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INTRODUCTION 
 

Cancer stem-like cells (CSCs) represent a small sub-

population of cancer cells [1] (< 1%) that are clinically 

responsible for resistance to radiotherapy and chemo-

therapy, the development of tumour recurrence, and the 

formation of metastases [2–4]. Key distinguishing 

features of CSCs are pluripotency, self-renewal and the 

ability to undergo anchorage-independent growth, 

favouring their propagation and metastasis [5, 6]. 

Unfortunately, conventional therapies are frequently not 

able to eradicate CSCs. For this reason, there is a 

clinical urgency to intervene via the discovery of new 

drugs that can inhibit the propagation of cancer stem 

cells, that can perhaps be used in conjunction with more 

traditional therapies. 

CSCs show metabolic plasticity and are able to respond 

rapidly to diverse environmental stimuli [7]. In fact, 

CSCs can switch quickly from glycolysis to oxidative 

phosphorylation and vice versa, to meet their  

diverse metabolic needs of ATP production and 

consumption. However, many recent studies have 

highlighted the fact that mitochondrial biogenesis plays 

an especially vital role in CSCs [8–12]. Therefore, 

halting mitochondrial biogenesis or respiration, may be 

a vulnerability that we can exploit for their more 

effective eradication. 

 

Interestingly, natural products and dietary supplements 
may also show anti-cancer properties. Indeed, we 

previously investigated the effect of Matcha green tea 

on proliferation and metabolism in MCF7. Moreover, 
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ABSTRACT 
 

Here, we report the identification of key compounds that effectively inhibit the anchorage-independent 
growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human 
breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an 
experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. 
These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and 
glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, 
tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) 
vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and 
carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. 
Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial 
metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic 
phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere 
with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have 
therapeutic potential. 
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we used proteomics analysis to dissect how this 

dietary supplement was able to alter glycolytic and 

mitochondrial pathways, as well as others related to 

stem cells and DNA damage/repair [13]. In addition, 

we also studied how vitamin C [14, 15], bergamot [16] 

and berberine [17] affect the proliferation of CSCs. 

 

In the current study, we investigated the potential 

therapeutic effects of several classes of compounds 

(dietary supplements, FDA-approved drugs, natural 

products, flavours, vitamins), by assessing their ability 

to halt the propagation of breast cancer stem cells, using 

the MCF7 cell line as a model system. 

 

Finally, we focused on the metabolic effects in MCF7 

cells of the most promising compounds, two dietary 

supplements, quercetin and glucosamine, and of the 

FDA-approved drug, carvedilol. We used the Seahorse 

XFe96 Analyzer to measure the oxygen consumption 

rate (OCR) and the glycolysis (ECAR). Our results 

show that these three compounds can significantly 

interfere with cancer cell metabolism, resulting in the 

suppression of CSC propagation. Therefore, we 

believe that these compounds should be investigated 

further. 

 

MATERIALS AND METHODS 
 

Materials 

 

MCF7 were purchased from ATCC. Cells were cultured 

in media DMEM (D6546, Sigma-Aldrich). Cell culture 

media (DMEM/F12) for mammosphere assays was 

purchased from Life Technologies. Sulforhodamine B 

(SRB), 1x Trypsin-EDTA, 2-hydroxyethylmethacrylate 

(poly-HEMA) were purchased from Sigma-Aldrich,  

as well as the beta-blocker carvedilol. Quercetin, 

glucosamine hydrochloride, ciprofloxacin, tannic acid, 

chlorophyllin sodium copper salt, azelaic acid, adipic 

acid, citral, limonene, nicotinamide and nicotinic acid 

were from SLS Scientific Laboratory Supplies Ltd. 

Finally, aloin and aloe emodin were purchased from 

Santa Cruz Biotechnology. 

 

Mammosphere assay 

 

From adherent MCF7 cells, we prepared a single cell 

suspension using enzymatic (1x Trypsin-EDTA) and 

manual disaggregation (25-gauge needle) [18]. Three 

thousand cells were plated into mammosphere medium 

(DMEM-F12/B27/20ng/ml EGF/PenStrep), under non-

adherent conditions, in 6-wells plates coated with poly-

HEMA. We counted the number of 3D spheroids with a 

diameter >50 µm, after five days of culture. All 

experiments were performed in triplicate and repeated 

three times independently. 

Seahorse analysis 

 

To evaluate the extracellular acidification rates (ECAR) 

and the oxygen consumption rates (OCR), we used the 

Seahorse XF96 metabolic flux analyser (Agilent 

Technologies, Inc.). Fifteen thousand MCF7 cells were 

seeded per well, into XF96-well cell plates, and cultured 

at 37° C in an incubator with a 5% CO2 humidified 

atmosphere. MCF7 cells were cultured in DMEM 

supplemented with 10% FBS (Foetal Bovine Serum), 2 

mM GlutaMAX, and 1% Pen- Strep. After twenty-four 

hours from plating, the cells were incubated in the 

presence or absence of quercetin, glucosamine 

hydrochloride or carvedilol. After forty-eight hours, 

cells were washed in pre-warmed XF assay media, as 

previously described [19]. ECAR and OCR 

measurements were normalized by cellular protein 

content (SRB). Data sets were analysed using XFe-96 

software and Excel, then Student’s t-test calculations 

were performed. All experiments were performed in 

sextuplicate and repeated three times independently. 

 

SRB assay 

 

SRB is a colorimetric assay for cytotoxicity, based on 

the measurement of cellular protein content. Briefly, 

MCF7 cells in monolayers were first fixed with 10% 

trichloroacetic acid and then washed with 1% acetic 

acid after incubation with SRB. The dye dissolved in 10 

mM Tris base solution, and the OD determined at 565 

nm, using a microplate reader [20]. 

 

Statistical analysis 

 

All data are presented as the means ± SEM. The 

Student’s t-test was used to determine significance.  

p < 0.05 was considered statistically significant.  

* p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001. 

 

RESULTS 
 

Compound screening 

 

Here, our goal was to identify key compounds that 

effectively inhibit the anchorage-independent growth 

and propagation of cancer stem cells (CSCs), using 

MCF7 cells as a model system. Briefly, these 

compounds can be classified within 5 sub-categories: 

1) dietary supplements; 2) FDA-approved drugs; 3) 

natural products; 4) flavours; and 5) vitamins. See 

Table 1. 

 

To assess their potential effect(s) on cancer stem cell 

activity, we cultured MCF7 cells under low-attachment 

conditions, in the presence or absence of a given 

compound. We evaluated CSC activity after five days 
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Table 1. Compounds tested for inhibition of MCF7 cancer stem cells (CSC) propagation. 

Compounds ~IC-50 

Dietary Supplements  

Quercetin 20-40 μM 

Glucosamine 5 mM (4X more potent than 2-DG) 

FDA-approved Drugs  

Carvedilol (beta-blocker) 25 μM 

Ciprofloxacin (antibiotic) 100 μM 

Natural Products  

Aloe Emodin 10-15 μM 

Aloin  < 50 μM 

Tannic Acid 25 μM 

Chlorophyllin Sodium Copper Salt 50-100 μM 

Azelaic Acid 5-10 mM 

Adipic Acid 5-10 mM 

Flavours  

Citral 10-50 μM 

Limonene > 50 μM 

Vitamins  

Nicotinamide (precursor of NADH) Increases Stemness (10-20 μM) 

Nicotinic Acid (Niacin; Vit B3) No effect 

List of compounds and relative IC50. Screening was based on their effects on CSCs propagation, 
using the mammosphere formation assay. Compounds are divided in five categories: dietary 
supplements, FDA-approved drugs, natural products, flavours and vitamins. 

 

of culture, by counting the number of mammospheres 

formed. 

 

We first analysed CSC propagation after treatment with 

two dietary supplements: quercetin and glucosamine. 

Quercetin is a flavonoid present in vegetables, fruits and 

beverages. It has been extensively studied as a chemo-

prevention agent in several cancer models [21–23]. It 

has anti-oxidant, anti-inflammatory and anti-cancer 

activities [24–30]. Glucosamine is a monosaccharide, 

precursor used for the glycosylation of proteins and 

lipids. It is naturally present, for example, in animal 

bones, bone marrow and the shells of shellfish. 

 

We tested the quercetin at concentrations of 10, 20 and 

40 µM. Figure 1A shows that at the concentration of 40 

µM, quercetin was effective in halting CSC propagation 

by over 60%, and its IC50 fell in the range between 20 

and 40 µM. In Figure 1B, results with glucosamine are 

shown, over the range of 5 to 20 mM. Note that the 

lowest concentration tested is already effective as an 

inhibitor of CSC propagation. Interestingly, glucosamine 

(2-amino-2-deoxy-D-glucose) is structurally related to 

another well-established metabolic inhibitor, namely 2-

DG (2-deoxy-D-glucose). Based on our previous studies 

using 2-DG in the same MCF7 CSC assay [14, 31], 

glucosamine appears to be approximately 4 times as 

potent. 

Next, we investigated the effects of two FDA-approved 

drugs: the beta-blocker carvedilol and the antibiotic 

ciprofloxacin. Carvedilol, brand name Coreg, is a beta-

blocker and is used to treat mild to severe congestive 

heart failure [32, 33]. 

 

We tested carvedilol at the concentrations of 10, 25 and  

50 µM. The IC50 was 25 µM and the highest dose was so 

potent as to completely block the mammosphere formation 

(Figure 2A). However, ciprofloxacin was less potent, with 

an IC50 of approximately 100 µM (Figure 2B). 

 

Using this approach, we also focused on compounds that 

are found naturally in plants, or in vegetables and as 

additive in certain foods. Firstly, we tested two 

compounds related to each other, aloin emodin and the 

aloin. These are distinguished only by the fact that aloin 

emodin lacks a sugar compared to aloin. 

 

Aloin (or barbaloin) is a natural anthraquinone extracted 

from the plant aloe latex and together with aloe emodin, 

that lacks a sugar group compared to the first, is widely 

used as an anti-inflammatory and shows anti-cancer 

activity [34]. Figure 3A shows that aloin emodin at the 

concentration of 15 µM was effective in reducing CSC 

propagation by over 70%. Aloin was also effective at all 

three concentrations tested of 50, 100 and 200 µM 

(Figure 3B). 
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Figure 1. Dietary supplements decrease CSC propagation. The effects of two dietary supplements, quercetin and glucosamine 

hydrochloride, are shown. (A) Note that quercetin is effective in inhibiting CSC propagation, at a concentration of 40 µM and its IC50 falls in the 
range of 20 and 40 µM concentration. (B) Note that glucosamine significantly decreases mammosphere number, at concentrations of 5, 10 and 
20 mM. Bar graphs are shown as the mean ± SEM; t-test, two-tailed test. ***p < 0.001, ****p < 0.0001. Chemical formulae are indicated. 

 

 
 

Figure 2. FDA-approved drugs decrease mammosphere formation. The effects of two FDA-approved drugs, carvedilol and 

ciprofloxacin, are shown. (A) Note that carvedilol is effective in inhibiting CSC propagation, at a concentration of 25 µM, its IC50, and 50 µM 
completely inhibits mammosphere formation. (B) Ciprofloxacin significantly decreases mammosphere number, at the concentrations of 100 
µM, its IC50. Bar graphs are shown as the mean ± SEM; t-test, two-tailed test. ***p < 0.001, ****p < 0.0001. Chemical formulae are indicated. 
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Tannic acid is a polyphenol, a specific form of tannin, 

naturally found in the nutgalls made by insects on twigs 

of oak trees. It has been also used as embalming 

material of mummies in ancient Egypt [35, 36]. Tannic 

acid is a potent anti-oxidant with anti-proliferative 

effects on diverse types of cancer [37]. Tannic acid was 

tested at the concentrations of 10, 25 and 50 µM, 

revealing an IC50 of approximately 25 µM (Figure 4A). 

 

Chlorophyll is present in green leaves of vegetables as 

spinach and is a food colouring agent. It has been 

shown exhibit anti-oxidant and anti-apoptotic effects 

[38, 39]. Figure 4B shows the results obtained with 

chlorophyllin, which has its IC50 in the range between 

50 and 100 µM. 

 

The last two compounds in this category were azelaic 

acid and adipic acid (Figure 5A, 5B). Azelaic acid is 

found in wheat, rye and barley. It inhibits mitochondrial 

enzymes of the respiratory chain and enzymes involved 

in DNA synthesis showing antiproliferative and cytotoxic 

effects in melanoma, bladder and breast cancers, and 

leukaemia [40–42]. Adipic acid is used mainly in the 

production of nylon and is also used as a food additive 

[43, 44]. Azelaic acid displayed effectiveness starting at a 

concentration of 2.5 mM, with an IC50 between 5 and 10 

mM; note that at 10 mM the propagation of CSCs was 

completely halted. Similarly, adipic acid also showed 

promising inhibitory effects. 

 

We next investigated flavour-related compounds, such 

as citral and limonene (Figure 6A, 6B). Citral (or 

lemonal) is naturally present in lemons, oranges and 

limes. Limonene is used as a flavouring in foods, 

beverages and chewing gum. Citral had an IC50 

between 10-50 µM and limonene greater than 50 µM. 

 

Finally, we assessed the effects of two common 

vitamins on CSCs proliferation: nicotinamide, which is 

the active form of vitamin B3, and nicotinic acid  

(a.k.a, niacin). Nicotinamide is an amide form of 

vitamin B3, and is found in foods like fish, poultry, 

eggs and is used as a dietary supplement/medication, to 

prevent and treat pellagra [45]. Nicotinic acid or niacin 

is the vitamin B3 and is used to reduce elevated levels 

of cholesterol [46]. Importantly, nicotinamide and 

nicotinic acid are both precursors of the co-enzymes 

nicotinamide adenine dinucleotide (NADH) and 

nicotinamide adenine dinucleotide phosphate (NADPH) 

[14]. Interestingly, treatment with nicotinamide 

 

 
 

Figure 3. Natural products derived from plant aloe latex decrease mammosphere formation. The effects of two natural products, 

aloe emodin and aloin, are shown. (A) Aloe emodin is a compound, with similar biological characteristics of aloin, but lacking a sugar moiety. 
Note that aloe emodin is effective in inhibiting CSC propagation, by >75% at a concentration of 15 µM. Its IC50 is between 10-25 µM.  
(B) Aloin or barbaloin significantly decreases mammosphere number at a concentration of 50 µM, its IC50. At 200 µM, it reduces the sphere 
formation by > 90%. Bar graphs are shown as the mean ± SEM; t-test, two-tailed test. **p < 0.01, ***p < 0.001. Chemical formulae are 
indicated. 
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significantly increased the CSC propagation, at 

concentrations of 10 and 20 µM. However, nicotinic 

acid did not show any significant effects at the doses 

tested (5, 10, or 20 µM) (Figure 7A, 7B). 

 

Metabolic validation via seahorse analysis 

 

In the literature, it is well documented that propagation 

of CSCs depends on several factors including an 

increased mitochondrial metabolism and biogenesis [7, 

47, 48]. In this regard, to address an effect of quercetin, 

glucosamine and carvedilol on cellular metabolic 

features, we performed analysis with the Seahorse XF 

Analyzer after a 48-hours treatment with the compound. 

We measured oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR). Interestingly, 

quercetin significantly increased the glycolysis at the 

concentration of 20 µM and reduced the glycolytic 

reserve and glycolytic reserve capacity (maximal 

capacity of the cells to respond to a higher ATP 

demand) at the concentration of 40 µM as compare to 

the untreated control cells (Figure 8A). Moreover, all 

the OCR parameters were significantly decreased: basal 

respiration, proton leak, ATP production, maximal 

respiration and spare respiratory capacity (Figure 8B). 

Next, we investigated the effect of glucosamine finding 

that it was able to significantly increase glycolysis at the 

concentration of 5 mM and decrease the glycolytic 

reserve capacity (Figure 9A). Importantly, at 20 mM all 

OCR parameters were significantly decreased but  

the spare respiratory capacity which was already 

negatively affected at the dose of 10 mM 

 

 
 

Figure 4. Natural products, tannic acid and chlorophyllin, were able to decrease mammosphere formation. We tested the 
effects of more natural compounds, such as tannic acid and chlorophyllin copper salt. (A) Tannic acid is a type of polyphenol. Interestingly, 
it is effective in inhibiting CSC propagation, at concentrations >10 µM; its IC50 is 25 µM. (B) Chlorophyllin is a derivative of chlorophyll 
which significantly decreases the mammosphere number starting at a concentration of 50 µM and reduces propagation by > 90% at a 
concentration of 100 µM. Bar graphs are shown as the mean ± SEM; t-test, two-tailed test. ***p < 0.001, ****p < 0.0001. Chemical 
formulae are indicated. 
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Figure 5. Natural products, azelaic and adipic acids, decrease mammosphere formation. Finally, we tested the effects of two 
more natural compounds, such as azelaic acid and adipic acid. (A) Azelaic acid is a saturated dicarboxylic acid and it is effective in inhibiting 
CSC propagation, starting at a concentration of 2.5 mM, with complete inhibition at a concentration of 10 mM. (B) Adipic acid is another 
dicarboxylic acid that significantly blocks CSC propagation, with near complete inhibition at 10 mM, similarly to azelaic acid. Bar graphs are 
shown as the mean ± SEM; t-test, two-tailed test. ***p < 0.001, ****p < 0.0001. Chemical formulae are indicated. 
 

 
 

Figure 6. Flavours, citral and limonene, decrease mammosphere formation. Next, we tested the effects of two flavours, such as 
citral and limonene. (A) Citral or lemonal is effective in inhibiting CSC propagation, starting at the concentration of 10 µM, with an IC50 near 
50 µM. (B) Limonene is a flavouring that significantly decreases the mammosphere formation, but was less effective than the closely related 
molecule, Citral. Bar graphs are shown as the mean ± SEM; t-test, two-tailed test. *p < 0.05, ***p < 0.001, ****p < 0.0001. Chemical formulae 
are indicated. 
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Figure 7. Testing the efficacy of two forms of vitamin B3 on CSC propagation. (A) Nicotinamide, also known as niacinamide, 

significantly increases CSC propagation by >1.5-fold, at concentrations of 10 and 20 µM. (B) However, Nicotinic acid (or niacin) does not have 
any effect on mammosphere formation. Bar graphs are shown as the mean ± SEM; t-test, two-tailed test. ****p < 0.0001. Chemical formulae 
are indicated. 

 

 
 

Figure 8. Treatment with quercetin preferentially reduces mitochondrial oxygen consumption rates in MCF7 cells. Cells were 

seeded and treated with quercetin, as described above. Briefly, cells were seeded at a density of fifteen thousand in a 96-well format.  
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(A) Extracellular consumption rate (ECAR) was assessed by Seahorse metabolic flux analysis. A representative trace is shown in the top panel. 
Importantly, quercetin treatment only had minor effects on glycolysis. (B) Oxygen consumption rate (OCR) was measured by Seahorse 
metabolic flux analysis. A representative trace, in the top panel, shows decreased OCR in samples treated with quercetin (20 and 40 µM), 
versus the vehicle alone control cells. The bar graph (lower panel) shows that quercetin treatment significantly decreases the basal 
respiration, ATP production, maximal and spare respiration, as compared to the control cells. In panels A and B, experiments were performed 
three times independently, with six repeats for each replicate. Bar graphs are shown as the mean ± SEM, t-test, two-tailed test. *p < 0.05, 
***p < 0.001. 
 

(Figure 9B). Lastly, we examined carvedilol to see if it 

could affect cellular metabolism. We treated MCF7 cells 

with 25 and 50 µM of carvedilol. Results in Figure 10A 

show that this drug dramatically negatively affected all 

ECAR parameters, at the maximal concentration of 50 

µM. At the dose of 25 µM only glycolytic reserve and 

glycolytic reserve capacity were significantly decreased. 

On the contrary, glycolysis was increased more than 

three times perhaps as an attempt to compensate for  

the dramatic decrease in all the parameters related to  

the oxygen consumption rate. Indeed, OCR analysis 

highlighted that carvedilol had a powerful capability in 

decreasing the mitochondrial respiration (Figure 10B). 

 

Interestingly, in the end what stands out from this more 

detailed analysis conducted on quercetin, glucosamine 

and carvedilol, is that what these three compounds have 

in common is their effects on mitochondrial respiration, 

and that they are effective in inhibiting the propagation 

of MCF7 cancer stem-like cells (Figure 11). 

 

 
 

Figure 9. Treatment with glucosamine hydrochloride reduces mitochondrial oxygen consumption rates in MCF7 cells. Cells 
were seeded and treated with glucosamine, as described above. Briefly, cells were seeded at a density of fifteen thousand in a 96-well 
format. (A) Extracellular consumption rate (ECAR) was assessed by Seahorse metabolic flux analysis. A representative trace is shown in the 
top panel. Importantly, glucosamine treatment only had minor effects on glycolysis. (B) Oxygen consumption rate (OCR) was measured by 
Seahorse metabolic flux analysis. A representative trace, in the top panel, shows decreased OCR in samples treated with glucosamine (20 
mM), versus the vehicle alone control cells. The bar graph (lower panel) shows that glucosamine treatment significantly decreases the basal 
respiration, ATP production, maximal and spare respiration, as compared to the control cells. In panels A and B, experiments were performed 
three times independently, with six repeats for each replicate. Bar graphs are shown as the mean ± SEM, t-test, two-tailed test. *p < 0.05, 
***p < 0.001. 
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DISCUSSION 
 

The eradication of cancer stem cells remains a focal point 

in the battle against cancer, regardless of the type  

of cancer. Cancer stem cells are considered to be 

responsible for the dissemination and formation of distant 

metastases [49], as well as resistance to anti-cancer 

therapies [50–52]. For this reason, it is vital to find the 

Achilles’ heel of CSCs. Recently, many investigators 

have highlighted the importance of the metabolic micro-

environment, as well as the metabolic features of CSCs 

[47, 53–56]. 

 

In this study, we investigated the effectiveness of 

different compounds in decreasing or blocking the 

anchorage-independent growth of MCF7 cancer stem 

cells, by using the mammosphere assay, as a rapid  

in vitro screening tool that exploits the ability of CSCs 

to grow under low-attachment conditions. 

 

Here, we chose to examine the activity of different 

compounds, which can be classified into 5 different 

groups: 1) dietary supplements (quercetin and 

glucosamine); 2) FDA-approved drugs (carvedilol  

and ciprofloxacin); 3) natural products (aloe emodin, 

aloin, tannic acid, chlorophyllin copper salt, azelaic 

acid and adipic acid); 4) flavours (citral and 

limonene); and 5) vitamins (nicotinamide and nicotinic 

acid). Our results are summarized schematically in 

Figure 11. 

 

 
 

Figure 10. Treatment with carvedilol differentially affects both glycolysis and oxygen consumption rates in MCF7 cells, in a 
concentration-dependent manner. Cells were seeded and treated with carvedilol, as described above. Briefly, cells were seeded at a 

density of fifteen thousand in a 96-well format. (A) Extracellular consumption rate (ECAR) was assessed by Seahorse metabolic flux analysis. A 
representative trace is shown in the top panel. Importantly, carvedilol treatment induced glycolysis by >3.5-fold at 25 μM, but showed 
dramatic inhibition of glycolysis at 50 μM. (B) Oxygen consumption rate (OCR) was measured by Seahorse metabolic flux analysis. A 
representative trace, in the top panel, shows progressive decreases in OCR in samples treated with carvedilol (25 and 50 μM), versus the 
vehicle alone control cells. The bar graph (lower panel) shows that carvedilol treatment significantly decreases the basal respiration, ATP 
production, maximal and spare respiration, as compared to the control cells. In summary, at 25 μM, carvedilol enhanced glycolysis, but 
inhibited mitochondrial oxygen consumption. In contrast, at 50 μM, carvedilol inhibited both glycolysis and mitochondrial oxygen 
consumption. In panels A and B, experiments were performed three times independently, with six repeats for each replicate. Bar graphs are 
shown as the mean ± SEM, t-test, two-tailed test. *p < 0.05, ***p < 0.001. 
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Glucosamine is widely used in the medical field in the 

treatment of osteoarthritis [57], and it is well known 

that it does not have side effects in humans. 

Moreover, it has been reported as an attractive 

candidate in lung carcinogenesis, decreasing the lung 

cancer risk [58]. Interestingly, glucosamine has 

inhibitory effects on glycolysis [59, 60] and drives 

general cell ATP depletion [61]. Moreover, it has 

been also found that glucosamine induced dysfunction 

of mitochondria as well as that of the peroxisome in 

human chondrocytes [62]. In our study, the results 

showed that glucosamine was able to reduce the 

mammospheres formation efficiency starting from the 

lowest tested concentration of 5 mM (IC50). This 

result is relevant because compared to 2-DG (IC50, 20 

mM), glucosamine is a more potent glycolytic 

inhibitor. This evidence adds to the advantage that 

glucosamine is already used in the medical field, 

while the 2-DG cannot be administered to humans. In 

addition, we investigated the metabolic effect of 

glucosamine on MCF7 cells in adhesion, representing 

the bulk tumour cells, using the Seahorse Analyzer. 

Importantly, at 20 mM all OCR parameters were 

significantly decreased, but the spare respiratory 

capacity was already negatively affected at a dose of 

10 mM. As such, glucosamine may have potential as a 

therapeutic to halt the proliferation of CSCs, as we are 

starting to understand the importance of metabolic 

flexibility, as an intervention point, for decreasing 

tumour recurrence and metastasis [47, 55]. 

 

Also, quercetin appears to be effective against the 

proliferation of cancer cells, for example, in breast 

tumour, pancreatic and oral squamous cell carcinomas 

[63–68]. Importantly, quercetin can modulate pathways 

associated with different mitochondrial processes [69]. 

Here, we revealed a decrease in the proliferation of 

CSCs and moreover, by Seahorse analysis, we showed 

that this treatment was able to negatively affect the 

glycolytic reserve capacity. Importantly, almost all 

OCR parameters were significantly decreased, at both 

of the concentrations of quercetin tested. 

 

Carvedilol or Coreg is a beta-blocker widely used  

as a cardio protector in cardiac dysfunction  

[70, 71]. It is also used to prevent chemotherapy-related 

cardiotoxicity [72, 73], and cardiac mitochondrial 

oxidative damage [74]. Studies on malignant breast 

cancer cells have been performed to investigate the 

ability of carvedilol in inhibiting their proliferation 

 

 
 

Figure 11. Summary: Identification of natural products and FDA-approved drugs for targeting cancer stem cell (CSC) 
propagation. This scheme summarizes our current results related to quercetin, glucosamine hydrochloride and carvedilol compounds and 
their effects on i) CSC propagation and ii) energy metabolism in MCF7 cells. Quercetin is flavonoid found in many foods, glucosamine is a 
dietary supplement, and carvedilol is an FDA-approved beta-blocker. Intriguingly, although these three compounds are so different in their 
chemical structure, they share the ability to interfere with mitochondrial metabolism and block the propagation of CSCs. 
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and migration [75, 76]. Here, we wanted to test its 

effectiveness in halting breast CSC propagation and its 

possible role in altering their metabolic pathways. Our 

findings show that the drug was effective in reducing 

mammospheres formation (IC50 at 25 µM and complete 

inhibition at 50 µM), and in reducing the glycolysis and 

the oxidative respiration parameters, as highlighted by 

the Seahorse analysis. 

 

We also tested another FDA-approved drug such as the 

antibiotic ciprofloxacin, which has previously reported 

to effectively block cell proliferation of bladder  

and melanoma cancer cells [77, 78]. In addition,  

this antibiotic has shown effectiveness in altering 

 

 
 

Figure 12. Summary of the Workflow. Candidate natural 
compounds, FDA-approved drugs, and/or new chemical entities 
are subjected to drug screening, using the 3D mammosphere 
assay (MCF7 cells). Positive hits are then validated as metabolic 
inhibitors, by using the Seahorse, to directly measure oxygen 
consumption and metabolic flux. Small chemical entities showing 
anti-mitochondrial activity can then be further validated in pre-
clinical models of tumor growth and metastasis. Finally, clinical 
trials in patients with breast cancer (or other cancer types) can be 
carried out to validate in vivo that a given compound eradicates 
CSCs, using CSC-specific markers, such as CD44 and ALDH1 by 
immuno-histochemistry. 

mammalian mitochondrial DNA replication [79]. Here, 

ciprofloxacin displayed its IC50 of approximately  

100 µM in the mammosphere formation assay. 

 

Next, we investigated the mammosphere formation 

capacity of aloin, which has been reported to be 

cytotoxic against two human breast cancer cell lines 

[80]. Further, aloin was able to induce apoptosis in lung 

cancer cells causing disruption of mitochondrial 

membrane potential and inducing ROS production [81]. 

 

Then, we tested tannic acid, a potent anti-oxidant and 

anti-proliferative agent that is effective in inhibiting 

EGFR/STAT signalin, resulting in cell cycle arrest  

and apoptosis [82]. Chlorophyllin, another natural 

compound, also has as anti-cancer effects [83, 84]. 

Interestingly, chlorophyllin inhibits oxidative 

phosphorylation in rat liver mitochondria [85]. 

Moreover, we tested the azelaic acid already described 

to be effective against tumour as well as in cutaneous 

disorders [40, 86, 87], beside its ability to inhibit 

mitochondrial respiration and promoting mitochondrial 

damage [88], and adipic acid which it is used in the 

industrial production of nylon [44]. Finally, we tested 

the effectiveness of citral and limonene which are 

already used in medicine [89]. Citral is well known to 

have an antifungal activity altering oxidative 

phosphorylation [90], by altering the mitochondrial 

membrane potential in MDA-MB-231 cells [91]. In 

addition, limonene plays a key role in regulation of 

oxidative stress mediated by ROS in a broad variety of 

organisms [92]. 

 

We have previously shown that the upregulation of 

NAD+ salvage pathways increases stemness [14], and 

here we confirm our results since the administration of 

nicotinamide increased the proliferation of breast CSCs 

[14]. Very recently, an independent group reported that 

decreased intracellular NAD, due to the up-regulation of 

miR-381, was able to induce apoptosis in breast cancer 

cells [93]. 

 

Intriguingly, several of the agents tested here shared the 

property of interfering with mitochondria and their 

function. 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

Here and in previous reports, we have identified 

numerous chemical entities, with anti-mitochondrial 

activity, that can target and eradicate CSCs in vitro. 

Figure 12 shows a summary diagram that illustrates 

the workflow of this experimental screening and 

clinical strategy. A relatively comprehensive list of 

these compounds can be found in the following review 

article [94]. 



www.aging-us.com 9478 AGING 

Next steps would include: 1) their evaluation in pre-

clinical animal models; and 2) clinical trials, as well. 

For example, using Doxycycline, we have previously 

shown that it eradicates CSCs and prevents metastasis 

in a preclinical animal model [95]. Moreover, a phase II 

clinical trial (window study) showed that Doxycycline 

eradicates CSCs in vivo, using CD44 and ALDH1 as 

CSC-markers [96]. 

 

Therefore, Doxycycline provides the first example that 

this strategic approach is indeed successful. 
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