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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is a deadly disease 

and the most frequent malignant neoplasm of the liver 

in the world. There are an estimated 905,677 new cases 

and 830,180 deaths of liver cancer around the world in 

2020 [1]. At present, treatments for HCC include 

hepatectomy, transarterial chemoembolization, immuno-

therapy, targeted therapies, and liver transplantation. 

Although therapeutic advances have been made, the 

five-year survival rate of HCC remains at 2.4% for 

patients with distant metastases [2]. Notably, emerging 

cancer immunotherapies have yielded some 

encouraging results based on immune checkpoint 

inhibitors (ICIs) [3, 4]. Unfortunately, only one-third of 

HCC patients respond to immunotherapies due to 
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ABSTRACT 
 

Immunogenic cell death (ICD) is a type of regulated cell death (RCD) triggered by various stresses that are 
involved in activating the immune system against cancer in immunocompetent hosts. However, no previous 
study has investigated the regulation of ICD-related gene pairs involved in hepatocellular carcinoma (HCC). A 
prognostic signature composed of 8 ICD-related gene pairs was generated that was capable of reliably 
separating patients with HCC into low- and high-risk subgroups with differing overall survival rates. Significant 
correlations were observed between risk score and surgical procedure, vascular tumor cell type, recurrence 
status, tumor status, and stages. The risk score was confirmed to be an independent prognostic factor for HCC 
and subsequently was employed to construct a prognostic nomogram. Low-risk patients were characterized by 
higher levels of immune cell infiltration, lower stromal and immune scores, higher tumor purity, higher 
expression of most immune checkpoints, and higher tumor mutational burden (TMB), revealing different levels 
of immunological functional pathways between different risk HCC patient cohorts. Furthermore, 
immunophenoscore (IPS) and Tumor Immune Dysfunction and Exclusion (TIDE) scores demonstrated that 
patients in the low-risk group are more likely to be sensitive to immunotherapy. In conclusion, the signature 
conducted by ICD-related gene pairs is a promising biomarker for the prediction of HCC patient outcomes and 
immunotherapeutic responses. 
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individual differences within populations [5]. These 

grim data highlight the urgent need to identify 

biomarkers that can predict response to immunotherapy 

and provide an accurate prognosis for HCC. 

 

Immunogenic cell death (ICD) is a form of regulatory 

cell death (RCD) that is sufficient to activate adaptive 

immunity [6, 7]. It can be induced by different 

stimulatory and anticancer treatment modalities, 

including chemotherapy, targeted drugs, oncolytic 

viruses, physical chemotherapy, and radiation therapy 

[8, 9]. ICD involves the exposure and release of 

damage-associated molecular patterns (DAMPs) from 

dying tumor cells that are recognized by innate pattern 

recognition receptors that activate tumor-specific 

immune responses to directly kill cancer cells and anti-

tumor immunity by binding to stimulate long-term 

efficacy of anticancer drugs [6, 8]. At the same time, 

immature dendritic cells (DCs) can be transformed into 

mature phenotypes, thereby accelerating the 

phagocytosis of antigenic components in DCs. Thus, 

through antigen presentation, DCs can stimulate 

specific T-cell responses to kill more tumor cells [10]. 

DAMPs mainly include surface-exposed calreticulin 

and heat shock protein and secreted HMGB1, ATP, 

ANXA1, and type I interferons [7, 9]. ICD is considered 

one of the most promising approaches to achieving the 

complete elimination of tumor cells. Although several 

ICD-related models have been constructed, the 

available evidence for their use in clinical practice is not 

convincing [11]. Therefore, it is of great significance to 

screen biomarkers that classify patients based on their 

response to ICD immunotherapy. The purpose of this 

study is to use ICD-related gene pairs to establish a 

novel signature that may serve as a predictor for 

prognosis and immunotherapeutic response in HCC 

patients. 

 

MATERIALS AND METHODS 
 

Sample data collection and identification of 

immunogenic cell death (ICD)-related genes 

 

RNA sequencing results, clinical features of HCC 

patients, and normal liver specimens were available 

through The Cancer Genome Atlas (TCGA) project and 

Genotype-Tissue Expression (GTEx) database. After 

excluding patients with no clinical data, repeated data, 

incomplete clinical data, and a follow-up time of 0 days, 

374 HCC patients and 160 normal samples were finally 

obtained. For the validation set, the GSE14520 dataset 

was downloaded from Gene Expression Omnibus 

(GEO) database. Additionally, 34 ICD-related genes 

were obtained from previous articles [12], and are listed 

in Supplementary Table 1. The distribution of clinical 

features of HCC cohorts were detailed in Table 1. 

Identification of ICD-related gene pairs 

 

Pairs of ICD-related genes were screened by cyclically 

singly paired. If the expression level of ICD-related 

gene A is greater than that of ICD-related gene B, it is 

recorded as 1; otherwise, it is recorded as 0, and the 0-

or-1 matrixes are established. We consider that there 

was no relationship between pairs and prognoses if 

ICD-related gene pair = 0 or 1 because the patient’s 

survival outcome cannot be correctly predicted due to 

pairs without a certain rank. When the number of pairs 

equal to 1 or 0 was >20% and <80% of the total number 

of pairs, the match was deemed valid. 

 

Development and verification of ICD-related 

prognostic signature 

 

Univariate cox regression was employed to retrieve OS-

associated gene pairs. These gene pairs were then used 

to develop an ICD-related gene pair signature capable 

of predicting HCC patient prognosis through a LASSO 

regression method. The formula developed based on 

this analysis was then established as follows: 

 

Risk score = regression coefficient (genei) × expression 

value (genei). 

 

By setting the median value of the risk score calculated 

in the training set as the threshold, patients in the 

training and validation sets (GSE14520) were stratified 

into two risk subgroups. Survival analysis was 

conducted to analyze differences in survival between 

two risk HCC patients. The subsequent receiver 

operator characteristic (ROC) analysis and C-index 

were employed to assess the prognostic accuracy of the 

developed signature. 

 

Construction of a nomogram 

 

To further confirm the applicability of the signature, 

we investigated the association between the risk score 

and clinical data, including age, sex, grade, surgical 

procedure, recurrence status, vascular tumor cell type, 

pathologic stage, and tumor status. The prognostic 

utility of the ICD-related signature was also examined 

through univariate analyses in both sets, and its ability 

to independently predict patient prognosis was 

examined via a multivariate approach. A nomogram 

including the risk score and various clinical traits 

(surgery procedure and stage) was constructed using 

the “regplot” package. The predictive capability of the 

nomogram was evaluated by AUC values, calibration 

plots, and decision-curve analysis (DCA). The area 
under the curve (AUC) of the ROC was used to assess 

the accuracy of the nomogram in 3- and 5-year 

survival predictions and the predictive prognostic 
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Table 1. Clinicopathologic characteristics of HCC patients in TCGA and GEO cohorts. 

Variables 

TCGA cohort GSE14520 

(n = 374) (n = 221) 

N (%) N (%) 

Age (M ± SD, years) 59.48 ± 13.45 50.75 ± 10.61 

Gender 

Female 121 (32.4) 29 (13.1) 

Male 253 (67.6) 192 (86.9) 

Grade  161 (58.9) 

1 and 2 233 (62.3) / 

3 and 4 136 (36.4) / 

Unknown 5 (1.3) / 

Tumor status 

Tumor free 162 (43.3) / 

With tumor 124 (33.2) / 

Unknown 88 (23.5) / 

Stage 

I–II 260 (69.5) 170 (76.9) 

III–IV 90 (24.1) 50 (22.6) 

Unknown 24 (6.4) / 

Vascular tumor cell type 

Macro 16 (4.3) / 

Micro 94 (25.1) / 

None 208 (55.6) / 

Unknown 56 (15.0) / 

Recurrence 

No 151 (40.4) 96 (43.4) 

Yes 162 (43.3) 125 (56.6) 

Unknown 61 (16.3) / 

 

performance between risk score and TNM stage were 

compared. 

 

Assessment of immune landscape 

 

The interplay between the risk scores and the immune 

microenvironment in HCC patient tumors was assessed 

via the ESTIMATE algorithm, which examined the 

predicted stromal and immune cell content in these 

tumor samples. Calculations of immune infiltration 

statuses among the HCC patients were conducted using 

by CIBERSORT algorithm. A Spearman correlation 

analysis was conducted to investigate the correlations 

between risk score and the infiltration of immune cells 

by the CIBERSORT algorithm. 

 

Immunotherapeutic response analyses and drug 

efficacy assessment 

 

To investigate the predictive ability of risk scores in the 

benefit of immunotherapeutic treatment, we first the 

differences in the expression of immune checkpoints 

between the two risk subgroups using “ggpubr” R 

package. Secondly, the TIDE method was utilized to 

predict cancer immunotherapy response and tumor 

immune escape in low- and high-risk populations [13]. 

Moreover, we analyzed the immunophenoscore (IPS) of 

HCC samples in the TCIA database. The correlations 

between tumor mutation burden (TMB) and risk score 

were analyzed using “ggExtra”, “ggplot2” and “ggpubr” 

packages in R software. The optimal cutoff value of 

TMB in survival data was identified through the 

function surv_cutpoint of the “survminer” R package, 

and then patients were stratified into low- and high-

TMB subgroups. The OS of CRC samples between two 

subgroups was compared by the Kaplan-Meier method. 

Next, a combined survival analysis was performed for 

TMB and risk score. To evaluate the response of the 

two risk groups to different drugs, the R package 

“pRRophetic” was employed to evaluate the half 

inhibitory concentration (IC50) of some common 

chemotherapeutic drugs in every HCC specimen. 
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Functional enrichment analysis 

 

To understand the biological functions of risk-related 

differential genes and the potential signaling enrichment 

pathways, the functional enrichment analyses were 

conducted with the package “clusterProfiler”, and 

presented as bar graphs and bubble plots, respectively. 

 

Statistical analysis 

 

R (v4.0.3; http://www.Rproject.org) was used for 

statistical comparisons. P-value < 0.05 would be 

considered statistically significant. 

 

Availability of data and materials 

 

Publicly available datasets were analyzed in this study. 

This data can be found at TCGA 

(https://portal.gdc.cancer.gov/) and GEO 

(https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Identification of ICD-related gene pairs and 

establishment of the risk model in HCC 

 

This study progressed according to the flow chart 

(Figure 1). A total of 89 ICD-related gene pairs were 

screened with the algorithm described in “Methods”. 

Of the 89 ICD-related gene pairs identified above, 15 

were evidently associated with the OS of HCC patients 

in the training set (Figure 2A). These survival-

associated ICD-related gene pairs were then used to 

generate a prognostic signature via a LASSO Cox 

regression approach (Figure 2B, 2C), ultimately 

identifying 8 gene pairs for inclusion in the developed 

signature. The coefficients of 8 ICD-related gene pairs 

were employed to calculate the risk score (Table 2). Its 

prognostic value was next assessed in the training set, 

with HCC patients being stratified into low- and high-

risk groups. HCC patients with the high-risk score had 

a worse OS (P < 0.05; Figure 2D). The same formula 

and cut-off threshold were then applied to the 

validation set, which similarly revealed worse OS 

(Figure 2E). The AUCs of the training and validation 

sets were 0.720 and 0.710 at 3 years, 0.717 and 0.707 

at 5 years, respectively, indicating that the signature 

has good predictive efficacy (Figure 2F, 2G). We then 

calculated the C-index of risk score and several clinical 

parameters. The highest C-index of the risk score 

affirmed the predictive utility of our signature in both 

training and validation sets (Figure 2H, 2I). 

Additionally, we compared the risk model with existing 

signatures in HCC. ROC curves indicated that our 

signature achieved significantly favorable predictive 

power compared with previously published prognostic 

models (Supplementary Figure 1). Risk score and OS 

distributions were shown in Figure 2J and it was 

noticed that the risk of death gradually increased with 

the increment of the risk score. The same analyses were 

then performed in the validation set and similar 

distribution was found (Figure 2K). 

 

 
 

Figure 1. The flow chart of this study. 

http://www.rproject.org/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 2. Construction and verification of ICD-related prognostic gene signature. (A) Forest plots showing the results of the Cox 

univariate regression of 15 ICD-related prognostic gene pairs. (B) The LASSO coefficient profile of 8 ICD-related prognostic gene pairs. (C) 
Selection of optimal LASSO model parameters for HCC patients (λ). (D, E) Kaplan-Meier survival curves of patients in low- and high-risk 
groups in training (D) and validation (E) sets. (F, G) The AUC values of the signature in the training (F) and validation sets (G). (H, I) C-index 
of the risk score and other clinical traits in the training (H) and validation sets (I). (J, K) Risk score and OS distributions were assessed in the 
training (J) and validation sets (K). 
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Table 2. The coefficients of 8 ICD-related gene pairs. 

ICD-related gene Coefficient 

BAX|MYD88 0.2899 

CASP8|CD4 0.2312 

CD8A|ENTPD1 −0.2687 

CD8A|IL17RA −0.2006 

CD8B|IL6 −0.1251 

CXCR3|IL1B −0.2297 

FOXP3|IL1B −0.1201 

HSP90AA1|PDIA3 0.4057 

 

Development and validation of a nomogram 

 

We explored the relationship between the risk score and 

clinicopathological traits, including age, gender, 

surgical procedure, grade, vascular tumor cell type, 

recurrence status, tumor status, and stage. Significant 

correlations were observed between risk score and 

surgical procedure, vascular tumor cell type, recurrence 

status, tumor status, and stages (Figure 3A–3E). HCC 

patients who underwent segmentectomy had evidently 

higher risk scores than those who underwent lobectomy 

(Figure 3A). Significantly higher risk scores were 

observed in the Macro and Micro groups (Figure 3B). 

High-risk scores were more common in patients with 

recurrence status (Figure 3C) and with tumor status 

(Figure 3D). In addition, patients in stage pathological 

III-IV had higher risk scores than those in stage I-II 

(Figure 3E). Univariate and multivariable Cox 

regression analyses demonstrated the independent 

predictive roles of surgery, stage, and risk score in the 

training cohort (Figure 3F, 3G). The independent 

predictive roles of stage and risk score were further 

confirmed in the validation set (Figure 3H, 3I). To 

enhance the clinical use of the signature, risk score, 

surgery procedure, and stage were combined to build a 

prognostic nomogram (Figure 3J). The combined 

nomogram showed an excellent predictive ability and 

performed better than any TNM stage in predicting 3- 

and 5-year survival (Figure 3K, 3L). Calibration curves 

demonstrated that the nomogram performed well 

(Figure 3M). Meanwhile, the DCA curve demonstrated 

the contribution of risk and nomogram in clinical 

decision-making (Figure 3N). 

 

Assessment of immune landscape 

 

The ESTIMATE algorithm was further used to process 

HCC patient sample data to compare the relative 

contribution of immune and stromal cells to the 

obtained patient samples. Compared with low-risk 
patients, patients with high-risk scores had significantly 

lower immune and stromal scores and higher tumor 

purity (P < 0.001; Figure 4A–4D). Based on the 

CIBERSORT algorithm, we observed increased CD8+ 

T cell, plasma cells, activated memory CD4+ T cell, M1 

macrophage, and T follicular helper cell infiltration in 

low-risk patients, whereas high-risk patients exhibited 

enhanced resting memory CD4+ T cell, M0 

macrophage, M2 macrophage, and neutrophils 

infiltration (P < 0.05; Figure 4E). The scatter plot 

(Figure 4F–4L) further showed that high-risk score was 

positively associated with several infiltrations of 

immune cells, such as M0 macrophage, M2 

macrophage, and neutrophils (Figure 4F–4H), while the 

infiltration level of CD8+ T cell, activated memory 

CD4+ T cell, M1 macrophage, and Tfh cells was 

associated with the high-risk group (Figure 4I–4L). 

 

Immunotherapeutic response analyses and drug 

efficacy assessment 

 

We compared the expression of major immune 

checkpoints including HAVCR2, PD-1, and PD-L1, 

between the two subgroups. Overall, most of the 

immune checkpoints were substantially elevated in the 

low-risk group (Figure 5A), indicating that patients with 

low-risk scores may achieve better ICIs therapy results. 

Moreover, we use the TIDE algorithm to evaluate the 

likelihood of HCC benefiting from ICI therapy. The 

results demonstrated that the TIDE score was higher in 

high-risk patients (Figure 5B), suggesting tumors in 

high-risk patients could acquire immune escape more 

easily. Furthermore, we compared the immunotherapy 

efficacy of the two risk subgroups by IPS scores and 

found that in the anti-CTLA4 single-drug group, the 

anti-PD1 single-drug group, and the anti-CTLA4 and 

anti-PD1 combination group, the IPS scores were higher 

in the low-risk group (Figure 5C–5F), suggesting that 

patients with low-risk HCC may have greater sensitivity 

to immunotherapy. Growing evidence suggests that 

TMB may determine the individual response to cancer 

immunotherapy. Correlation analysis demonstrated that 

the risk scores were negatively associated with TMB 
(Figure 5G), indicating low-risk patients may respond 

better to immunotherapy. In addition, K-M survival 

analysis demonstrated that low-TMB patients enjoyed a 



www.aging-us.com 9705 AGING 

 
 

Figure 3. Generation and validation of a nomogram scoring system. (A–E) The relationship between the risk score, surgical 
procedure, vascular tumor cell type, recurrence status, tumor status, and stages. (F, G) Forest plots showing the results of the univariate (F) 
and multivariate (G) Cox analysis in the training set. (H, I) Forest plots showing the results of the univariate (H) and multivariate (I) Cox 
analysis in the validation set. (J) Nomogram predicting the 3-year and 5-year overall survival of HCC patients. (K, L) Comparison of the 3- (K) 
and 5-year AUC (L) of nomogram and TNM staging system. (M) The calibration plots of the nomogram at 3 and 5 years. (N) The DCA curves 
of the nomogram at 3 and 5 years. 
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much longer survival time than their counterparts 

(Figure 5H). Combining TMB and risk score allowed us 

to classify patients into four groups. The combined 

survival analysis showed that the high TMB and high- 

risk groups had the worst prognoses, and, conversely, 

the low TMB and low-risk groups had the best 

prognoses (Figure 5I). 

 

To identify a drug therapy target, a crucial way is to 

clarify the correlation between ICD-related signatures

 

 
 

Figure 4. Assessment of immune cell infiltration and the immune microenvironment in different subgroups. (A–D) 

Differences in immune scores, stromal scores, and tumor purity between high-risk and low-risk groups. (E) Differences in immune cells 
infiltration between high-risk and low-risk groups. (F–L) Correlations between the risk score and immune cells infiltration. *, **, and *** 
represent p < 0.05, 0.01, and 0.001, respectively. 
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and antitumor drugs. As shown in Figure 6, the IC50 

values of Temsirolimus, Bortezomib, Metformin, 

Paclitaxel, and Sunitinib were higher in the high-risk 

subgroup (Figure 6A–6E), while the IC50 value of AKT 

inhibitor VIII was higher in the low-risk subgroup 

(Figure 6F). 

 

 
 

Figure 5. Comparison of the immunotherapeutic response of low- and high-risk HCC patients. (A) Comparison of immune 

checkpoint expression between the two subgroups. (B) Differences in TIDE scores in low- and high-risk individuals. (C–F) Differences in IPS 
scores in low- and high-risk individuals. (G) Differences in TMB in low- and high-risk individuals. (H) Kaplan-Meier survival curves of HCC 
patients in different TMB groups. (I) Kaplan-Meier survival curves in different risk scores and TMB subgroups. 
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GO and KEGG enrichment analyses 

 

To characterize the functional enrichment in risk 

groups, we compared the mRNA expression difference 

between two risk subgroups to identify DEGs (|log2 

(fold change, FC) | > 1 and adjusted P < 0.05), and a 

total of 314 DEGs were identified (Figure 6G, 6H). As 

shown in Figure 6I, GO terms indicated that these 

 

 
 

Figure 6. Chemotherapy sensitivity and functional enrichment analyses. (A–F) Boxplots of the IC50 values of the Temsirolimus, 

Bortezomib, Metformin, Paclitaxel, Sunitinib, and AKT inhibitor VIII between different risk subgroups. (G, H) Heatmap (G) and volcano plots 
(H) demonstrate DEGs between two risk subgroups. (I) GO terms of DEGs among different risk subgroups. (J) KEGG enrichment analyses of 
DEGs among different risk subgroups. 
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DEGs were mainly correlated with antigen binding, 

MHC protein binding, and immunoglobulin receptor 

binding. Additionally, KEGG pathway analysis 

demonstrated that these DEGs were mainly associated 

with immune-related pathways, including the T cell 

receptor signaling pathway, Cytokine-cytokine receptor 

interaction, Cell adhesion molecules, and Th17 cell 

differentiation (Figure 6J). 

 

DISCUSSION 
 

The past decade has witnessed breakthroughs in cancer 

immunotherapy, which has been incorporated into the 

treatment regimen of various tumors, but its response 

rate remains low due to immune evasion of cancer cells 

and tumor resistance to conventional therapies. ICD is 

considered to be one of the most promising approaches 

to achieving the complete elimination of tumor cells, as 

it can activate T-cell adaptive immune responses and 

lead to the formation of long-term immune memory 

[14]. In addition, hundreds of studies have shown that 

after induction chemotherapy with ICDs, tumors change 

from “cold” to “hot” in response to immune checkpoint 

inhibitors, indicating that ICDs will open the door to 

immunotherapy [15–17]. Currently, two ICD-related 

anticancer drugs have come out. One is belantamab 

mafodotin, approved by the FDA in 2020 to treat adult 

patients with relapsed or refractory multiple myeloma 

[18]; the other is the FDA-approved lurbinectedin for 

the treatment of small cell lung cancer [19]. Hence, 

given that ICD-associated biomarkers benefit from 

immunotherapy, identifying these biomarkers may help 

differentiate HCC patients. 

 

Our study comprehensively analyzed the expression 

profiles of these ICD-related genes and established a 

risk signature with 8 ICD-related gene pairs through a 

series of computational methods. Risk scores 

established using the model allowed the grouping of 

HCC patients into two distinct risk-based populations 

with significantly different OS, and this model yielded a 

high AUC value and C-index. And it was successfully 

externally validated in the GEO cohort, indicating a 

better capability. Some of the ICD-related genes 

included within the established signature have 

previously been shown to be correlated with HCC 

tumorigenesis. FOXP3, for example, can inhibit tumor 

growth and induced apoptosis in HCC by targeting  

c-Myc [20]. Correlation analysis demonstrated that risk 

score was closely associated with surgical procedure, 

vascular tumor cell type, recurrence status, tumor status, 

and stages. Multivariate Cox analysis revealed the 

independent prognostic role of the prognostic signature. 

To enhance the clinical use of the ICD-relate gene 

signature, risk score, surgery procedure, and stage were 

combined to build a nomogram, and the combined 

nomogram showed outstanding predictive ability. 

Moreover, the AUC of the nomogram developed herein 

was superior to that of the TNM stage, emphasizing its 

robust predictive utility. 

 

Hundreds of studies have shown the tumor micro-

environment (TME) to be a key determinant of 

tumorigenesis and disease progression, as tumor-

associated cells can shape important malignant 

processes. Immune cells, as major components of the 

tumor microenvironment, determines the survival and 

response to immunotherapy. For example, clinical data 

strongly suggest that the immune cell composition of 

tumors in HCC affects treatment response and is 

strongly associated with patient outcomes [21–23]. Our 

study showed that patients in the low-risk group 

presented with more pronounced immune cell infiltration 

relative to high-risk individuals. Specifically, increased 

CD8+ T cell, plasma cells, activated memory CD4+ T 

cell, M1 macrophage, and Tfh cell infiltration were 

observed in low-risk patients, whereas high-risk patients 

exhibited enhanced resting memory CD4+ T cell, M0 

macrophage, M2 macrophage, and neutrophils 

infiltration. Tumor-infiltrating lymphocyte populations 

are closely linked with HCC patient outcomes, and T 

cells are the best-studied lymphocyte type [24]. T cells 

are one of the most common immune cells found in 

HCC tumor tissues, and they can mediate the protection 

of tumor cells, but are often dysfunctional and depleted 

in cancer [25, 26]. Barsch et al. [26] found that HCC 

patients dominated by depleted CD8+ T cells had poor 

OS and progression-free survival. Consistently, the 

present study demonstrated that CD8+ T cell infiltration 

was decreased in high-risk patients. Tumor-associated 

macrophages (TAM) are predominantly M2 macro-

phages, and high-density TAM infiltration in HCC is a 

marker of poor prognosis [27, 28]. M2 macrophages 

drive tumor growth directly and indirectly by 

suppressing cytotoxic cell populations, including NK 

cells and CD8+ T cells [27]. M2 macrophages can 

upregulate PDL1 expression in HCC, thereby 

suppressing CD8+ T cell activity [29, 30]. Neutrophils 

were also reported to suppress T-cell immunity and 

promote tumor progression [31]. Moreover, we also 

observed that patients with high-risk scores had 

evidently lower TME scores and higher tumor purity 

compared to low-risk patients. 

 

Immunotherapy based on ICIs has become a powerful 

clinical strategy for treating HCC [3, 32]. Currently, 

atezolizumab in combination with bevacizumab is 

approved for third-line treatment of advanced HCC 

[33]. In this work, most immune checkpoints were 
evidently elevated in the low-risk group, suggesting that 

low-risk HCC patients may respond more readily to 

immunotherapy which can provide a reference for 
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clinical drug selection of ICIs. Moreover, a higher TIDE 

score was observed in high-risk patients, suggesting 

tumors in high-risk patients could acquire immune 

escape more easily. The IPS results demonstrated that 

the immunotherapy response was poorer in the high-risk 

group, which was in accordance with the previous 

results. In addition, several biomarkers, notably PD-L1, 

TMB, and other biomarkers, have been shown to have 

significant predictive value in HCC immunotherapy 

[34]. Growing evidence suggests that high TMB was 

associated with better response to immunotherapy. In 

this study, correlation analysis revealed that the risk 

scores were negatively associated with TMB, indicating 

low-risk patients may have a better response to 

immunotherapy. 

 

Surgery followed by adjuvant treatment is the most 

common treatment for HCC patients. Chemotherapy 

and targeted therapy are one of the most important 

treatment modalities for advanced HCC [35, 36]. We 

explored the correlation between the risk score and 

antitumor drugs. The results revealed the IC50 values of 

Temsirolimus, Bortezomib, Metformin, Paclitaxel, and 

Sunitinib were higher in the high-risk group, while the 

IC50 value of AKT inhibitor VIII was higher in the 

low-risk group. These data indicated that the risk 

signature might predict potential response to 

immunotherapy, chemotherapy, or targeted therapy. 

 

Indeed, some limitations could be found in this study. 

First, these analyses were retrospective in design and 

necessitate future prospective validation. In addition, 

HCC tissues and cell lines are required to verify the 

expression of signature genes, and more functional 

assays are needed to verify the roles of signature genes 

in the future. Second, while gene expression data were 

used to gauge the intratumoral immune cell landscape 

within HCC patient tumors, these analyses require cell-

based validation. Moreover, the presence of cells within 

tumors does not necessarily indicate that these cells 

interact with one another, highlighting a need for 

detailed research efforts aimed at validating all aspects 

of this study. 

 

CONCLUSIONS 
 

The study developed and validated an effective risk 

model based on 8 ICD-related gene pairs in HCC. Our 

research provides many useful insights for predicting the 

prognosis of HCC patients and provides novel insight 

into the potential therapeutic strategy for HCC patients. 
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decision-curve analysis. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Time-dependent ROC curves of prognostic risk model and other prognostic models. 
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Supplementary Table 
 

Supplementary Table 1. The list of 34 ICD-related genes. 

ATG5 EIF2AK3 IL10 NT5E 

BAX ENTPD1 IL17A P2RX7 

CALR FOXP3 IL17RA PDIA3 

CASP1 HMGB1 IL1B PIK3CA 

CASP8 HSP90AA1 IL1R1 PRF1 

CD4 IFNA1 IL6 TLR4 

CD8A IFNB1 LY96 TNF 

CD8B IFNG MYD88  

CXCR3 IFNGR1 NLRP3  

 

 

 


