral 

bioavailability (OB) ≥ 30% [27, 28], a total of 9 active 

ingredients in EH and 10 active ingredients in FLL were 

identified in TCMSP. Among them, studies have shown 

that both oleanolic acid and ursolic acid are active. 

components of FLL, but they were not included in the 

 

 
 

Figure 1. Flowchart of the analytical procedures of the study. 
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TCMSP screening analysis because they did not meet 

the DL and OB conditions [29]. Therefore, to increase 

the credibility of the study, these two active ingredients 

were included in the list of active ingredients of FLL By 

combining the active ingredients of EH and FLL, it was 

revealed that EZW comprised a total of 19 active 

ingredients, of which the two herbs each contained 

quercetin and luteolin (Supplementary File 2). The 

chemical structures of these active compounds are 

shown in Figure 3. 

 

We identified potential targets for these 19 active 

compounds through two target prediction databases, 

High throughput Experiment- and Reference-guided 

(HERB) and SwissTargetPrediction. In the HERB 

database, flavonoids (luteolin, quercetin, and 

kaempferol) possessed more targets, but targets failed 

to be identified for 4 active compounds (linarin, 

lucidumoside D, lucidusculine, and olitoriside) 

(Figure 4A and Supplementary File 3). Similarly,  

in the SwissTargetPrediction database, flavonoids 

(luteolin, quercetin, and kaempferol) also possessed 

more targets, while targets for taxifolin, lucidusculine, 

and olitoriside failed to be identified (Figure 4B and 

Supplementary File 3). After removing duplicate 

values, 215 potential targets of 9 active compounds in 

EH were identified from the two databases. Likewise, 

379 potential targets of 12 active compounds in FLL 

were identified. Finally, 446 potential targets of 19 

active ingredients in EZW were identified. 

 

Target screening, network, and topological analysis 

of EZW in the treatment of HCC 

 
To explore which pathological targets EZW acts on to 

treat HCC, we performed Venn diagram analysis of 

 

 
 

Figure 2. Identification and enrichment analysis of differentially expressed genes in 14 pairs of HCC tissues and 
corresponding noncancerous tissues. (A) The expression patterns of the DEGs are shown in volcano plots. Red and blue points represent 
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upregulated genes (log2FC ≥ 1) and downregulated genes (log2FC ≤ -1), respectively, while gray represents genes with no significant 
difference in expression (P.adj < 0.05). (B, C) Bubble plot showing the top 20 GO (B) and KEGG (C) enrichment analysis results. The larger the 
ordinate value in the bubble chart, the more significant the corresponding GO or KEGG result is. The abscissa represents the normalized 
upregulation and downregulation value (the ratio of the difference between the number of upregulated genes and the number of 
downregulated genes to the total number of differentially expressed genes). The higher the value is, the higher the number of upregulated 
genes enriched in the GO/KEGG pathway results; conversely, the lower the value is, the higher the number of downregulated genes enriched 
in the GO/KEGG pathway results. (D, E) Heatmaps showing the expression patterns of genes involved in the cell cycle (ko04110) or metabolic 
pathways (ko01100). 

 

1199 DEGs in HCC with potential therapeutic targets 

of the active components in EZW. As shown in Figure 

4C, a total of 66 targets overlapped; presumably, EZW 

may suppress HCC by regulating these 66 genes. 

Notably, both herbs in EZW act on HCC through 26 

common targets, which is speculated to be the reason 

FLL and EH can exert synergistic anti-HCC 

pharmacological effects. Moreover, 35 of these 66 

genes were abnormally low expressed in HCC and 

mainly involved metabolism-related genes, including 

CYP3A4, XDH, ARG1, ADRA1B, and ALDH2. In 

contrast, there were 31 genes expressed at abnormally 

high levels, mainly including genes involved in the cell 

cycle and related to proliferation such as CHEK1, 

CCNA2, CDK4, CCNB2, CCNB1, CDK1, PCNA, and 

MMP9 (Figure 4D). EZW may treat HCC by reversing 

the expression patterns of these genes, but further 

confirmation is needed. 

 

To further understand the interconnections between the 

herbs, active compounds, and potential therapeutic 

targets for HCC, we generated an herb-compound-target 

(H-C-T) network (Figure 5A). The results revealed that 

the two herbs exerted anti-HCC effects on multiple 

targets mainly through active ingredients such as 

quercetin, luteolin, kaempferol, demethylwedelolactone, 

 

 
 

Figure 3. Chemical structures of 19 active ingredients of EZW. 
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wedelolactone, oleanic acid, and ursolic acid. Moreover, 

the results indicated that ESR1, AR, CCNA2, PTGS2, 

and CA2 were most regulated by multiple active 

components of EZW. The H-C-T network revealed an 

intricate molecular network involved in the suppression 

of HCC by EZW. To further investigate the intrinsic 

connectivity of the therapeutic targets of EZW against 

HCC, we generated a protein‒protein interaction (PPI) 

network and performed Minimal Common Oncology 

Data Elements (MCODE) analysis and annotation on 

this network. The PPI network contained 60 nodes, 136 

connections, and 3 MCODE networks (Figure 5B). We 

performed pathway and process enrichment analysis for 

each MCODE component and retained the top 3 terms 

with the lowest P values as functional descriptions of 

the corresponding components (Supplementary File 4) 

 

 
 

Figure 4. Prediction and screening of potential targets of EZW for the treatment of HCC. (A, B) Prediction and collection of 
potential targets for EZW based on the HERB and SwissTargetPrediction databases. (C) Venn diagram identifying 66 potential therapeutic 
targets for EZW in the treatment of HCC (35 targets were downregulated and 31 were upregulated in HCC). (D) Heatmap analysis of the 
expression patterns of 66 potential therapeutic targets of EZW in the treatment of HCC in the GSE84402 dataset. 
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MCODE1 was used to annotate cell cycle-related 

pathways, while MCODE3 was used to annotate 

metabolism-related pathways. 

 

To explore hub genes in the PPI network, we 

performed a topological analysis of this network. The 

PPI network was entered into Cytoscape software to 

calculate the topological parameters of the nodes in the 

network. We calculated the top 10 hub genes in the 

PPI network using a different approach via the 

CytoHubba plugin and visualized the network via 

Cytoscape. These calculation methods included the 

degree method, maximum neighborhood component 

(MNC), maximal clique centrality (MCC), and density 

of maximum neighborhood component (DMNC). The 

results showed that regardless of the calculation 

method, the genes in the MCODE1 and MCODE2 

components of the top ten hub genes were highly 

enriched, and mainly included CDK1, CDK4, CCNB1, 

CCNB2, CCNA2, PCNA, AURKA, and AURKB 

(Figure 5C). 

Functional enrichment analysis of the potential 

therapeutic targets of EZW for the treatment of 
HCC 

 

To fully reveal the mechanism underlying the treatment 

of HCC by EZW, we performed GO and KEGG pathway 

analyses. The top 25 GO terms revealed the functions of 

the potential therapeutic targets of EZW for the treatment 

of HCC. Annotation analysis of CCs revealed that  

these therapeutic targets were mainly involved in  

“cyclin-dependent protein (GO:0000307)”, “serine/ 

threonine protein kinase complex (GO:1902554)”, and 

“condensed chromosome (GO:0000793)” (Figure 6A). 

For MF analysis, these therapeutic targets were mainly 

involved in “histone kinase activity (GO:0035173)”, 

“enzyme binding (GO:0019899)”, and “catalytic activity 

(GO:0003824)” (Figure 6B). Moreover, the top 25 GO 

enrichment analysis results showed that these therapeutic 

targets were mainly enriched in the following BPs: 

“response to lipid (GO:0033993)”, “cell proliferation 

(GO:0008283)”, “G2/M transition of mitotic cell cycle 

 

 
 

Figure 5. Network and topological analyses of 66 potential therapeutic targets for EZW in HCC. (A) Herb compound-target 

network analysis. (B) Protein‒protein interaction network and gene clustering analysis (Metascape web tool). (C) Identification of the top 10 
hub genes in the PPI network by different topological calculation methods. 
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(GO:0044839)”, “regulation of cell cycle (GO: 

0051726)”, and “fatty acid derivative metabolic  

process (GO:1901568)” (Figure 6C). Furthermore,  

we performed a secondary classification of all enriched 

GO terms, which showed that within the BP category, 

the GO terms were mainly involved in cellular 

processes, metabolic processes, and biological 

regulation (Figure 6D). 

 

In the KEGG pathway enrichment analysis, the results 

indicated that EZW exerted its effect on HCC mainly 

through the following pathways: “Cell cycle 

(ko04110)”, “Progesterone-mediated oocyte maturation 

(ko04914)”, “Steroid hormone biosynthesis (ko00140)”, 

“p53 signaling pathway (ko04115)”, “Cellular 

senescence (ko04218)”, “TNF signaling pathway 

(ko04668)”, “Metabolism of xenobiotics by cytochrome 

P450 (ko00980)”, “IL-17 signaling pathway 

(ko04657)”, “Hepatitis B (ko05161)”, and “FoxO 

signaling pathway (ko04068)” (Figure 7A). These top 

25 KEGG pathways were mainly divided into 6 

categories, including metabolism, genetic information 

processing, environmental information processing, 

cellular processes, organismal systems, and human 

diseases (Figure 7B). To gain a more comprehensive 

understanding of the mechanism by which EZW 

suppresses HCC, we next performed a secondary 

classification of all KEGG pathway annotations, and the 

results are shown in Figure 7C. In the metabolism 

category, the KEGG pathways were mainly enriched in 

“Global and overview maps”, “Lipid metabolism”, and 

“Amino acid metabolism”. For the cellular process 

category, the KEGG pathways were mainly enriched in 

“Cell growth and death”, “Cellular community – 

eukaryotes”, and “Cell motility”. 

 

To further identify the molecular mechanisms involved 

in the suppression of HCC by EZW, we captured these 

 

 
 

Figure 6. GO enrichment analysis of 66 potential therapeutic targets for EZW in HCC. (A) Cellular components. (B) Molecular 
functions. (C) Biological processes. (D) Secondary classification chart of GO enrichment terms. 
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therapeutic targets through the Metascape database for 

pathway and process enrichment analysis. We present 

the correlations between different enriched terms in a 

network graph, and the results revealed that “PID 

FOXM1 pathway”, “Cell cycle”, “steroid metabolic 

process”, “SUMOylation”, and “cell cycle G2/M phase 

transition” were significantly enriched (Figure 7D, 7E). 
 

Identification of cellular senescence-induced/inhibited 

genes involved in the effects of EZW on HCC and 

prognostic analysis 
 

Based on the above enrichment analysis, we speculate 

that cell cycle pathways play a key role in the effects of 

EZW treatment on HCC. However, recent studies have 

shown that cellular senescence permanently inhibits the 

proliferative capacity of cells and induces irreversible 

cell cycle arrest, which is considered a promising 

strategy for the treatment of cancer [30]. Our KEGG 

enrichment analysis results revealed that EZW 

inhibition of HCC involves the cellular senescence 

pathway. Thus, we believe that the cellular senescence 

pathway plays a key role in the suppression of HCC by 

EZW. 

 

To fully characterize which senescence-related genes 

are involved as therapeutic targets in the treatment of 

HCC by EZW, we first identified 153 cellular 

 

 
 

Figure 7. KEGG enrichment analysis of 66 potential therapeutic targets for EZW in HCC. (A) Top 25 KEGG pathways. (B) Secondary 
classification of the top 25 KEGG pathways. (C) Secondary classification of all KEGG pathways. (D) Network of enriched terms colored by 
cluster ID analyzed by the Metascape database, where nodes that share the same cluster ID are typically close to each other. (E) Network of 
enriched terms colored by P value, where terms containing more genes tend to have a more significant P value. 
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senescence-induced genes and 121 cellular senescence-

inhibited genes from the cellular senescence gene 

database CellAge (Supplementary File 5). Subsequently, 

66 therapeutic targets were assessed by Venn diagram 

analysis, and 4 cellular senescence-induced genes 

(IGFBP3, CHEK1, AXL, and AR) and 6 cellular 

senescence-inhibited genes (CDK4, CDK1, FOS, G6PD, 

AURKA, and MMP9) were assessed (Figure 8A). 

Moreover, we comprehensively characterized the 

expression patterns of these 10 senescence-related genes 

in HCC (Figure 8B). The results showed that the 

cellular senescence-induced genes AR, AXL, and 

IGFBP3 were abnormally expressed at low levels in 

HCC, while CHEK1 showed the opposite trend. 

 

 
 

Figure 8. Prognostic analysis of cellular senescence-related genes and establishment of a prognostic model. (A) Venn diagram 

identified cellular senescence-related genes among 66 therapeutic targets. (B) Heatmap analysis of the expression patterns of 10 cellular 
senescence-related genes in 14 pairs of adjacent nontumor liver tissues and hepatocellular carcinoma tissues. (C) Forest plot of univariate 
Cox analysis of 10 cellular senescence-related genes. (D) Correlation network of 10 cellular senescence-related genes. (E) LASSO coefficient 
profiles of 10 cellular senescence-related genes. (F) Cross-validation for tuning parameter selection in LASSO regression. (G) The distribution 
of risk scores, gene expression levels, and survival status of LIHC patients in the training cohort. (H) Kaplan–Meier curves of the OS of all LIHC 
patients in the TCGA cohort based on the risk score. (I) Time-dependent ROC curve analysis of the prognostic model (1, 3, and 5 years). 
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Regarding the cellular senescence-inhibited genes, 

except FOS, which was abnormally expressed at low 

levels in HCC samples, they were all abnormally highly 

expressed. 

 

Univariate Cox proportional hazards regression analysis 

revealed that seven cellular senescence-related genes 

were associated with the prognosis of HCC, and CDK1, 

CDK4, G6PD, AURKA, MMP9, IGFBP3, and CHEK1 

were considered risk factors (P<0.01, HR>1) (Figure 

8C). Furthermore, the expression levels of these 7 

prognostic genes were strongly positively correlated 

with each other (Figure 8D). 

 

Establishment of a prognostic risk scores with 

cellular senescence-related genes in the TCGA 

dataset 

 

The above seven senescence-related genes were 

analyzed by least absolute shrinkage and selection 

operator (LASSO) Cox regression analysis to establish 

a cellular senescence-related signature for predicting 

survival. A 4-gene signature was constructed according 

to the optimum λ value (Figure 8E, 8F). We then 

established a risk score formula based on the expression 

of the four genes for patients with LIHC: risk score = 

(0.0199 + expression value of CDK1) + (0.0210 + 

expression value of CDK4) + (0.0665 + expression 

value of CHEK1) + (0.2228 + expression value of 

G6PD). The risk score of each patient was then 

calculated using this formula, and patients in the TCGA 

cohort were stratified into low- and high-risk groups 

according to the median value of the risk score. The 

distribution of the cellular senescence-related signature 

score, the survival status, and a heatmap exhibiting the 

expression profiles of the 4 genes in the high- and low-

risk groups are presented in Figure 8G. Kaplan‒Meier 

survival analysis demonstrated that patients in the high-

risk group had a significantly shorter overall survival 

(OS) times than those in the low-risk group (Figure 8H, 

HR = 1.77 (1.25-2.50), P = 0.001). Subsequently, time-

dependent receiver operating characteristic (ROC) 

analysis was performed, which showed that the risk 

score performed well in predicting 1-, 3-, and 5-year 

OS, with areas under the curve (AUCs) of 0.763, 0.662, 

and 0.614, respectively (Figure 8I). 

 

Analysis of the clinical relevance of the 4 cellular 

senescence-related genes in LIHC 

 

We analyzed the clinical characteristics of the 4 cellular 

senescence-related genes (CDK1, CDK4, CHEK1, and 

G6PD) involved in the treatment of HCC by EZW to 
further evaluate the clinical application value of EZW in 

HCC treatment. To investigate the role of these genes in 

LIHC, we assessed RNA-seq data obtained from 374 

HCC patient tissues and 50 normal tissues using 

transcriptional data from the TCGA-LIHC database. 

The results showed that the levels of all four genes were 

significantly higher in tumor tissues than in normal liver 

tissues (P < 0.05), which was consistent with the 

previous GEO dataset results (Figure 9A). The 

transcription levels of the four cellular senescence-

related genes in LIHC patients were significantly higher 

than those in the normal group and were closely related 

to clinical features such as T stage, pathological stage, 

and vascular invasion (Figure 9B–9D). Regarding 

tumor status, the transcript levels of these four genes 

were downregulated in the ‘tumor-free’ group relative 

to the ‘with tumor’, while CDK1 and CHEK1 showed 

significance (Figure 9E). Next, the ROC analysis results 

showed that the AUCs achieved using the expression 

levels of CDK1, CDK4, G6PD and CHEK1 were 0.976, 

0.885, 0.949 and 0.951, respectively, indicating that 

these 4 cellular senescence-related genes exhibited 

adequate predictive performance (Figure 9F). OS 

analysis showed that patients with high expression 

levels of CDK4 (P < 0.001, HR = 1.92 (1.35-2.73)), 

CDK1 (P < 0.001, HR = 1.93 (1.36-2.74)), G6PD (P < 

0.001, HR = 1.89 (1.33-2.68)), and CHEK1 (P = 0.001, 

HR = 1.81 (1.28-2.57)) had poorer OS than patients 

with low expression levels of these genes (Figure 9G). 

 

Molecular docking strategy to verify the 

multicomponent multitarget network of EZW in the 

treatment of HCC 

 

The previous results suggest that CDK1, CDK4, 

CHEK1, and G6PD are key therapeutic targets through 

which EZW suppresses HCC. Based on the H-C-T 

network analysis, EZW inhibits HCC progression 

through multiple active components acting on these 

targets. To further reveal how these active ingredients 

act on these targets, we used a molecular docking 

strategy to simulate their binding modes and calculated 

the binding energies to infer the affinity of these active 

ingredients to the targets. According to the prediction 

results obtained using molecular docking, a variety of 

active ingredients (luteolin, quercetin, kaempferol, 

acacetin, wedelolactone, demethylwedelolactone, 

ursolic acid, oleanolic acid, pratensein, β-sitosterol, and 

3’-O-methylorobol) could bind to these key targets 

(CDK1, CDK4, G6PD, and CHEK1) with low binding 

energies (Figure 10). As shown in the binding diagram, 

these active compounds can bind well in the pockets of 

these targets and form stable noncovalent interactions 

with the amino acid residues around the pockets. 

Presumably, because these active ingredients have 

multiple hydroxyl groups, they are good hydrogen bond 
donors or acceptors. Analysis of protein‒ligand 

interactions based on a molecular docking strategy 

provides evidence for the hypothesis that EZW inhibits 
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HCC by binding to these proteins and inhibiting their 

activity or expression levels. 

 

DISCUSSION 
 

HCC is a common malignancy that usually arises in the 

context of chronic liver disease. Despite modern 

strategies for patient management, patients with 

advanced HCC have few treatment options and a poor 

prognosis. Moreover, the progression of HCC involves 

multiple mechanisms and aberrant changes in multiple 

pathological genes [31]. This complexity requires the 

identification of a therapeutic strategy that modulates 

multiple targets in HCC to improve patient outcomes. In 

recent years, the emergence and development of TCM 

has provided new opportunities for the treatment of 

HCC. Given that the pathological mechanism of HCC 

and the multicomponent and multitarget characteristics 

of EZW are very complex, a single experiment cannot 

be used to systematically and efficiently reveal the 

pharmacological mechanism through which EZW 

suppresses HCC. Through the joint analysis of multiple 

biological databases, the introduction of molecular 

docking technology and network pharmacology 

provides a feasible method for systematically studying 

the pharmacological mechanism of TCM. Therefore, 

this study attempted to utilize this comprehensive 

strategy to explore how EZW exerts pharmacological 

 

 
 

Figure 9. Correlation analysis of the expression of four key cellular senescence-related genes with the clinical characteristics 
of LIHC patients. (A) The differential expression of CDK1, CDK4, CHEK1, and G6PD between normal and tumor tissues. (B, C) CDK1, CDK4, 

CHEK1, and G6PD mRNA expression in normal individuals or in patients with different T stages (T1&T2 and T3&T4) and pathologic stages 
(stage I&II and stage III&IV). (D, E) Differences in the expression of CDK1, CDK4, CHEK1, and G6PD mRNA according to vascular invasion and 
tumor status. (F) Analysis of the AUCs of the 4 cellular senescence-related genes in LIHC. (G) Kaplan‒Meier curves of OS for different cell 
cycle-related genes. *, **, and *** represent P < 0.05, P < 0.01, and P < 0.001, respectively. 
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anti-HCC effects through a multiactive ingredient-

multitarget network. 

 

Exploring the pathogenesis of HCC will make an 

important contribution to providing suitable treatment 

strategies in the future. In our study, HCC progression 

was found to be regulated by a complex gene network 

involving the aberrant expression of thousands of 

DEGs. Notably, functional enrichment analysis of these 

DEGs revealed that the pathogenesis of HCC is closely 

related to various metabolic pathways and processes of 

cell cycle regulation, which have been shown to be 

critical for the development of liver disease [32, 33]. 

Among them, the metabolic pathway (ko01100) in HCC 

involves abnormal changes in multiple metabolic genes, 

including high DNMT3A, G6PD, PGP, and EZH2 

expression and low AKR1D1, SLC27A5, XDH, LDHD, 

and ADH3 expression. Chen et al. [34] showed that 

EZH2 promotes HCC progression by regulating the 

miR-22/galectin-9 axis. Zhou et al. [35] demonstrated 

that the long noncoding RNA HCP5 acts as a sponge for 

miR-29b-3p and promotes liver cancer cell growth and 

 

 
 

Figure 10. Molecular docking analysis of different active components in EZW and four cellular senescence-related targets. 
Visualization of 3D binding diagrams for protein‒ligand predictions based on PyMOL software. Cyan represents the surrounding amino acid 
residues in the binding pocket, and green represents the active ingredients. 



www.aging-us.com 8796 AGING 

metastasis by upregulating DNMT3A. The study by 

Cao et al. [36] showed that knockdown of G6PD in 

HCC reduced tumor volume and tumor weight in vivo. 

Data from Nikolaou et al. [37] suggest that AKR1D1 

may play an important role in regulating endogenous 

glucocorticoid action, which may be particularly 

relevant to physiological and pathophysiological 

processes affecting the liver. Chen et al. [38] showed 

that XDH downregulation promotes TGFβ signaling 

and the expression of cancer stem cell-related genes in 

HCC. 

 

Furthermore, cyclins and cyclin-dependent kinases 

(CDKs) are typically involved in most metabolic 

processes, such as glucose metabolism, lipogenesis, 

amino acid metabolism and mitochondrial activity [39, 

40]. KEGG pathway analysis revealed that HCC 

progression was regulated by cell cycle pathways, and 

multiple cyclins (CCNB1, CCNB2, and CCNB3) and 

cyclin-dependent kinases (CDK1 and CDK4) were 

significantly activated in HCC. Previous studies have 

shown that overexpression of CDKs leads to abnormal 

cell proliferation and requires CDK activity to respond 

to DNA damage during DNA replication [41, 42]. 

Based on these data, designing small-molecule 

compounds targeting CDKs is considered an effective 

strategy to treat cancer. Palbociclib, a selective inhibitor 

of CDK4/6, has been FDA-approved for the treatment 

of breast cancer and has been shown in multiple studies 

to be effective in the treatment of HCC [43]. These 

findings suggest that the key strategy in the treatment of 

HCC may lie in cell cycle regulation, and the 

multicomponent-multitarget feature of TCM may be a 

promising therapy. 

 

The extract of EZW contains a variety of compounds, 

which undoubtedly increases the difficulty of 

systematically mapping the pharmacological mecha-

nism of EZW in inhibiting tumors. Therefore, 

identifying the active components of EZW through 

databases can be used to more accurately and efficiently 

elucidate its mechanism. After screening, the key active 

components of EZW were mainly flavonoids, 

coumarins, sterols, and natural triterpenoid carboxylic 

acids. Among them, the flavonoids quercetin and 

luteolin were identified as the common active 

components of the two herbs in EZW. We speculate that 

these two active components may be an important basis 

for the synergistic anti-HCC effect of the two herbs in 

EZW. Natural flavonoids have been identified as one of 

the major classes of natural anticancer agents, exerting 

antitumor activity through cell cycle arrest as a major 

mechanism in various cancer cells [44]. Furthermore, 
multiple active components in EZW have been reported 

to exhibit substantial anticancer activity in various 

tumors. Pan et al. [18] showed that coumarin 

wedelolactone, a characteristic component of EH, 

inhibited the proliferation of HCC cell lines (HepG2 

and Huh-7) by inhibiting the PI3K/AKT signaling 

pathway. Additionally, demethylwedelolactone, a 

coumarin component of EH, inhibited the lung 

metastasis of MDA-MB-231 breast cancer cells in a 

nude mouse model [45]. Two representative tri-

terpenoids in FLL, oleanolic acid and ursolic acid, were 

observed to induce apoptosis in various human liver 

cancer cell lines, indicating that they are potent 

anticancer agents [46]. These results suggest that the 

anticancer activities of these active ingredients can 

serve as an important theoretical basis for EZW in the 

treatment of liver tumorigenesis. 

 

According to the H-C-T network diagram, EZW may 

exert its anti-HCC effect through the action of multiple 

active components on multiple targets. Subsequent PPI 

network, MCODE, and topological analyses indicated 

that EZW suppresses HCC through the regulation of 

multiple cyclins (CCNA1, CCNB1, and CCNB2) and 

cyclin-dependent kinases (CDK1 and CDK4), which 

were defined as hub genes. Further KEGG enrichment 

analysis depicting the top 25 pathways revealed that the 

cell cycle pathway ranked first, and our aforementioned 

results indicated that this pathway plays a key role in 

HCC progression, suggesting that this pathway is an 

important mechanism by which EZW inhibits HCC. 

However, the pharmacological mechanism of EZW also 

involves the p53 signaling pathway, which has been 

shown to play a central role in regulating the cell 

division cycle [47]. These findings suggest that EZW 

may regulate the cell cycle through the p53 pathway, 

thereby inhibiting HCC. Although these speculations 

need further verification, they still provide directions for 

future research on the molecular mechanism of EZW. 

 

Interestingly, the pharmacological mechanism by which 

EZW inhibits HCC also involves the process of cellular 

senescence. Cellular senescence constitutes a permanent 

state of cell cycle arrest in proliferating cells induced by 

different stresses and has been recognized in recent 

years as an important mechanism for preventing tumor 

cell proliferation [30]. TCM with multicomponent and 

multitarget characteristics is believed to induce cell 

senescence by activating or inactivating oncogenes, 

inducing SASP, and triggering DNA damage, thereby 

inhibiting the occurrence and development of tumors 

[48]. Leveraging these properties has become a new 

direction in antitumor research; however, the role of 

cellular senescence in the treatment of HCC by EZW 

has been largely underexplored, so a broader 

understanding of the links among HCC, EZW, and 
senescence is important. Importantly, we assessed 10 

cellular senescence-related genes, including 6 cellular 

senescence-inhibited genes (CDK4, CDK1, FOS, G6PD, 
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AURKA, and MMP9) and 4 cellular senescence-induced 

genes (IGFBP3, CHEK1, AXL, and AR). Among them, 

CDK1, CDK4, G6PD, AURKA, MMP9, IGFBP3, and 

CHEK1 were considered risk factors in LIHC, and 6 of 

the 7 genes (CDK1, CHEK1, MMP9, G6PD, CDK4, and 

AURKA) were abnormally highly expressed in HCC 

patients. Subsequently, the LASSO Cox regression 

model and Kaplan‒Meier survival curve analysis 

showed that LIHC patients with high expression of 

senescence-related genes (CDK1, CDK4, CHEK1, and 

G6PD) had a poorer prognosis than patients with low 

expression of these genes. In addition, the expression 

levels of these genes were closely related to the 

progression of clinical features such as tumor status, T 

stage, pathological stage, and vascular invasion of LIHC. 

 

These data strongly suggest that CDK1, CDK4, CHEK1, 

and G6PD are potential prognostic biomarkers in HCC 

and key therapeutic targets for EZW to suppress HCC 

based on the cellular senescence process. Wu et al. [49] 

reported that blocking CDK1/PDK1/β-Catenin signaling 

with the CDK1 inhibitor RO3306 could improve the 

efficacy of sorafenib in the treatment of HCC. A selective 

CDK4/6 inhibitor, palbociclib, has been shown in recent 

years to inhibit cell proliferation in human hepatoma cell 

lines by promoting reversible cell cycle arrest. Moreover, 

palbociclib alone or in combination with sorafenib, the 

standard treatment for HCC, impairs tumor growth in 

vivo and significantly improves survival [43]. Previous 

reports have demonstrated that it is overexpressed and 

associated with poor prognosis in HCC, suggesting that it 

is an oncogene and that CHEK1 is negatively regulated 

by miR-497 and providing a potential molecular target 

for HCC therapy [50]. Altered metabolism is one of the 

hallmarks of cancer cells. G6PD levels have been shown 

to be elevated in many cancers, and it has been shown 

that G6PD induces epithelial-mesenchymal transition by 

activating the signal transducer and activator of 

transcription 3 pathway, thereby promoting HCC 

migration and hepatoma cell invasion [51]. Although the 

mechanisms of these genes during cellular senescence 

remain to be revealed, they still provide potential 

molecular targets for HCC therapy. 

 

Our study suggests that EZW can be used to treat HCC 

by acting on these molecular targets, but its intrinsic 

mechanism needs to be further elucidated. Therefore, in 

silico simulations were used in this study to elucidate the 

interaction mode between the active components of EZW 

and these molecular targets. Since the extract of EZW 

contains various compounds, systematically depicting a 

clear pharmacological mechanism of how EZW inhibits 

tumors remains a challenge. The results of molecular 
docking revealed that multiple active compounds of 

EZW could be well combined in the pockets of CDK1, 

CDK4, CHEK1, and G6PD. We speculate that these 

active compounds may inhibit their activities by targeting 

these molecular targets, thereby disturbing the cell cycle 

and metabolism to suppress HCC.  

 

CONCLUSIONS 
 

Overall, we elucidated the potential pharmacological 

mechanisms and molecular targets of EZWs in HCC 

therapy by integrating multiple databases and 

performing molecular docking analysis. EZW can 

regulate tumor progression through multiple metabolic 

pathways, the cell cycle, and cellular senescence. In 

particular, TCM-induced cellular senescence may 

become a promising cancer treatment strategy. TCGA 

data analysis showed that CXP may improve the 

prognosis and clinical outcomes of HCC patients by 

regulating cellular senescence-related genes, revealing 

its clinical application value. In addition, the CDK1, 

CDK4, CHEK1, and G6PD genes were identified as key 

therapeutic targets for EZW in the treatment of HCC. 

Our results suggest that EZW can suppress tumors by 

disrupting the cell cycle, senescence, and metabolism 

through these therapeutic targets. To our knowledge, this 

is the first systematic pharmacological study of EZW in 

HCC therapy. Therefore, although there are still 

limitations in this study, this study provides innovative 

research methods and breakthroughs for TCM research. 

 

MATERIALS AND METHODS 
 

Screening the chemical components of EZW 

 

We determined the chemical components of EZW 

through the Traditional Chinese Medicine Systems 

Pharmacology Database (TCMSP, https://old.tcmsp-

e.com/tcmsp.php). First, the Chinese terms “Mo-Han-

Lian” and “ Nü-Zhen-Zi” of Ecliptae Herba and 

Fructus Ligustri Lucidi were separately entered into the 

database to determine  their components and retrieve 

their pharmacokinetic data. Here, we selected two 

pharmacokinetic parameters as screening criteria to 

identify the active components in these herbs based on 

previous studies [26]. Chemical components meeting 

the criteria of oral bioavailability (OB) ≥ 30% and drug 

similarity (DL) ≥ 0.18 were considered active 

ingredients of EZW for subsequent analysis. Moreover, 

invalid components were removed, including duplicate 

structures and compounds that could not be retrieved by 

PubChem (https://pubchem.ncbi.nlm.nih.gov/). 

 

Screening therapeutic targets of EZW in the 

treatment of HCC 

 

First, we screened the potential therapeutic targets  

of EZW’s active ingredients based on the HERB  

and SwissTargetPrediction databases. HERB 

https://old.tcmsp-e.com/tcmsp.php
https://old.tcmsp-e.com/tcmsp.php
https://pubchem.ncbi.nlm.nih.gov/
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(http://herb.ac.cn/) is a high-throughput experiment-  

and reference-guided database of traditional  

Chinese medicine. SwissTargetPrediction (http://www. 

swisstargetprediction.ch/) is an online database that 

predicts targets of biologically active small molecules. To 

identify the pathological genes associated with HCC 

progression, we downloaded GSE84402  

from the GEO (http://www.ncbi.nlm.nih.gov/geo/) data-

base. The expression data obtained from 14 pairs  

of human HCC tissues and corresponding noncancerous 

tissues were analyzed using the “limma” R package  

of Bioconductor (https://bioconductor.org/packages/ 

release/bioc/html/limma.html), and the differentially 

expressed genes of HCC were screened with false 

discovery rate (FDR) < 0.05 and |log2FC| > 1. 

Subsequently, the “ggplot2” and “ComplexHeatmap” 

packages in R language were used for volcano plot and 

heatmap visualization, respectively. Finally, the potential 

targets of EZW and the DEGs of HCC were subjected to 

Venn diagram analysis to obtain overlapping targets. 

These overlapping targets are the therapeutic targets of 

EZW in the treatment of HCC. 

 

Publicly attainable expression datasets 

 

The RNA sequencing (RNA-Seq) expression profile 

dataset of 374 HCC patients, which included data on 

clinicopathological characteristics and survival, was 

downloaded from The Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov). Statistical analysis and 

visualization of gene expression between adjacent 

nontumor tissues (n = 50) and tumor tissues (n = 374) 

were performed using the “ggplot2” R package. The list 

of cellular senescence-related genes was obtained from 

the cellular senescence gene database CellAge 

(https://genomics.senescence.info/cells/), including 153 

senescence-induced genes and 121 senescence-inhibited 

genes. 

 

GO and KEGG pathway enrichment analyses 

 

OmicShare (https://www.omicshare.com/tools), an 

online data analysis and visualization platform for 

KEGG pathway and GO enrichment analyses, was 

used. OmicShare can be also used for Venn diagrams, 

heatmaps, network building, volcano map analysis, 

and more. In addition, we used the Metascape 

(https://metascape.org/gp/index.html#/main/step1) 

database for pathway and process enrichment analysis 

and generated network maps. 

 

Network construction, key module selection, hub 

gene identification, and topology analysis 

 

A list of 66 therapeutic targets for EZW in the treatment 

of HCC was entered into the Metascape database 

(species limited to “Homo sapiens”) to generate a 

protein‒protein interaction (PPI) network. Moreover, 

the Molecular Complex Detection (MCODE) algorithm 

was used to identify densely connected network 

components if the network contained 3 to 500 proteins, 

as these MCODEs are likely to represent densely 

connected regions in large PPI networks of molecular 

complexes. Subsequently, we performed visualization, 

hub gene analysis, and topological analysis of the raw 

data (cys format file) of the PPI network obtained by 

Metascape analysis using Cytoscape software. Through 

the CytoHubba plugin of Cytoscape software, hub gene 

analysis was performed on the network, including 

analysis methods such as degree, MNC, MCC, and 

DMNC. In addition, the parameters of topological 

features can be calculated by the Cytoscape plugin 

Network Analyzer, including “degree”, 

“intercentrality”, “closeness centrality”, “clustering 

coefficient”, and “topological coefficient”. The H-C-T 

network was analyzed and displayed through the 

OmicShare tool. 

 

Construction and validation of a prognostic model 

involving cellular senescence-related genes and 

LASSO Cox regression 
 

Univariate Cox proportional hazards regression analysis 

was performed to identify cellular senescence-related 

prognostic genes (P < 0.01), and gene interactions were 

visualized by the R package “circlize”. Next, least 

absolute shrinkage and selection operator (LASSO) Cox 

regression was conducted with a random seed using the 

R package “glmnet” to construct the risk score model 

for predicting survival in the training cohort. 

Normalized expression matrices of candidate prognostic 

cellular senescence-related genes were set as 

independent variables in the regression, and the 

response variables were OS and patient status in the 

TCGA cohort. A risk score was determined for each 

patient based on the normalized expression level of each 

gene and its corresponding regression coefficient. The 

formula is as follows: 
 

n

i 1

Risk score Coefficient(i) expression level(i)
=

=   

 

The patients were then divided into low-risk and high-

risk groups based on the median risk score. 

 

Molecular docking analysis 

 

The X-ray crystal structures of the selected proteins 

were obtained from the Protein Data Bank (PDB, 
https://www.rcsb.org/), and water molecules and 

heteroatoms were removed by PyMOL 1.8 software. 

Moreover, the 3D chemical structures of the active 

http://herb.ac.cn/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
http://www.ncbi.nlm.nih.gov/geo/
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://portal.gdc.cancer.gov/
https://genomics.senescence.info/cells/
https://www.omicshare.com/tools
https://metascape.org/gp/index.html#/main/step1
https://www.rcsb.org/
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ingredients of EZW were downloaded in SDF format 

from PubChem and converted to ‘pdb’ format by 

PyMOL 1.8. Next, the proteins and active ingredients 

were converted to ‘pdbqt’ format files by 

AutoDockTools (version 1.5.6), and the grid box feature 

of AutoDockTools was used to define specific docking 

pockets in the selected proteins to which the active 

ingredients could bind. Once all data were prepared, the 

command prompt was used to perform molecular 

docking analysis and visualize the docking results with 

PyMOL. 

 

Statistical analysis 

 

Data analysis and graph generation were all performed 

in R version 3.6.3, GraphPad Prism 7.0, and the 

OmicShare webtool. The statistical significance of 

normally distributed variables was analyzed by unpaired 

Student’s t test, and the Wilcoxon rank sum test was 

used to assess nonnormally distributed variables. ROC 

curves for 1-, 3-, and 5-year survival to evaluate the 

predictive efficacy of the risk score were generated 

using the “timeROC” R package. Moreover, the ROC 

curves of different genes were analyzed by the “pROC” 

package and visualized with the “ggplot2” package in 

R. Kaplan‒Meier survival curves for overall survival 

(OS) analysis were drawn using the R package 

“survminer”. Two-tailed P values < 0.05 were 

considered statistically significant. 

 

Data availability 

 

Publicly available datasets were analyzed in this  

study. This data can be found here: TCMSP, TCGA, 

GEO, etc. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Files 

 

 

 

Please browse Full Text version to see the data of Supplementary Files 1, 3, 5. 

 

Supplementary File 1. Based on the GSE84402 dataset, 1199 differentially expressed genes (DEGs) were identified in 
14 pairs of liver tissues (hepatocellular carcinoma and paracancerous tissues). 

 

Supplementary File 2. Active compounds of EZW and their parameter information obtained from TCMSP. 

Ecliptae Herba 

Mol ID Molecule name MW AlogP Hdon Hacc OB (%) Caco-2 BBB DL FASA- HL 

MOL001790 Linarin 592.6 -0.18 7 14 39.84 -1.68 -2.77 0.71 0.27 16.07 

MOL001689 acacetin 284.28 2.59 2 5 34.97 0.67 -0.05 0.24 0.35 17.25 

MOL002975 butin 272.27 2.3 3 5 69.94 0.3 -0.4 0.21 0.4 16.8 

MOL003389 3’-O-Methylorobol 300.28 2.05 3 6 57.41 0.45 -0.38 0.27 0.32 17.31 

MOL003398 Pratensein 299.27 1.37 2 6 39.06 0.39 -0.09 0.28 0.06 17.13 

MOL003402 demethylwedelolactone 302.25 1.1 4 7 72.13 0.04 -0.69 0.43 0.34 9.17 

MOL003404 wedelolactone 314.26 2.73 3 7 49.6 0.32 -0.45 0.48 0.29 9.61 

MOL000006 luteolin 286.25 2.07 4 6 36.16 0.19 -0.84 0.25 0.39 15.94 

MOL000098 quercetin 302.25 1.5 5 7 46.43 0.05 -0.77 0.28 0.38 14.4 

Fructus Ligustri Lucidi 

Mol ID Molecule name MW AlogP Hdon Hacc OB (%) Caco-2 BBB DL FASA- HL 

MOL000358 beta-sitosterol 414.79 8.08 1 1 36.91 1.32 0.99 0.75 0.23 5.36 

MOL000422 kaempferol 286.25 1.77 4 6 41.88 0.26 -0.55 0.24 0 14.74 

MOL004576 taxifolin 304.27 1.49 5 7 57.84 -0.23 -0.8 0.27 0.39 14.41 

MOL005146 Lucidumoside D 568.63 0.43 4 13 48.87 -1.08 -1.8 0.71 0.23 3.2 

MOL005169 (20S)-24-ene-3β,20-

diol-3-acetate 

486.86 7.34 1 3 40.23 1.09 0.58 0.82 0.23 9.14 

MOL005190 eriodictyol 288.27 2.03 4 6 71.79 0.17 -0.54 0.24 0.38 15.81 

MOL005209 Lucidusculine 401.6 1.46 2 5 30.11 0.16 -0.39 0.75 0.22 10.55 

MOL005211 Olitoriside 696.87 -0.5 7 14 65.45 -2.22 -2.92 0.23 0.26 13.15 

MOL000006 luteolin 286.25 2.07 4 6 36.16 0.19 -0.84 0.25 0.39 15.94 

MOL000098 quercetin 302.25 1.5 5 7 46.43 0.05 -0.77 0.28 0.38 14.4 

MOL000263 oleanic acid 456.78 6.42 2 3 29.02 0.59 0.07 0.76 0.25 57.53 

MOL000511 ursolic acid 456.78 6.47 2 3 16.77 0.67 0.07 0.75 0.26 NA 

 

Supplementary File 3. Potential targets of 19 active compounds in EZW were identified from two target prediction 
databases, HERB and SwissTargetPrediction. 
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Supplementary File 4. GO enrichment analysis was applied to each MCODE network to extract “biological meanings” 
from the network component, where the top three terms with the lowest P values were retained. 

Network Annotation 

MyList 
M176|PID FOXM1 PATHWAY|-20.8;WP179|Cell cycle|-13.3;GO:1903047|mitotic cell cycle 

process|-13.2 

MyList_MCODE_ALL 
GO:1903047|mitotic cell cycle process|-18.1;GO:0000278|mitotic cell cycle|-17.2;M176|PID 

FOXM1 PATHWAY|-16.3 

MyList_SUB1_MCODE_1 
WP179|Cell cycle|-19.3;hsa04110|Cell cycle|-19.1;GO:0044772|mitotic cell cycle phase 

transition|-15.0 

MyList_SUB1_MCODE_2 
GO:0007052|mitotic spindle organization|-10.1;GO:0007088|regulation of mitotic nuclear 

division|-9.7;GO:1902850|microtubule cytoskeleton organization involved in mitosis|-9.6 

MyList_SUB1_MCODE_3 
GO:0019748|secondary metabolic process|-11.2;GO:0042572|retinol metabolic process|-

11.1;hsa00140|Steroid hormone biosynthesis|-10.8 

 

Supplementary File 5. Based on the cellular senescence gene database CellAge, 153 cellular senescence-induced 
genes and 121 cellular senescence-inhibited genes were identified. 

 


