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INTRODUCTION 
 

Mitochondrial open reading frame of the 12S ribosomal 

RNA type-c (MOTS-c) is a mitochondrially-encoded 16-

amino-acid biopeptide that functions as an exercise-

induced regulator of metabolic homeostasis [1, 2] and a 

modulator of obesity-, diet-, and aging-dependent 

metabolic function by acting as a systemic, endocrine-

acting mitokine [3, 4]. MOTS-c dynamically translocates 

to the nucleus in response to metabolic stress to directly 

regulate the expression of a broad spectrum of genes, 

including antioxidant response element-containing  

target genes [5]. By targeting folate-dependent de novo 

purine biosynthesis, MOTS-c boosts the levels of  

the endogenous AMP analog 5-aminomidazole-4-

carboxamide ribonucleotide (AICAR), which in turn 

activates the master energy sensor AMP-activated 

protein kinase (AMPK). Skeletal muscle cell-targeted 
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ABSTRACT 
 

The mitokine MOTS-c is a mitochondrially-encoded “exercise-mimetic peptide” expressed in multiple tissues, 
particularly skeletal muscles, which can be detected as a circulating hormone in the blood. MOTS-c mechanisms 
of action (MoA) involve insulin sensitization, enhanced glucose utilization, suppression of mitochondrial 
respiration, and targeting of the folate-AICAR-AMPK pathway. Although MOTS-c MoA largely overlap those of 
the anti-diabetic biguanide metformin, the putative regulatory actions of metformin on MOTS-c have not yet 
been evaluated in detail. Here, we measured circulating MOTS-c in paired baseline and post-treatment sera 
obtained from HER2-positive breast cancer patients randomized to receive either metformin combined with 
neoadjuvant chemotherapy and trastuzumab or an equivalent regimen without metformin. We failed to find 
any significant alteration of circulating MOTS-c –as measured using the commercially available competitive 
ELISA CEX132Hu– in response to 24 weeks of a neoadjuvant chemotherapy/trastuzumab regimen with or 
without daily metformin. Changes in circulating MOTS-c levels failed to reach statistical significance when 
comparing patients achieving pathological complete response (pCR), irrespective of metformin treatment. The 
inability of metformin to target skeletal muscle, the major tissue for MOTS-c production and secretion, might 
limit its regulatory effects on circulating MOTS-c. Further studies are needed to definitely elucidate the nature 
of the interaction between metformin and MOTS-c in cancer and non-cancer patients. 
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involvement of the folate-AICAR-AMPK pathway 

constitutes the mechanistic basis of MOTS-c as an 

endogenous “exercise mimetic”, which can stimulate 

glucose utilization and fat oxidation and suppress 

inflammation [4]. 

 

Exercise interventions show promise as effective 

adjunct strategies to prevent and/or attenuate 

chemotherapy-associated toxicity (e.g., cardiotoxicity 

and cardiopulmonary dysfunction) in patients with 

early-stage breast cancer (BC) [6, 7]. Exploratory 

studies have demonstrated that exercise interventions 

might also modulate host- and tumor-related pathways 

in patients on standard chemotherapy [8]. Indeed, 

several ongoing and planned interventional studies (e.g., 

Neo-ACT NCT05184582, Neo-Train NCT04623554) 

have been designed to examine whether physical 

exercise interventions during the neoadjuvant 

chemotherapy period can bolster treatment efficacy [9, 

10]. Pharmacological therapeutics that partially mimic 

the systemic impact of exercise have also been proposed 

for those cancer patients for whom exercise training 

may not be an option [11–13]. One putative exercise 

mimetic, metformin, shares many mechanistic features 

with MOTS-c, including: (a) insulin sensitization,  

(b) enhancing glucose utilization, (c) suppressing 

mitochondrial respiration, and (d) targeting the folate-

AICAR-AMPK pathway [4, 14–16]. To date, however, 

no study has examined whether metformin can 

influence the expression of MOTS-c in cancer patients. 

Here, we explored the impact of metformin on 

circulating MOTS-c levels in the METTEN study 

(EudraCT number 2011-000490-30), a phase 2 clinical 

trial of women with HER2-positive BC randomized to 

receive either metformin (850 mg twice daily) for 24 

weeks concurrently with 12 cycles of weekly paclitaxel 

plus trastuzumab, followed by four cycles of 3-weekly 

FE75C plus trastuzumab (arm A), or an equivalent 

regimen without metformin (arm B), before surgery [17]. 

 

The present study was conducted with paired baseline 

and post-treatment serum samples collected from 38 

patients (n=19 in each arm) belonging to the intention-

to-treat population of the METTEN trial (Figure 1A, 

left), which included randomly assigned patients 

receiving at least one dose of study medication. All 

samples were evaluated in parallel for circulating 

MOTS-c using a commercially available competitive 

ELISA (CEX132Hu; CloudClone Corp., Wuhan, China) 

[18, 19]. Within- and between-group data were assessed 

by paired t-test and post hoc Tukey multiple comparison 

tests on repeated measures ANOVA. No statistically-

significant differences were found between the pre- and 
post-levels of circulating MOTS-c irrespective of the 

treatment arm (Figure 1A, right). Similarly, changes in 

circulating MOTS-c levels failed to reach statistical 

significance when comparing patients achieving 

pathological complete response (pCR), defined as the 

absence of invasive tumor cells in post-neoadjuvant 

therapy surgical histopathology of the complete resected 

breast specimen, including sample regional lymph 

nodes [17], and patients with non-pCR, irrespective of 

the treatment arm (Figure 1B). 

 

Our findings indicate that metformin does not operate as 

an exercise mimetic to augment the circulating levels of 

MOTS-c in patients with BC treated with neoadjuvant 

therapy. It is possible that the lack of effect relates to 

different target tissues of metformin and MOTS-c. We 

have recently learned that an expansion of the skeletal 

muscle-derived MOTS-c protein pool occurs con-

comitantly with increases in mitochondrial DNA [20], 

which might suggest that circulating MOTS-c could 

operate as a surrogate marker of phenotypic and 

functional shifts of mitochondrial networks [21]. 

Metformin is known to activate AMPK when targeting 

the liver, kidney, and intestine but not skeletal muscle 

[22] –the major tissue for MOTS-c production and 

secretion–, which might prevent any regulatory effect 

on circulating MOTS-c. Moreover, we are accumulating 

evidence that metformin does not enhance (and instead 

dampens) the beneficial strength gains and muscle 

activation in response to exercise training in healthy 

elderly people [23–26]. The mechanisms of MOTS-c 

production, secretion, distribution, and metabolism  

in the human body remain to be fully elucidated. 

Likewise, the extent of involvement of various tissue 

targets and/or the effects of metformin on skeletal 

muscle metabolism and how they determine the 

pharmacodynamics and endogenous serum levels of 

MOTS-c in patients with BC await evaluation in future 

studies. One should acknowledge that plasma and 

muscle MOTS-c show opposing responses to aging in 

older men, thereby suggesting that the primary source 

of circulating MOTS-c is not skeletal muscle or the 

pharmacokinetics of MOTS-c changes with age [27]. 

Similarly, the ability of muscle cells to release MOTS-c 

can be impaired due to changes in the export process 

and/or to the exhausted capacity of muscle (or hepatic) 

cells to tolerate or adapt to systemic metabolic stress 

occurring in cancer patients. Therefore, we cannot 

exclude the possibility that serum circulating MOTS-c 

and muscle MOTS-c can be differentially regulated by 

metformin, as aging does [27]. 

 

There are several limitations to this study. Endogenous 

levels of circulating MOTS-c have been shown to vary 

significantly (from 154 pg/mL to 584 ng/mL) 

depending on the assay method used [5, 18, 19, 28–30]. 
In our series of patients, the endogenous serum levels of 

MOTS-c ranged from 181 ng/mL to 1033 ng/mL. 

Overall, these findings would strongly suggest that the 
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immunoreactive species of circulating MOTS-c 

detected using different kits are not identical. Our 

previous analysis confirmed that treatment of non-

diabetic patients with HER2+ BC with oral metformin 

(850 mg twice daily) for 24 weeks produced blood 

levels of circulating metformin of ~7 μmol/L, 

equivalent to those generally achieved in diabetic 

patients with the usual clinical doses and schedule [17]. 

The exercise-induced augmentation of circulating 

MOTS-c in young subjects was found to return to 

baseline after only 4 hours of resting [4]. As we 

measured circulating MOTS-c in blood that was not 

strictly timed in relation to the last preceding oral dose 

of metformin [17], our data need to be viewed 

cautiously in terms of association between metformin 

treatment, achieved serum concentration of MOTS-c, 

and probability of pCR in BC patients. Moreover, the 

METTEN trial was conducted in patients with the 

HER2+ subtype of breast cancer, which leaves open the 

question of whether the circulating levels of MOTS-c 

and/or the regulatory activity of metformin on MOTS-c 

might be different in patients with other BC subtypes, 

such as luminal A, HER2-negative luminal B or triple 

negative [31]. Nonetheless, this is a retrospective study 

in a small sample size for which the evaluation of 

MOTS-c was not part of the original study design. Care 

should therefore be taken in interpreting and 

generalizing these findings. With an ever-growing 

recognition of the role of MOTS-c on age-related 

diseases including diabetes, obesity, osteoporosis, 

cardiovascular, and neurodegenerative diseases [32, 33], 

further studies are needed to elucidate the nature of the 

interaction between metformin and MOTS-c in cancer 

and non-cancer patients. 

 

 
 

Figure 1. Circulating levels of MOTS-c in patients with HER2+ breast cancer treated with neoadjuvant metformin. (A) Left. 

METTEN study design. Circulating MOTS-c levels were determined through blood draws obtained at pre- (0 weeks) and post- (24 weeks) 
treatment using a commercial ELISA kit (CloudClone Corp., Wuhan, China; Catalog No. CEX132Hu). Right. Box plot (median, 25%–75% 
quartiles and minimal and maximal values) of the pre- and post-treatment distribution of circulating MOTS-c in women randomized to arms A 
(metformin-containing) and B (without metformin). (B) Box plot (median, 25%–75% quartiles and minimal and maximal values) of the pre- 
and post-treatment distribution of circulating MOTS-c in non-pCR and pCR groups. No between-group comparisons reached statistical 
significance in A and B. 
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