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ABSTRACT 
 

We previously described a DNA methylation (DNAm) based biomarker of human mortality risk DNAm GrimAge. 
Here we describe version 2 of GrimAge (trained on individuals aged between 40 and 92) which leverages two new 
DNAm based estimators of (log transformed) plasma proteins: high sensitivity C-reactive protein (logCRP) and 
hemoglobin A1C (logA1C). We evaluate GrimAge2 in 13,399 blood samples across nine study cohorts. After 
adjustment for age and sex, GrimAge2 outperforms GrimAge in predicting mortality across multiple racial/ethnic 
groups (meta P=3.6x10-167 versus P=2.6x10-144) and in terms of associations with age related conditions such as 
coronary heart disease, lung function measurement FEV1 (correlation= -0.31, P=1.1x10-136), computed tomography 
based measurements of fatty liver disease. We present evidence that GrimAge version 2 also applies to younger 
individuals and to saliva samples where it tracks markers of metabolic syndrome. 
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INTRODUCTION 
 

We previously established DNA methylation based 

(DNAm) GrimAge for predicting mortality risk and 

showed it outperformed several widely-used DNAm 

biomarkers of aging [1]. While first generation clocks 

such as the pan tissue clock (Horvath, 2013) [2] and 

Hannum et al.’s blood based clock [3] estimate 

chronological age, second generation clocks estimate 

mortality risk e.g. the mortality risk score (Zhang et al., 

2017 [4]), DNAm PhenoAge (Levine et al. [5], 2018), 

DNAm GrimAge [1] (2019), and longitudinal data based 

clocks such as DunedinPoAm [6] and Pace of Aging [7]. 

 

Comparative studies in epidemiological cohorts show 

that DNAm GrimAge often outperforms the afore-

mentioned clocks in terms of a) predicting mortality risk 

and b) associations with age-related conditions research 

groups ([8–17]). GrimAge has been used to study many 

conditions including COVID [13], autism [15], major 

depression disorder [18], post-traumatic stress disorder 

(PTSD). 

 

Here we describe a second version of GrimAge, 

GrimAge2, and demonstrate that it outperforms the 

original GrimAge with respect to its strength of 

association with a host of age-related conditions 

including mortality risk, computed tomography data, 

cognitive assessments, lifestyle factors, and applicability 

to saliva. We validate version 2 of GrimAge in almost 

13,400 blood samples across nine human cohorts  

with participants of Hispanic-, European-, and African 

ancestries.  

 

Review of version 1 of GrimAge 

 

The first version of GrimAge was defined as a 

composite biomarker (weighted linear combination) of 

seven DNAm surrogates of plasma proteins, a DNAm-

based estimator of smoking pack-years, age, and sex. 

GrimAge relied on the fact that some (but not all) 

plasma protein levels can be estimated based on cytosine 

methylation levels.  
 

In the following, we denote a DNAm-based surrogate 

marker by adding the prefix “DNAm” to the respective 

variable name. To adjust for confounding by 

chronological age, we define age adjusted measures of 

DNAm-based variables as the residuals resulting from 

regressing the DNAm variable on chronological age. 

For example, we defined the age adjusted version of 

GrimAge, referred to as age acceleration AgeAccelGrim 

(in units of year), based on DNAm GrimAge [1]. Thus, 

a positive (or negative) value of AgeAccelGrim 

indicates that the DNAm GrimAge is higher (or lower) 

than expected based on chronological age. We use the 

same terminology to define AgeAccelGrim2 based on 

DNAm GrimAge2. 

 

DNAm GrimAge was established based on a two-stage 

approach [1]. We trained and tested the GrimAge using 

individuals from the Framingham heart study (FHS) 

Offspring Cohort [19]. In the first stage, we established 

DNAm surrogates of plasma proteins as well as 

smoking pack-years (DNAm PACKYRS). In the second 

stage, we developed a predictor of mortality by 

regressing time-to-death due to all-cause mortality 

(dependent variable) on the following covariates: 

DNAm surrogates selected from the first stage, 

chronological age (Age) and sex (Female: 1 indicates 

females, 0 males), and batch effect as needed. 

 

RESULTS 
 

GrimAge version 2 

 

The first version of DNAm GrimAge was defined as a 

linear combination of chronological age (Age), an 

indicator of female sex (Female), and eight DNAm 

biomarkers including DNAm PACKYRS and seven 

DNAm proteins that are implicated in kidney  

function, mitochondria dysfunction, inflammation, etc. 

(Supplementary Note 1). The 1030 unique CpGs 

underlying version 1 of GrimAge are proximal to genes 

which play a role in MHC class II, cytokine-mediated 

signaling pathway and other gene sets from GO, KEGG 

and PANTHER [1].  

 

We used the same set of 1030 CpGs to construct version 

2 of GrimAge. We randomly split the Framingham 

Heart Study data into training (n=1833) and test 

(n=711) data (Methods). The mean age of individuals in 

the training set and test set was 66 and 67 years, 

respectively. These participants in the training and test 

datasets have similar demographic profiles and number 

of years for follow-up (Table 1). 

DNAm logCRP is positively correlated with morbidity count (P=1.3x10-54). DNAm logA1C is highly associated with 
type 2 diabetes (P=5.8x10-155). DNAm PAI-1 outperforms the other age-adjusted DNAm biomarkers including 
GrimAge2 in correlating with triglyceride (cor=0.34, P=9.6x10-267) and visceral fat (cor=0.41, P=4.7x10-41). 
Overall, we demonstrate that GrimAge version 2 is an attractive epigenetic biomarker of human mortality and 
morbidity risk. 
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Table 1. Overview of the cohorts for validating DNAmGrimAge2.  

Study Race2 
N 

Female Death Age Follow-up 
Samples Subjects 

Training data        

FHS training White 1833 1833 54% 13% 66.1±9.06 [59,73] 7.9±1.67 [7.4,9.89] 

Validation data       

FHS test White 711 711 54% 14% 66.8±8.62 [61,73] 7.7±1.77 [7.2,8.78] 

WHI BA23 

White 998 998 100% 67% 68.3±6.26 [65,72.77] 19.1±6.22 [15,23.92] 

AfricanA 676 676 100% 52% 63±6.61 [57.9,67.7] 19.5±6.81 [15.7,24.58] 

Hispanic 433 433 100% 43% 62.2±6.87 [56.5,67.5] 20.7±5.78 [18.2,24.48] 

WHI EMPC 

White 1096 1096 100% 48% 64.3±7.1 [58.9,69.79] 21±5.95 [18.2,24.96] 

AfricanA 558 558 100% 45% 62.5±6.98 [57.7,67.46] 21±5.67 [18.8,24.77] 

Hispanic 318 318 100% 30% 61.2±6.21 [56.5,65.96] 22±4.82 [21.9,24.59] 

JHS AfricanA 1746 1746 63% 16% 56.2±12.32 [46.5,65.35] 11.7±2.55 [11.2,13.11] 

InCHIANTI White 1430 728 56% 37% 67.4±16.17 [61,78] 10±4.87 [5.4,14.58] 

BLSA White 572 556 46% 32% 70.9±14.08 [62,82] 6.1±4.18 [2.1,9.32] 

LBC21 White 692 469 60% 94% 82.3±4.31 [79,86.56] 8.8±5.2 [4.6,12.57] 

LBC36 White 2796 1044 50% 30% 73.6±3.67 [70.3,76.63] 9.7±4.09 [6,13.05] 

NAS White 1373 732 0% 38% 74.5±6.99 [69,79] 10.5±4.71 [6,15] 

Summary1  
White, African A, 

Hispanic 
13,399 10,065 71% 39% 67.9±11.33 [61.8,76] 13±6.9 [7.8,16.91] 

1Summary statistics are based on the nine validation datasets. 
2AfricanA denotes African American. 
The table summarizes the characteristics of 1833 and 13,399 blood samples used in our training and validation process. The 
training dataset was based on the 1833 individuals from Framingham Heart Study Offspring Cohort (FHS). The validation 
datasets consist of 10,065 individuals came from nine independent cohorts: FHS test dataset, Women’s Health Initiatives 
(WHI) BA23, WHI EMPC, Jackson Heart Study (JHS), InCHIANTI (baseline and the third follow-up), Baltimore Longitudinal 
Study of Aging (BLSA), Lothian Birth Cohort 1921 (LBC21) and LBC 1936 (LBC36), and Normative Aging Study (NAS). The 
studies cohorts were used in our validation analysis stratified by racial group within each cohort. Age and follow-up time 
(from methylation profile to last visit/death in units of years) are presented in the format of mean ±SD [25th, 75th]. Proportion 
of females are based on individual level. 

 

We started out by developing two new DNAm based 

estimators of high sensitivity C-reactive protein (CRP) 

and hemoglobin A1C, respectively. CRP is a widely 

used biomarker of inflammation while hemoglobin A1C 

levels are used to assess the short term history of blood 

glucose levels. 

 

To arrive at DNA methylation based surrogates of these 

plasma proteins, we used two elastic net regression 

models to predict log-transformed (base e) versions of 

high-sensitivity C-reactive protein (log CRP) and 

hemoglobin A1C (log A1C), respectively. Both elastic 

net regression models used the following candidate 

covariates: 1030 CpGs, Age and Female. The two 

elastic net regression models selected 132 CpGs (for log 

CRP) and 86 CpGs (for log A1C), respectively 

(Supplementary Table 1). The predicted values resulting 

from these regression models will be denoted by DNAm 

logCRP and DNAm logA1C, respectively. The Pearson 

correlation coefficients between the DNAm variables 

and their target proteins are biased in the training 

dataset (Supplementary Figure 1A, 1B) due to 

overfitting. Our unbiased analysis in the test dataset 

leads to the following: Pearson correlations r=0.48 for 

DNAm logCRP and r=0.34 for DNAm logA1C 

(Supplementary Figure 1C, 1D). 

 

To define GrimAge2 we used a Cox regression model to 

regress time-to-death (due to all-cause mortality) on the 

following candidate covariates: eleven DNAm-based 

surrogates of plasma proteins, DNAm PACKYRS, Age, 

Female (Methods, Supplementary Table 1). We remind 

the readers that the first version of GrimAge was based 

on Age, Female, DNAm PACKYRS, and seven DNAm-

based proteins: adrenomedullin (ADM), beta-2-

microglobulim (B2M), cystatin C (Cystatin C), GDF-15, 

leptin (Leptin), PAI-1, and tissue inhibitor 

metalloproteinases 1 (TIMP-1, Supplementary Note 1). 

Interestingly, the Cox regression model with a elastic net 

penalty picked up the exactly same seven DNAm 

proteins, DNAm PACKYRS, as well as the two new 

biomarkers (DNAm logCRP and DNAm logA1C). Thus, 

GrimAge2 is based on 12 covariates: 10 DNAm based 

biomarkers and 2 demographic characteristics: Age, 

Female (Figure 1). The linear combination of covariates 

resulting from the elastic net Cox regression model can 



www.aging-us.com 9487 AGING 

be interpreted as an estimate of the logarithm of the 

hazard ratio of mortality. We calibrated this parameter 

into an age estimate by performing a linear 

transformation whose slope and intercept terms were 

chosen by forcing the mean and variance of DNAm 

GrimAge2 to match that of chronological age in the 

training data (Figure 1).  

 

Pairwise correlations between DNAmGrimAge2 and 

its components 

 

DNAm GrimAge2 correlates positively with its 

underlying components DNAm GDF15, DNAm TIMP1, 

DNAm CystatinC, DNAm B2M and chronological  

age (Pearson correlation r between 0.79 and 0.89, 

Supplementary Figure 2B). The new DNAm surrogate 

markers for logCRP and logA1C are positively correlated 

with DNAm GrimAge2 (r=0.58 and r=0.47) but only 

weakly with chronological age (r ~0.26). The fact that 

leptin levels are higher in females [20, 21] explains the 

strong correlation between DNAm Leptin and Female 

(r=0.88, Supplementary Figure 2B). Leptin suppresses 

hunger and is expected to exhibit a negative correlation 

with mortality/morbidity risk. Indeed, DNAm Leptin 

exhibits negative correlations with DNAm GrimAge2. 

The fact that GrimAge2 is defined as a mortality risk 

predictor explains its high correlation (r=0.42, 

Supplementary Figure 2B) with the deviance residuals 

from the Cox proportional hazards model (Methods). 

 

Independent validation data 

 

We compared the old and new versions of GrimAge in 

independent validation in datasets consisting of 

n=13,399 blood samples from 10,065 individuals from 

nine epidemiological cohorts including the FHS test  

data (Table 1 and Supplementary Note 2). The validation 

datasets consist of three racial/ethnic groups: 63% 

European ancestry (72% of all blood samples considered 

due to repeated measurements), 30% African Americans 

(22% blood samples) and 7% Hispanic ancestry (6% 

blood samples). The mean age at blood draw was 

 

 
 

Figure 1. DNAm GrimAge2. The left panel displays the components of GrimAge2 trained by Cox regression with an elastic net 
penalty. The elastic net regression model automatically selected the following covariates: chronological age (Age), gender (Female), a nd 
ten DNAm based surrogates for smoking pack-years (DNAm PACKYRS), adrenomedullin levels (DNAm ADM), beta-2 microglobulin 
(DNAm B2M), cystatin C (DNAm Cystatin C), growth differentiation factor 15 (DNAm GDF-15), leptin (DNAm Leptin), log-scale high 
sensitivity C-reactive protein (DNAm logCRP), log-scale hemoglobin A1C (DNAm logA1C), plasminogen activation inhibitor 1 (DNAm PAI-
1), tissue inhibitor metalloproteinase 1 (DNAm TIMP-1). The linear combination of the covariate values XTβ was linearly transformed to 
be in units of years, as described in the bottom. Technically speaking, DNAm GrimAge2 is an epigenetic clock for mortality risk. 
Metaphorically speaking, it estimates biological age in units of years. The right panel displays selective factors including diet, lifestyle 
and clinical biomarkers that were significantly associated with age acceleration measure of GrimAge2 or age -adjusted DNAm 
biomarkers underlying GrimAge2 in our downstream analysis. 
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67.9 years with a standard deviation of SD=11.33. The 

mean follow-up time was 13.0 (SD=6.90) years with a 

mortality rate of 39%. More females (71%) than males 

were present in our validation data. 

 

To demonstrate that DNAm GrimAge2 is more 

strongly associated with mortality risk than DNAm 

GrimAge, we applied both biomarkers to nine different 

study cohort studies: 1) the test data from the FHS, 2) 

BA23 and 3)EMPC study from the Women’s Health 

Initiative (WHI) with three racial groups, 4) African 

Americans from the Jackson Heart Study (JHS), 5) the 

InCHIANTI cohort study, 6) individuals of European 

ancestry from Baltimore Longitudinal Study of Aging 

(BLSA), 7) Lothian Birth Cohort 1921 (LBC1921) and 

8) Lothian Birth Cohort 1936 (LBC1936), and 9) 

individuals of European ancestry from Normative 

Aging Study (NAS, only recruiting male participants). 

 

We also applied new and old GrimAge clocks to saliva 

samples.  

 

Relation to age 

 

Chronological age is highly correlated with 

DNAmGrimAge (r ~0.78 to 0.95) and DNAmGrimAge2 

(r ~0.72 to 0.94, Supplementary Figure 3) at each cohort 

except LBC1921 and LBC1936, in which the low 

correlation estimates reflect that all subjects of the 

Lothian Birth cohorts were born in the same years - 

either 1921 or 1936 i.e. there is minimal variation in 

ages in these cohorts. The age correlation is lower  

with DNAm GrimAge2 compared with DNAm 

GrimAge, which may reflect the addition of two new 

variables (DNAm logCRP and DNAm logA1C). Unless 

indicated otherwise, we used the age-adjusted versions 

of GrimAge, i.e. the age acceleration measures 

AgeAccelGrim2 and AgeAccelGrim. The two GrimAge 

acceleration measures are highly correlated (r~0.92 to 

0.97, Supplementary Figure 4).  

 

We also defined age-adjusted versions of our DNA-

based surrogate markers (for smoking pack-years and 

the nine plasma protein levels). To interpret the effect 

size of DNAm protein, we scaled the DNAm based 

estimators of plasma proteins based on the distributions 

in the FHS training data (Supplementary Table 1.2), e.g. 

the scaled version of DNAm logCRP is denoted as 

s.DNAmlogCRP and one unit of s.DNAmlogCRP 

denotes one standard deviation of DNAm logCRP. 

 

Mortality risk analysis 

 
We find that AgeAccelGrim2 is significantly associated 

with race in both WHI BA23 (Supplementary Figure 

5A, Kruskal-Wallis P=4.9x10-13) and WHI EMPC 

(Supplementary Figure 5C, P=4.4x10-15). Both cohorts 

show the same trend: African-Americans have higher 

values of AgeAccelGrim2 than Hispanics and 

Caucasians. African-American and Hispanic women are 

on average 1.7 years (P=1.5x10-13) and 0.5 years 

(P=4.2x10-3) older than Caucasian women according 

to AgeAccelGrim2 evaluated in the WHI BA23. A 

similar pattern can be observed for the original version 

of GrimAge (Supplementary Figure 5B, 5D). We 

briefly mention that different patterns can be observed 

for other epigenetic clocks and Caucasians [22].  

 

We find that GrimAge2 outperforms GrimAge across a 

broad category of lifespan and healthspan related 

variables as summarized in Table 2. 

 

All of our statistical analyses adjusted for obvious 

confounders such as racial/ethnic group, age, sex, or 

batch of data generation (e.g. in the LBC1936, Methods). 

We applied fixed effects meta analysis models (weighted 

by inverse variance) to combine the results for predicting 

all-cause mortality risk (time-to-death) from a total of 15 

strata formed within the nine epidemiological cohorts. 

 

Our meta-analysis shows that AgeAccelGrim2 (meta  

P-value=3.6x10-167 for AgeAccelGrim2, Figure 2A) is a 

more significant predictor of time-to-death (due to all-

cause mortality) than the original AgeAccelGrim (meta  

P-value=2.6x10-144 for AgeAccelGrim, Figure 2B). The 

same applies when the analysis is restricted to 

former/current smokers (Figure 3C, 3D), never-smokers 

(Figure 3E, 3F), or specific racial groups. For instance, in 

postmenopausal African American women from the WHI 

BA23 study, a one-year increase in age acceleration is 

associated with a hazard ratio HR=1.08 (Cox regression 

P=1.0x10-10) for AgeAccelGrim2, which is more 

significant than that for AgeAccelGrim (HR=1.07, 

P=4.0x10-7, Figure 2A, 2B). The improvements of version 

2 can be observed in all strata except for data set 2 from 

LBC1936. However, the two versions of GrimAge work 

almost equally well in this exception once the analysis is 

stratified by smoking status (Figure 3C–3F). In particular, 

a one-year increase in AgeAccelGrim2 (P=4.0x10-7) and 

AgeAccelGrim (P=3.0x10-6) are associated with the same 

hazard ratio (HR=1.10) for mortality risk in data set 2 of 

LBC1936 (Figure 3C, 3D).  

 

Heart disease and time to cancer 

 

We also compared the two versions of GrimAge with 

respect to predicting incident time-to-coronary heart 

disease (time-to-CHD), time to congestive heart failure 

(time-to-CHF). After adjustment for age, sex, race, batch, 
Cox regression models revealed that AgeAccelGrim2 has 

more significant associations with time-to-CHD  

(P-values: 4.5x10-28 vs 2.7x10-24, Figure 3A, 3B) and 
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time to congestive heart failure (P-values: 4.2x10-15 vs 

6.9x10-10, Supplementary Figure 6). Both versions of 

GrimAge lead to similar Cox regression p-values in 

predicting time-to-any cancer (meta P-values: 1.1x10-10, 

vs 5.6x10-10, Supplementary Figure 7).  

 
Comorbidity index and healthspan  

 

AgeAccelGrim2 greatly outperforms AgeAccelGrim 

when it comes to associations with a comorbidity index 

(defined as the total number of age-related conditions, 

Methods): Stouffer meta analysis P=3.0x10-37 for 

AgeAccelGrim2 versus P=5.7x10-22 for AgeAccelGrim, 

Figure 4A, 4B). The superior performance of GrimAge2 

can also be observed when focusing on individual age-

related conditions: type 2 diabetes (meta P values: 

1.1x10-30 versus 2.8x10-15, odds ratios [OR]: 1.07 vs 

1.05, Supplementary Figure 8A, 8B), hypertension 

status (meta P values: 8.8x10-20 versus P=2.2x10-13, OR: 

1.05 vs 1.04, Supplementary Figure 9A, 9B), disease 

free status (meta P=7.2x10-16 versus P-value=1.1x10-10, 

Supplementary Figure 10A, 10B) and physical 

functioning level (meta P=2.0x10-26 versus P=1.3x10-17, 

Supplementary Figure 11A, 11B). 

 

Age at menopause 

 

We have previously shown that age at menopause in 

women is negatively associated with epigenetic age 

acceleration [23, 24]. Here we performed the regression 

analysis of epigenetic age acceleration measures (as 

dependent variables) on age at menopause (as an 

independent variable) and potential confounders. We 

found that both AgeAccelGrim2 and AgeAccelGrim 

were higher on average for those with an earlier  

age at menopause. One year earlier in age at 

menopause was associated with 0.08 additional years 

of AgeAccelGrim2 (meta P-value=5.4x10-16) and 0.07 

years of AgeAccelGrim (meta P-value=8.5x10-16, 

Supplementary Figure 12A, 12B).  

 
DNAm estimates of CRP, A1C, and PAI-1  

 

Our previous study revealed that DNAm PAI-1 

(plasminogen activator inhibitor 1) is associated with a 

host of age-related conditions [1]. Here we show that  

the two new DNAm biomarkers DNAm logCRP and 

DNAm logA1C exhibit comparable patterns with many 

age-related conditions. These three DNAm based 

surrogates of plasma proteins are sometimes superior to 

AgeAccelGrim2 for their strength of association with 

age-related traits such as the comorbidity index: 

Stouffer P-value=1.0x10-61 for DNAm logA1C, 

P=1.3x10-54 for DNAm logCRP, P=5.0x10-57 for 

DNAmPAI-1, and P=3.0x10-37 for AgeAccelGrim2 

(Figure 5). Compared to AgeAccelGrim2, these three 

biomarkers show stronger positive associations with 

type 2 diabetes (led by DNAm logA1C: meta P-value 

=5.8x10-155, Supplementary Figure 8), hypertension  

(led by DNAm PAI-1: meta P-value=5.8x10-43, 

Supplementary Figure 9), and disease free status (led by 

DNAm logCRP: meta P-value=4.0x10-21 but not in 

DNAm logA1C, Supplementary Figure 10). 

 

Lower values of DNAm logCRP (meta P-value= 

6.5x10-33) and AccelGrim2 (meta P-value=2.0x10-26, 

Supplementary Figure 10) are associated with higher 

levels of physical functioning. These three age-adjusted 

DNA based biomarkers of plasma proteins are also 

associated with time-to-CHD (Figure 4), time-to-CHF, 

time-to-any cancer, and early age at menopause 

(Supplementary Figures 7, 8, 11) but P values are higher 

(i.e. less statistically significant) than those observed for 

AgeAccelGrim2 with one exception: time to CHF where 

age-adjusted DNAm logCRP (P=6.0x10-16) and 

AgeAccelGrim2 (4.2x10-15, Supplementary Figure 6) 

show comparable associations. 

 

GrimAge analysis of diet and clinical biomarkers 

 

Here we revisit the cross sectional relationships between 

GrimAge and dietary variables, clinical biomarkers, 

educational attainment [1, 25].  

 

Our previous cross sectional analysis was based on 

approximately n=4000 postmenopausal women from 

the WHI. Here we greatly increased the sample size to 

n=13,420 blood samples from nine validation datasets. 

In total, we investigated 61 variables including 27 self-

reported diet, 9 dietary biomarkers based on blood 

samples, and 19 clinical biomarkers for vital signs, 

metabolic traits, and markers of inflammation, cognitive 

function, lung function, anthropometric traits (Methods 

and Supplementary Table 2.1). 

 

We correlated our DNAm based biomarkers with clinical 

plasma based biomarkers for inflammation/infection 

including interleukin 6 in plasma [IL-6], tumor necrosis 

factor [TNFA]), lung function (forced expiratory volume 

in one second [FEV1]), and cognitive function based on 

Mini–Mental State Examination (MMSE). 

 

We also investigated oral supplements (vitamins, 

selenium, etc.) and biomarkers of aging such as leukocyte 

telomere length (LTL) and hand grip strength. 

 

We used a robust correlation test (biweight 

midcorrelation bicor) that is less sensitive to outlier data 

points [26]. Our analysis was stratified by sex and  
racial group within each cohort. The results of different 

strata were meta-analyzed using the inverse variance 

weighted fixed effects models (Methods, Figure 6 
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Table 2. Summary of lifespan and healthspan associations with GrimAges. 

Measure Effect size AgeAccelGrim2 AgeAccelGrim Location 

Time-to-death     

All1 Hazard ratio 1.10 (P=3.6e-167) 1.10 (P=2.0e-144) Figure 2 

Smokers1 Hazard ratio 1.10 (P=4.2e-104) 1.10 (P=3.0e-91) Figure 3 

Non smokers1 Hazard ratio 1.09 (P=4.4e-43) 1.10 (P=8.1e-34) Figure 3 

Adjusted for blood cell composition2 Hazard ratio 1.09 (P=5.2e-123) 1.09 (P=1.1e-104) Supplementary Figure 16 

Time-to-CHD Hazard ratio 1.08 (P=4.5e-28) 1.08 (P=2.7e-24) Figure 4 

Comorbidity -- Stouffer’s P=3.0e-27 Stouffer’s P=5.7e-22 Figure 5 

Type 2 diabetes  Odds ratio 1.07 (P=1.1e-30) 1.05 (P=2.8e-15) Supplementary Figure 8 

Disease free -- Stouffer’s P=7.2e-16 Stouffer’s P=1.1e-10 Supplementary Figure 10 

Mean carotenoids bicor -0.29 (P=8.4e-42) -0.25 (P=4.5e-32) Figure 6 

log2(C-reactive protein) bicor 0.32 (P=9.9e-276) 0.26 (P=6.2e-178) Figure 6 

FEV1 bicor -0.31 (P=1.1e-136) -0.29 (P=2.1e-119) Figure 6 

log2 (Waist/hip ratio) bicor 0.23 (P=3.9e-69) 0.18 (P=3.6e-45) Figure 6 

Current smoker bicor 0.35 (P=4.5e-299) 0.36 (P=1.1e-363) Figure 6 

Liver attenuation (Hounsfield unit) bicor -0.27 (P=1.18e-14) -0.24 (P=2.79e-10) Figure 7 

Visceral adipose tissue (CM3) bicor 0.22 (P=7.15e-12) 0.20 (P=2.75e-12) Figure 7 

HOMA-IR3 bicor 0.16 (5.27e-04) 0.14 (9.74e-03) Figure 8 

Granulocyte Pearson correlation 0.29 (P=1.2e-232) 0.22 (P=1.1e-126) Supplementary Figure 15 

CD4+T Pearson correlation 0.26 (P=3.7e-192) -0.22 (P=6.1e-126) Supplementary Figure 15 

1refers to all and stratified by smoking group. 
2refers to Cox regression models additionally adjusted for blood cell composition/count variables. 
3GrimAge models were applied to saliva methylation data. 
The table briefly summarizes our investigations for the associations of GrimAge2 and GrimAge with (1) mortality analysis 
across all validation datasets, stratification of smoking status, and specific Cox regression models adjusted for blood cell 
composition/counts and (2) a broad category of healthspan outcomes. The columns list names of mortality or healthspan 
related outcomes, type of effect size in association analysis, summary statistics in the format of effect size (meta P value) or 
Stuffer’s P value for AgeAccelGrim2 and AgeAccelGrim, and the location of corresponding figure. Abbreviation: bicor denotes 
a robust correlation coefficient (biweight midcorrelation [26]). 

 

and Supplementary Tables 2.2–2.13). In general, 

AgeAccelGrim2 has more significant associations than 

AgeAccelGrim (Figure 6 and Supplementary Tables 

2.2–2.13). Inflammation biomarkers such as CRP  

levels showed stronger positive correlations with 

AgeAccelGrim2 (meta bicor=0.32, P-value=9.9x10-276) 

than with AgeAccelGrim (meta bicor=0.26 and  

P-value= 6.2x10-178, Figure 6). Body fat distribution 

measures such as waist to hip ratio showed  

stronger positive correlation with AgeAccelGrim2 

(meta bicor=0.23 and P-value=3.9x10-69) than with 

AgeAccelGrim (meta bicor=0.18 and P-value=3.6x10-45, 

Figure 6). Similarly, measures of lipid, insulin or 

glucose metabolism (triglyceride, HDL, hemoglobin 

A1C, insulin and glucose), TFNA, IL-6, plasma 

creatinine and body mass index (BMI) had stronger 

associations with AgeAccelGrim2 than AgeAccelGrim. 

AgeAccelGrim2 correlates with lung functioning 
(FEV1: meta bicor= -0.31, P-value=1.1x10-136), brain 

functioning (mini mental state exam [MMSE]: meta 

bicor=-0.10, P-value=1.4x10-18), leukocyte telomere 

length (LTL: meta bicor= -0.13, P-value=3.2x10-9) and 

hand grip strength (meta bicor= -0.09, P-value=6.4x10-13, 

Figure 6). The original measure of AgeAccelGrim 

exhibits weaker correlations with these variables except 

for LTL (meta bicor= -0.13, P-value=7.9x10-10 for 

AgeAccelGrim). FEV1 shows strong correlation with 

(age-adjusted) DNAm PACKYRS (meta bicor= -0.27 

and P-value=5.6x10-97); however, it has even stronger 

associations with AgeAccelGrim2 (meta bicor= -0.31 

and P-value=1.1x10-136) and AgeAccelGrim (meta 

bicor= -0.29 and P-value=2.1x10-119, Figure 6). 

 

The identified associations with dietary variables  

and lifestyle factors are in general more significant  

for AgeAccelGrim2 than for AgeAccelGrim. 

AgeAccelGrim2 correlates negatively with plasma 

based biomarkers measuring vegetable consumption 

including mean carotenoid levels (meta bicor=-0.29,  
P-value=8.4x10-42, Figure 6). Far less significant 

associations could be observed for self-reported 

measures of fruit- and vegetable intake, which 
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highlights the limitations of self-reported measures of 

dietary intake. AgeAccelGrim2 was inversely related 

to (self-reported) proportion of carbohydrate, fruit/ 

vegetable consumption, and various supplements 

including calcium, vitamin C, and folic acid. 

AgeAccelGrim2 was positively related to self-reported 

fat intake but with protein intake.  

 

Lastly, higher levels of education and income are 

associated with lower AgeAccelGrim2.  

DNAm plasma proteins versus diet and clinical 

biomarkers 

 

All (age-adjusted) DNAm-based biomarkers correlated 

with a large number of variables across the diet and 

clinical biomarker outcome categories (Figure 6 and 

Supplementary Tables 2.3–2.12). Age-adjusted DNAm 

PAI-1, DNAm logCRP and DNAm logA1C and DNAm 

PACKYRS stand out. Insulin, glucose and triglyceride 

are more strongly associated with DNAm PAI-1 or 

 

 
 

Figure 2. Meta analysis forest plots for predicting time-to-death due to all-cause mortality. Fixed effect meta analysis was 

performed to combine mortality analysis across 15 strata from 9 study cohorts: FHS test data, Women’s Health Initiatives (WHI) BA23, WHI 
EMPC, Jackson Heart Study (JHS), InCHIANTI (baseline and the third follow-up), Baltimore Longitudinal Study of Aging (BLSA), Lothian Birth 
Cohort 1921 (LBC21) and LBC 1936 (LBC36), and Normative Aging Study (NAS). Each panel reports a meta analysis forest plot for combining 
hazard ratios predicting time-to-death based on a DNAm based biomarker (reported in the figure heading) across different strata formed 
by racial group within cohort and set within LBC36. (A, B) display the results for AgeAccelGrim2 and AgeAccelGrim. Each row reports a 
hazard ratio (for time-to-death) and a 95% confidence interval resulting from a Cox regression model in each of 15 strata. (C–L) display the 
results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin (B2M), (E) cystatin C 
(Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale of hemoglobin 
A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years (PACKYRS). 
The sub-title of each panel reports the meta analysis P-value. (A, B) Each hazard ratio (HR) corresponds to a one-year increase in AgeAccel. 
(C–K) Each hazard ratio corresponds to an increase in one-standard deviation. (L) Hazard ratios correspond to a one-year increase in pack-
years. The most significant meta analysis P-value is marked in red (AgeAccelGrim2), followed by hot pink (AgeAccelGrim) and blue (DNAm 
PACKYRS), respectively. 
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DNAm logA1C than with AgeAccelGrim2. For 

example, triglyceride levels have a positive correlation 

with DNAm PAI-1 (meta bicor=0.34 and P-

value=9.6x10-267) that is double the magnitude of its 

association with AgeAccelGrim2 (meta bicor=0.17 and 

P-value=8.3x10-63). As expected, the highest correlation 

with CRP is DNAm logCRP (meta bicor=0.36 and P-

value=6.6x10-358) and the highest correlation with A1C 

is DNAm logA1C (meta bicor=0.25 and P=8.6x10-12). 

As noted, the latter one was only based on 711 

individuals from FHS test data. The analysis stratified 

by sex can be found in Supplementary Figure 13. 

Computed tomography measures of fatty organs 

 

Computed tomography imaging techniques provide 

“shadow images of fat” that can be used for the indirect 

quantification of organ quality (e.g. liver). Radiographic 

pixels measure the density of an organ (referred to as 

attenuation) in Hounsfield units (HU). Computed 

tomography scans are used for diagnosing fatty liver 

disease: a low density/attenuation value (low HU) is 

associated with high fat content in the liver. Previously, 

we analyzed CT scan data from liver, spleen, paraspinal 

muscle, visceral adipose tissue (VAT), and subcutaneous 

 

 
 

Figure 3. Meta analysis forest plots for predicting all-cause mortality in all, smokers and non-smokers. Fixed effect models meta 

analysis was performed to combine mortality analysis across 15 strata from 9 study cohorts. Analysis was performed across different strata 
formed by racial groups within cohort and set within LBC36, using (A, B) all individuals, (C, D) smokers (former and current), and (E, F) non-
smokers, respectively. Each panel reports a meta-analysis forest plot for combining hazard ratios predicting time-to-death based on 
AgeAccelGrim2 (on the left panel) and AgeAccelGrim (on the right panel). The sub-title of each panel reports the meta analysis P-value. Each 
hazard ratio (HR) corresponds to a one-year increase in AgeAccel measure. 
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adipose tissue (SAT) from FHS [27, 28]. Volumetric 

measures of adipose tissue are also available for SAT 

and VAT volume measures (in units of CM3). With the 

exception of muscle, CT values exhibit only weak 

correlations with chronological age (Supplementary 

Figure 14). 

 

Previously, we showed that AgeAccelGrim and DNAm 

PAI-1 were strongly associated with CT-derived 

measures of adiposity [1]. Here we revisit this analysis 

using GrimAge2 (Figure 7)  

 

We find that AgeAccelGrim2 outperforms 

AgeAccelGrim when it comes to associations with  

CT-derived measures of adiposity in both genders 

(Figure 7). For example, both AgeAccelGrim2 and 

AgeAccelGrim are negatively correlated with liver 

density (bicor= -0.27 [P=1.18x10-14] and bicor=-0.24 

[P=2.79x10-10]) and positively correlated with VAT 

volume (bicor=0.26 [P=1.34x10-15] and bicor=0.22 

[P=7.15x10-12], Figure 7). 

 

The strong marginal correlations between 

AgeAccelGrim2 and CT measures are not confounded 

by BMI or sex as can be seen by several multivariate 

regression models that regressed AgeAccelGrim2 

(dependent variable) on BMI, sex, and several CT 

derived measures of organ density and fat volume 

 

 
 

Figure 4. Meta analysis forest plots for predicting time-to-coronary heart disease. Fixed effect models meta analysis was 

performed to combine Cox regression analysis of coronary heart disease (CHD) across 8 strata from 4 study cohorts. Each panel reports a 
meta analysis forest plot for combining hazard ratios predicting time-to-CHD based on a DNAm based biomarker (reported in the figure 
heading) across different strata formed by racial groups within the cohort. (A, B) Results for AgeAccelGrim2 and AgeAccelGrim. Each row 
reports a hazard ratio (for time-to-CHD) and a 95% confidence interval resulting from a Cox regression model in each strata. (C–L) display the 
results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin (B2M), (E) cystatin C 
(Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale of hemoglobin A1C, 
(J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years (PACKYRS). The 
sub-title of each panel reports the meta analysis P-value. (A, B) Each hazard ratio (HR) corresponds to a one-year increase in AgeAccel. (C–K) 
Each hazard ratio corresponds to an increase in one-standard deviation. (L) Hazard ratios correspond to a one-year increase in pack-years. 
The most significant Meta analysis P-value is marked in red (AgeAccelGrim2), followed by hot pink (AgeAccelGrim) and blue (DNAm logCRP), 
respectively. 
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(Methods, Models I-IV in Supplementary Table 3.1). 

Even after adjusting for potential confounders, 

AgeAccelGrim2 exhibits a significant association with 

liver density (P=5.3x10-6), spleen density (P=0.04) but 

not muscle density (P=0.17 in Model I in 

Supplementary Table 3.1). A multivariate model 

analysis, which adjusts for sex, age, and BMI reveals 

that AgeAccelGrim2 exhibits more significant 

associations for VAT volume (P= 7.5x10-6) than SAT, 

which supports the widely held view that VAT is more 

dangerous than SAT. AgeAccelGrim2 is more sensitive 

to volumetric measures of VAT (in units of cm3 and 

P=2.1x10-3) compared to density based VAT (in units of 

HU, P>0.9, Supplementary Table 3.1). A 

comprehensive multivariate model (Model IV) that 

includes both organ density measures and volumetric 

measures of SAT/VAT reveals that liver density 

(P=2.6x10-4) exhibits the most significant association 

with AgeAccelGrim2. All multivariate regression 

models show that BMI is no longer associated with 

AgeAccelGrim2 after adjusting for liver density, which 

suggests that liver density mediates the relationship 

between BMI and AgeAccelGrim2 (Supplementary 

Table 3.2)  

 

Age-adjusted DNAm-based surrogate markers of PAI-1, 

exhibit the strongest associations with the CT measures, 

followed by the surrogates of our two new proteins, 

A1C and CRP (Figure 7). These three DNAm based 

proteins outperform AgeAccelGrim2 when it comes to 

 

 
 

Figure 5. Meta analysis of associations with total number of age-related conditions. Each panel reports a meta analysis forest plot 

based on Stouffer’s method for combining regression analysis Z statistics between the comorbidity index and the DNAm-based biomarker 
(reported in the figure heading) across different strata, which are formed by racial group within cohort and set within LBC36. (A, B) display 
the results for AgeAccelGrim2 and AgeAccelGrim. (C–L) display the results for scaled DNAm based surrogate markers of (C) adrenomedullin 
(ADM), (D) beta-2 microglobulin (B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C 
reactive protein (CRP), (I) log scale of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 
(TIMP-1) and (L) smoking pack-years (PACKYRS). The sub-title of each panel reports the meta analysis p-value. Each row reports a beta 
coefficient β and a 95% confidence interval resulting from a (linear-mixed) regression model in each strata (defined by cohort racial group). 
(A, B) Each β corresponds to a one-year increase in AgeAccel. (C–K) Each β corresponds to an increase in one-standard deviation. (L) β 
corresponds to a one-year increase in pack-years. The most significant meta-analysis P-value is marked in red (DNAm logA1C), followed by 
hot pink (DNAm PAI1) and blue (DNAm logCRP), respectively. 
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the association with CT-derived measures of adiposity 

(liver fat and measures of SAT and VAT in Figure 7 

and Supplementary Tables 3.1, 3.3–3.5). For example, 

DNAm PAI1 is highly significantly associated all the 

CT measures including positive correlations with VAT 

volume (r=0.41, P=4.68x10-41) and SAT volume 

(r=0.27, P=6.07x10-23), and negative correlations with 

liver density (r=-0.41, P=6.61x10-39), VAT density  

(r=-0.35, P=1.3x10-32), and spleen density (r=-0.22, 

P=5.87x10-15, Figure 7). A multivariate regression 

analysis of age-adjusted PAI-1 (dependent variable) 

reveals highly significant associations with liver density 

(P=6.3x10-16 in Model I) and VAT volume (P=1.0x10-

13, Model II in Supplementary Table 3.3) even after 

adjusting for BMI and other confounders. Including all 

CT variables as covariates in a multivariate model 

reveals significant associations with liver density 

(P=1.40x10-9), VAT volume (P=9.3x10-8), and SAT 

volume (P=0.02, Model IV in Supplementary Table 

3.3). Model III shows that DNAm PAI1 is more 

 

 
 

Figure 6. Meta cross-sectional correlations with diet, clinical biomarkers and lifestyle factors. Robust correlation coefficients 

(biweight midcorrelation [26]) between 1) AgeAccelGrim2, AgeAccelGrim, and ten age-adjusted underlying DNAm-based surrogate 
biomarkers underlying DNAmGrimAge2, and 2) 61 variables including 27 self-reported diet, 9 dietary biomarkers, 19 clinically relevant 
measurements related to vital signs, metabolic traits, inflammatory markers, cognitive function, lung function, central adiposity and 
leukocyte telomere length, and 6 lifestyle factors including hand grip strength. The y-axis lists variables in the format of name (sample size), 
followed by a bar plot denoting number of studies. Variables are arranged by category displayed on the right annotation. The x-axis lists 
AgeAccelGrim2, AgeAccelGrim, followed by DNAm estimates of log CRP, log A1C, PAI-1, smoking pack-years, etc. Each cell presents meta 
bicor estimates and P-value, provided P<0.1. The color gradient is based on -log10 P-values times sign of bicor. P-values are unadjusted. An 
analogous analysis stratified by gender can be found in Supplementary Figure 12. 
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associated with VAT and SAT in volume measures than 

with density measures (Supplementary Table 3.3). 

Similar results were observed for DNAm logCRP but 

not DNAm logA1C (Supplementary Tables 3.4, 3.5). 

Our analysis shows that DNAm logA1C is more 

significant related to SAT density (P=3.0x10-5) than to 

SAT volume (P>0.4) and similar statements apply to 

VAT density (P=8.0x10-5) and VAT volume (P=8.0x10-3, 

Supplementary Table 3.5). 

 

Finally, the surrogates of ADM, TIMP-1, leptin exhibit 

relatively weak correlations with the CT based 

measures (Figure 7).  

 

Overall, our results suggest that fatty liver and excess 

VAT are the most significant CT-based correlates of 

(age-adjusted) DNAm PAI-1, DNAm logCRP, DNAm 

logA1C and AgeAccelGrim2. 

Association with blood cell composition 

 

DNAm data allow one to estimate several quantitative 

measures of blood cell types (both proportions and 

counts) as described in Methods [22, 29]. We 

previously showed that AgeAccelGrim and several age-

adjusted DNAm biomarkers underlying GrimAge 

exhibited significant correlations with these imputed 

measures of blood cell composition. Not surprisingly, 

AgeAccelGrim2 and AgeAccelGrim exhibit similar 

patterns for their associations with blood cell composition 

(Supplementary Figures 15–17 and Supplementary Tables 

4.1–4.3). The current results are based on a much larger 

sample size (n>11,600 across our validation datasets) 

than our previous study (n ~6000). AgeAccelGrim2 was 

positively correlated with a DNAm based estimates  

of granulocytes (r=0.29, P=1.2x10-232, Supplementary 

Figure 15A, 15B and Supplementary Table 4.1), plasma 

 

 
 

Figure 7. Computed tomography variables versus BMI and age-adjusted DNAm biomarkers in the FHS. Robust correlation 

coefficients (biweight midcorrelation [26]) between 1) AgeAccelGrim2, AgeAccelGrim, and ten age-adjusted DNAm-based surrogate 
biomarkers underlying DNAmGrimAge2, and 2) seven computed tomography-derived organ density measures (Hounsfield units) or 
volumetric measures for subcutaneous adipose tissue (SAT CM3) or visceral adipose tissue (VAT CM3). The y-axis lists computed tomography 
variables in the format of name (sample size in FHS), annotated by variable type. The x-axis lists body mass index (BMI), AgeAccelGrim2, 
AgeAccelGrim, followed by DNAm variables in alphabetical order. Each cell presents bicor (P-value). P-values are unadjusted and reported 
based on linear mixed analysis with pedigree as random effect to avoid confounding by pedigree structure. The color gradient is based on -
log10 P-values times sign of bicor. We applied the correlation analysis to males and females, respectively, and then combined the results via 
fixed effect models weighted by inverse variance (listed in the top rows, denoted as “ALL”). The heatmap presents the results based on ALL 
and stratification results by gender, annotated on the right side. 
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blasts (r=0.26, P=3.7x10-181) and negatively correlated 

with CD4+T cells (r = -0.26, P=3.7x10-192) and CD8 

naïve cells (r = -0.22, P=2.5x10-135). 

 

Similar to our previous findings, age-adjusted DNAm 

TIMP-1 exhibits the most significant correlations with 

the measures of blood cell composition (e.g. proportion 

of granulocytes r=0.40, P=2.1x10-495, Supplementary 

Figure 15K). The TIMP-1 protein plays a role in 

promoting cell proliferation in a wide range of cell 

types and may also have an anti-apoptotic function [30]. 

Significant associations can also be observed for age-

adjusted DNAm logCRP (proportion of granulocytes 

r=0.36, P=5.8x10-384), and age-adjusted DNAm 

Cystatin C (proportion of CD4+ T cells counts r =-0.29, 

P=1.3x10-231). By contrast, age-adjusted DNAm A1C is 

not associated with blood cell composition 

(Supplementary Figure 15I).  

 

The improved performance of AgeAccelGrim2 

compared to AgeAccelGrim1 does not reflect 

confounding by blood cell composition as can be seen 

from our multivariate Cox regression models that 

adjusted for seven imputed measures of blood cell 

counts or proportions (Supplementary Figure 16). 

AgeAccelGrim2 (P=5.2x10-123) still outperforms 

AgeAccelGrim when it comes to the association with 

time-to-death (P=1.1x10-104, Supplementary Figure 

16A, 16B) after adjusting for blood cell composition. 

The same can be observed when predicting time-to-

CHD where AgeAccelGrim2 (P=1.2x10-20) outperforms 

AgeAccelGrim (P=9.2x10-18, Supplementary Figure 

17A, 17B). A one standard deviation increase in DNAm 

logA1C or in DNAm logCRP approximately increases 

the hazard ratio for CHD by 30% (Figure 4H, 4I). This 

increased HR is only lowered by 2% (from 1.29 to 1.28 

for DNAm logCRP and from 1.29 to 1.27 for DNAm 

logA1C) after adjusting for blood cell counts 

(Supplementary Figure 17H, 17I). 

 

Stratifying the analysis by sex indicates that our results 

are not sex-specific (Supplementary Figures 18, 19 and 

Supplementary Tables 4.2, 4.3).  

 

Evaluation of younger individuals 

 

Next, we examined the performance of GrimAge clocks 

on younger individuals (age < 40) using 173 individuals 

(minimum at 22 and mean age at 35.4 years) from JHS. 

As expected, AgeAccelGrim2 was still associated with 

age-related biomarkers including inflammation marker 

CRP (r=0.26 and P=5.5x10-4), dyslipidemia marker 

triglyceride levels (r=0.23 and P=2.8x10-3), and body 
mass index (r=0.25 and P=9.1x10-4, Supplementary 

Figure 20B–20D). AgeAccelGrim2 is also associated 

with life style factors such as alcohol assumption (r=0.33 

and P=1.3x10-5, Supplementary Figure 20E) and 

smoking (P=6.0x10-7, Supplementary Figure 20E). The 

associations remain significant even after adjusting for 

age and gender in multivariate regression analysis 

(Supplementary Figure 20). However, DNAmGrimAge2 

is not aligned with chronological age in younger 

individuals. Rather, it exhibits a systematic offset 

resulting in a median absolute error (MAE) of 11 years 

(Supplementary Figure 20A). The offset was lower for 

the original DNAmGrimAge (MAE=4.14 years, 

Supplementary Figure 20G). However, the original 

AgeAccelGrim showed less significant associations with 

all age-related conditions (Supplementary Figure 20H–

20K) except for smoking. 

 
GrimAge clocks can be applied to saliva samples 

 

We applied both versions of GrimAge to saliva samples 

from n=432 mothers from the NHLBI Growth and 

Health Study (NGHS) cohort [31]. The cohort was a 

longitudinal study conducted from 1985 to 2000 that 

studied various factors related to the development of 

obesity in pre-adolescents (Methods, Supplementary 

Note 2). Our methylation samples were profiled in 

saliva from two racial groups: 50% White (n=218) and 

50% Black (n=214). The ages of the mothers ranged 

from 36 to 43 years. The low age correlation estimates 

with DNAm GrimAge2 (r=0.13) and DNAm GrimAge 

(r=0.17) reflect the relatively narrow age range 

(Supplementary Figure 21).  

 

The mean value of DNAmGrimAge2 was 61.6 years 

which indicates that there is a systematic offset between 

blood and saliva sample (Supplementary Figure 21A). 

Systematic offsets can be adjusted for by using 

multivariate regression models that include an intercept 

term. Our multivariate linear regression analysis revealed 

significant associations between saliva based 

AgeAccelGrim2 (independent variable) and clinically 

relevant measures (dependent variables): metabolic stress 

(Z score scale), high sensitivity C-reactive protein, 

insulin resistance and HOMA for insulin resistance 

(HOMA-IR) [32] (Methods and Figure 8). By contrast, 

the original version AgeAccelGrim exhibited less 

significant associations with these biomarkers (Figure 8).  

 

We briefly mention that age-adjusted DNAm-based 

surrogate markers of saliva PAI-1, log-scale A1C, log-

scale CRP, ADM and TIMP1 show significant 

associations with those clinical measures as well. 

Analogous to what we found in analyzing CT scan data, 

saliva based DNAm PAI-1 and A1C are more sensitive 

biomarkers than AgeAccelGrim2 when it comes to 

metabolic stress: positive associations with DNAmPAI-

1 (P=1.11x10-14), DNAmlogA1C (P=4.42x10-13) or 

AgeAccelGrim2 (P=1.14x10-5, Figure 8). Overall, this 
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analysis shows that DNAmGrimAge2 is superior to 

DNAmGrimAge when it comes to studying the 

relationship between saliva methylation data and 

clinical biomarkers of metabolic stress.  

 

Polygenic risk score analysis 

 

Recently, we performed a large-scale genome-wide 

association study (GWAS, n>40,000) on epigenetic 

biomarkers including AgeAccelGrim which described a 

polygenic risk score (PRS) for AgeAccelGrim in 

individuals of European ancestry [33]. Here, we 

repeated the PRS analysis in the WHI cohorts and 

showed that the PRS scores could explain 0.04% to 

1.88% variation in AgeAccelGrim and 0.03% to 2.17% 

in AgeAccelGrim2 in postmenopausal women of 

European ancestry (Methods, Supplementary Figure 

22). The PRS scores based on the SNPs with P<0.01 

and P<0.05 tended to explain more variation in both 

versions of GrimAge acceleration measures. 

 

Epigenome-wide association study of mortality 

related traits  

 

We carried out epigenome-wide association study 

(EWAS) for 1) AgeAccelGrim2, 2) AgeAccelGrim, 3) 

time-to-death and 4) time-to-CHD using our validation 

data. For the censored time variables (time-to-death and 

time-to-CHD), we evaluated three Cox regression 

models: model I is a basic model that adjusted for age, 

gender and batch effects; model II additionally adjusted 

for smoking pack-years, and model III additionally 

adjusted for blood cell composition (Methods). 

 

The individual EWAS results for each cohort were 

combined via inverse variance weighted fixed effect 

models (Methods). A considerable number of CpGs 

exhibit highly significant associations with both 

AgeAccelGrim2 and AgeAccelGrim (Supplementary 

Figure 23A, 23B). The cg05575921 on chromosome 

(Chr) 5, near AHRR, shows the strongest negative 

correlation for both GrimAge clocks (meta P=3.6x 

10-1253 for AgeAccelGrim2 and P=1.5x10-2023 for 

AgeAccelGrim). The gene AHRR (Aryl Hydrocarbon 

Receptor Repressor) is implicated in regulation of cell 

growth and differentiation. The CpG cg23842572 on 

Chr17, near MPRIP, shows the strongest positive 

correlation with AgeAcceGrim2 (P=3.0x10-424) and the 

CpG cg13525276 on Chr14, near TSHR, shows the 

strongest positive correlation with AgeAccelGrim 

(P=4.7x10-254). MPRIP encodes a protein interacts with 

both myosin phosphatase and RhoA and TSHR encodes 

 

 
 

Figure 8. Applications of DNAm GrimAges on saliva methylation data in NGHS. DNAmGrimAge, DNAmGrimAge2 and its 

components were estimated in saliva methylation data from mothers. Linear regression analysis was performed to study the association 
between 1) dependent variables: clinically relevant measures: metabolic Z score, high sensitivity C-reactive protein (CRP), insulin resistant 
and HOMA for insulin resistance (HOMA-IR) [32] and 2) independent variables: AgeAccelGrim2, AgeAccelGrim, and nine scaled DNAm-based 
surrogates of proteins and DNAmPACKYRS. Regression models were performed in all mothers (n=432) and stratified by ethnic/racial groups: 
White (n=218) and African American (n=214). Analysis was adjusted for age and batch effect and adjusted for race as needed. The y-axis lists 
DNAm-based variables and the x-axis lists the clinically relevant measures. Each cell presents beta coefficient (P-value), provided P< 0.05 from 
the regression analysis. The color gradient is based on -log10 P-values times sign of beta coefficient. All P-values are unadjusted. 
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the receptor for the thyroid-stimulating hormone (TSH) 

or thyrotropin. These 3 genes were also identified  

in the EWAS of time-to-death (Supplementary Figure 

23C–23E). Several studies previously showed 

hypomethylation of cg05575921 on AHRR was 

associated with smoking [34, 35]. Our analysis shows 

that cg05575921 is the best leading CpG hypo-

methylated associated with mortality in Model I 

(P=1.2x10-69). However, cg05575921 is still one of the 

top CpGs associated with mortality even after adjusting 

for smoking pack-years (top 10 on Model II, P= 1.6x 

10-26, Supplementary Figure 23D). Its association with 

mortality risk is not confounded by blood cell counts as 

it is the leading CpG associated with mortality in 

Model III (P=7.8x10-53, Supplementary Figure 23E). 

We also broadly viewed the correlation between 

EWAS of age acceleration from our GrimAge clocks 

and EWAS of time-to-death. EWAS results for time-to-

death are strongly correlated with those for 

AgeAccelGrim2 (r=0.616 in mortality Model I and 

r=0.54 in Model II, Supplementary Figure 24A, 24B). 

The pairwise EWAS correlation is attenuated (r=0.264, 

Supplementary Figure 24C) when using Model III 

which removes the effect of blood cell composition. 

The EWAS results for time to CHD (n=6143) exhibit a 

weaker correlation with EWAS of AgeAccelGrim2 

(Supplementary Figures 25, 26).  

 

DISCUSSION 
 

Many studies have shown that the original version of 

GrimAge predicts mortality and morbidity risk (e.g. [8–

17]). To arrive at version 2 of GrimAge, we developed 

two additional DNAm based surrogates for plasma 

proteins that are widely used in the clinic (DNAm 

logCRP and DNAm logA1C). Our comprehensive 

validation analysis show that GrimAge2 outperforms 

GrimAge with respect to its association with time-to-

death, time-to-CHD, time-to-CHF, and assessing the 

associations with a host of age-related conditions: 

dysfunctions related to kidney, lung, metabolism, 

cognitive behavior, lipid, and vital signs, and  

CT-derived measures of adiposity. The reported 

associations remain highly significant even after 

adjusting for seven imputed measures of blood cell 

composition. 

 

To evaluate the new version of GrimAge, our 

association analysis covered a broad category of age-

related phenotypes including clinically relevant 

measures and lifestyle behaviors. These results confirm 

that AgeAccelGrim2 is more strongly associated with 

age related phenotypes than AgeAccelGrim. Further, 

our new estimators DNAm logCRP and DNAm 

logA1C, are associated with a host of age-related 

conditions. GrimAge2 was trained in 1833 individuals 

from the FHS cohort aged between 40 and 92 years old 

(median age at 65). Thus, it is expected to work well in 

older adults. We demonstrate that it can be applied to 

younger individuals, but it leads to a systematic offset 

compared to chronological age. This offset can be 

removed by using a suitable regression model.  

 

For most protein markers (except for CRP and A1C), the 

protein measurement preceded the DNA methylation 

measurement by about 6.6 years. This suggests that the 

protein measurement (and the accompanying organ 

dysfunction) affected the methylation levels (as opposed 

to the other way around).  

 

The first version of GrimAge (AgeAccelGrim) has been 

used in human clinical trials [36]. Our polygenic risk 

scores correlate only weakly with AgeAccelGrim2, 

similar to what has been observed for AgeAccelGrim 

[33]. Unlike genetic factors, lifestyle factors (as 

reflected in smoking, mean carotenoid levels, adiposity, 

educational level) exhibit strong correlations with 

AgeAccelGrim2. Lifestyle factors also relate to our 

DNAm based estimates of logCRP, logA1C, PAI-1, and 

smoking pack-years.  

 
We also showed that GrimAge2 can be applied to saliva 

methylation data but leads to a noticeable offset.  

 

GrimAge2 will not replace existing clinical biomarkers. 

Rather, GrimAge2 complements existing clinical 

biomarkers when evaluating an individual’s aging rate.  

 

MATERIALS AND METHODS 
 

Framingham Heart Study cohort for training 

DNAmGrimAge2 

 

The FHS offspring cohort [19] is a large-scale 

longitudinal study started in 1948, initially investigating 

risk factors for cardiovascular disease (CVD, 

Supplementary Note 2). Previously, we used 2,356 

individuals from the FHS in training and testing 

DNAmGrimAge. In establishing DNAmGrimAge2, we 

used the same individuals plus about 200 more 

individuals from the same offspring cohort. Those 

individuals were excluded in establishing the first 

GrimAge clock due to lack of protein measures [1]. To 

build the new mortality clock, we applied more stringent 

quality controls to remove technical outliers. It yielded a 

total of 2,544 individuals from 939 pedigrees. We 

assigned 2/3 pedigrees (1833 individuals/622 pedigrees) 

to the training data and 1/3 pedigrees (711 individuals 

from 317 pedigrees) to the test data (Table 1).  
 

The FHS cohort contains medical history and 

measurements, immunoassays at exam 7, and blood 
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DNA methylation profiling at exam 8. The technology 

of immunoassay was based on Luminex xMAP assay, 

an extension of the enzyme-linked immunosorbent 

assay (ELISA) performed with multiple analyte-

specific capture antibodies bound to a set of 

fluorescent beads. The measurement of observed CRP, 

A1C and smoking pack aligned with the measurement 

of methylation array at exam 8 in FHS offspring 

cohort. But the measurement of the other seven plasma 

proteins (exam 7) preceded the measurement of blood 

DNAm data (exam 8) by 6.6 years, suggesting that the 

DNAm profiles may not represent a highly accurate 

snapshot of the status of these proteins at the time of 

blood collection.  

 

The DNA methylation profiling was based on the 

Illumina Infinium HumanMethylation450K BeadChip.  

 

Two-stage approach for establishing DNAmGrimAge2 

 

Stage 1: develop DNAmlogCRP and DNAmlogA1C 

The training dataset was used to build the two new 

DNAm based surrogate markers for the log scale of  

C-reactive protein (logCRP) and log scale of hemoglobin. 

Both plasma proteins were measured on exam 8.  

CRP levels were measured based on an immuno-

turbidometric array. We scaled the CRP and A1C 

variables before log transformation and defined extreme 

values based on the raw values of the observations 

whose scale values were ≤6 and the closest to 6. The 

range of winsorized CRP is between 0.14 and 54.01 

mg/L and the range of winsorized A1C level is between 

4.7% and 10%. We applied log-transformation on the 

winsorized variables. Our previous DNAmGrimAge 

involves 1030 CpGs for establishing the surrogate of 

DNAm proteins or smoking pack-years. Each plasma 

protein (log CRP or log A1C) was regressed on the 

1030 CpGs, chronological age (at exam 8) and sex (an 

indicator of female) using the elastic net regression 

model implemented in the R package glmnet. Ten-fold 

cross validation was performed in the FHS training data 

to specify the underlying tuning parameter λ.  

 

Stage 2: define DNAmGrimAge2 

In the second stage, we added chronological age, 

gender, DNAmlogCRP and DNAmlogA1C, the other 

10 previously defined DNAm biomarkers to build a new 

GrimAge—DNAmGrimAge2. All the 12 DNAm 

biomarkers are moderately correlated with their targets 

(protein or smoking pack-years). The correlation 

estimates between DNAm biomarkers and their 

corresponding targets have a distribution of 0.64±0.12 

[0.43, 0.86] (mean±SD [range]) in the training dataset 
and a distribution of 0.42±0.09 [0.34, 0.66] in the test 

dataset (Supplementary Table 1). The correlation 

estimates between DNAm biomarkers and chronological 

ages have a broad range in both training (0.48±0.31 

[0.06, 0.92]) and test dataset (0.45±0.35 [0.05, 0.90], as 

listed in Supplementary Table 1. Of those, DNAmLeptin 

shows the lowest age correlation (r ~0.05) and 

DNAmTIMP1 shows the highest age correlation r~0.90). 

Regardless of whether the protein measures (based on 

immune assay) or self-report smoking pack-years were 

available or not, we estimated the 12 DNAm surrogates 

for all the FHS individuals (1833 in the training and 711 

in the test data).  

 

Definition of DNAm GrimAge 

We used an elastic net Cox regression model [37] to 

regress time-to-death (due to all-cause mortality) since 

exam 7 on the 12 DNAm based surrogate markers 

(Supplementary Table 1.1), chronological age, and 

sex. The elastic net model selected all the available 

covariates except for DNAm CD56 and DNAm 

EFEMP1. As part of stage 2, we validated the 

accuracy of the DNAm based surrogate markers for 

their observed counterparts in the FHS test dataset. 

However, the mortality predictor (DNAmGrimAge2) 

was only fit in the FHS training dataset (N=1833).  

In the training dataset, we performed 10-fold  

cross validation to specify the value of the tuning 

parameter λ.  

 

Calibration of DNAm GrimAge into units of years 

 

The final elastic net Cox model is listed in Table 3 

results in an uncalibrated DNAmGrimAge2 estimate, 

which can be interpreted as the linear combination of the 

covariates, XTβ, or alternatively as the logarithm of the 

hazard ratio, h(t)/h0(t) = XTβ, where h0(t) is the baseline 

hazard at time t. The linear combination, XTβ, can be 

interpreted as an uncalibrated version of DNAm 

GrimAge. To facilitate an intuitive interpretation as a 

physiological age estimator, we linearly transformed it 

so that the resulting estimate would be in units of years. 

Toward this end, we imposed the following requirement: 

the mean and variance of the resulting value of DNA 

GrimAge2, should be the same as the mean and 

variance of the age variable in the FHS training data 

(average of exam 7 and exam8). This resulted in the 

following transformation 

 

DNAm GrimAge2 =−61.03936 + 8.271105 * XTβ. 

 

A completely unbiased evaluation of DNAm GrimAge2 

is achieved in eight large-scale cohorts independent 

from the FHS test, as described below. 

 

Software 

 

GrimAge2 approach is implemented in our online 

software, https://dnamage.clockfoundation.org/.  

https://dnamage.clockfoundation.org/
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Table 3. Cox elastic net regression model. 

Covariate (X) Abbreviation Coefficients (β) 

DNAm adrenomedullin  DNAmADM 0.00609 

DNAm beta-2-microglobulin DNAmB2M 2.79E-07 

DNAm cystatin-C  DNAmCystatin C 4.08E-06 

DNAm growth differentiation factor 15  DNAmGDF-15 0.00035 

DNAm leptin  DNAmLeptin -2.03E-05 

DNAm log C-reactive protein DNAmlogCRP 1.90266 

DNAm log hemoglobin A1C DNAmlogA1C 0.40359 

DNAm plasminogen activator inhibitor 1  DNAmPAI-1 0.02941 

DNAm tissue inhibitor metalloproteinases 1  DNAmTIMP-1 3.67E-06 

DNAm pack-years DNAmPACKYRS 0.00014 

Chronological age Age 0.02676 

Female Female -0.14212 

The table lists the finalized covariates in the final Cox regression model with elastic net 
penalty and their coeffects. A linear combination of XTβ yields an estimate of logarithm 
of proportional hazard, which is the raw value of DNAmGrimAge2 before calibration. The 
finalized DNAm GrimAge2 is based on transforming the raw variable into a distribution in 
units of year The columns report the name of the covariate (e.g. DNAm based 
biomarker), its abbreviation and coefficient under the final Cox regression model with 
tuning parameter λ determined by 10-fold cross validation. 

 

Mortality risk: mortality.res 

 

Formally, mortality.res is defined as the deviance 

residual from a Cox regression model for time-to-death 

due to all-cause mortality. The variable mortality.res 

can be interpreted as a measure of “excess” mortality 

risk compared to the baseline risk in a test data. 

 

Validation data  

 

We validated DNAmGrimAge2, DNAmGrimAge and 

their components in 13,399 blood samples from 10,065 

individuals across 1) FHS test and the other eight cohorts: 

2) BA23 and 3) EMPC study from the Women’s Health 

Initiative (WHI) with three racial groups, 4) African 

Americans from the Jackson Heart Study (JHS), 5) the 

InCHIANTI cohort study, 6) individuals of European 

ancestry from Baltimore Longitudinal Study of  

Aging (BLSA), 7) Lothian Birth Cohort 1921 (LBC1921) 

and 8) LBC 1936 (LBC1936), and 9) individuals  

of European ancestry from Normative Aging Study 

(NAS, only recruiting male participants). Table 1 lists the 

characteristics of the samples. Descriptions of each study 

cohort including characteristics of participants, 

phenotype data and molecular array samples can be 

found in Supplementary Note 2. Methylation arrays were 

profiled in Illumina 450k for all cohorts except for the 

JHS which used the EPIC array. Methylation beta values 

were generated using the Bioconductor minfi package 

with Noob background correction [38] for all the 

validation data except WHI, INS and NAS, which were 

based on other algorithms such as BMIQ [39] or 

SeSAMe [40] (Supplementary Note 2).  

 

Multivariate regression analysis for validation 

 

We validated our new mortality clock DNAm 

GrimAge2 in two parts. In the first part, we focused on 

validating the new clock using multivariate regression 

analysis that adjusted for potential confounders 

including sex. Here we only analyzed the associations 

with age-related phenotypes such as mortality. In the 

second part, we validate the new clock in a broader 

category of variables including diet and other lifestyle 

factors that are not necessarily related to chronological 

age. Here, we addressed different effect sizes between 

males and females along with sex-stratified analyses. 

The details for the second part are described in the next 

section, In the first part, our validation analysis involved 

i) Cox regression for time to death, for time-to-CHD, 

for time to CHF, time-to-any cancer ii) linear regression 

for our DNAm based measures (independent variable) 

associated with and number of age-related conditions 

(dependent variable), respectively, iii) linear regression 

for age at menopause (independent variable) associated 

with our DNAm measure (dependent variable), with 

only one exception for the relationship with DNAm 

PACKYRS (as an independent variable), iv) logistic 

regression analysis for estimating the odds ratios of our 

DNAm based measure associated with hypertension, 
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type 2 diabetes, and disease free status. The variable of 

“number of age-related conditions” includes arthritis, 

cataract, cancer, CHD, CHF, emphysema, glaucoma, 

lipid condition, osteoporosis, type 2 diabetes, etc. (see 

Supplementary Note 1). In our validation analysis, we 

used AgeAccelGrim2, AgeAccelGrim, and used the 

scaled measures of seven DNAm surrogates for plasma 

proteins based on the mean and standard deviation (SD) 

of the FHS training dataset such that the effect size was 

approximately corresponding to one SD. All the models 

were adjusted for age, female, and adjusted for batch 

effect as needed. To avoid the bias due to familial 

correlations from pedigrees in the FHS cohort or the 

intra-subject correlations from the repeated measures in 

InCHIANTI, LBC1921, LBC1936 and NAS, we 

accounted for the correlations accordingly in all the 

analyses in the following. In Cox regression analysis, 

we used robust standard errors, the Huber sandwich 

estimator, implemented in R coxph function. We used 

linear mixed models with a random intercept term, 

implemented in lme R function. We used generalized 

estimation equation models (GEE), implemented in R 

gee function, for our logistic regression models. 

Analysis was performed across different strata formed 

by racial groups at each study cohort, with up to 15 

strata for the meta analyses (Table 1). For the meta 

analyses, we used fixed effect models weighted by 

inverse variance to combine the results across validation 

study sets into a single estimate by using the metafor R 

function in most situations. We also used Stouffer’s 

meta-analysis method (weighted by the square root of 

the sample size) in specific situations where the 

harmonization of covariates across cohorts was 

challenging, e.g. when evaluating the number of age-

related conditions and disease free status. 

 

Diet, clinical biomarkers and lifestyle factors 

 

We performed a robust correlation analysis (biweight 

midcorrelation, bicor [26]) between our novel 

biomarkers (AgeAccelGrim2, AgeAccelGrim and its 10 

age-adjusted components) and a total of 61 variables 

including 27 self-reported diet, 9 dietary biomarkers, 19 

clinically relevant measurements, and 6 lifestyle factors 

including hand grip strength. The sample size for each 

variable is up to 13,420 across the nine validation 

datasets including the FHS test dataset. We combined 

the postmenopausal women from the WHI BA23 and 

WHI EMPC (roughly n= 4000 women). The 9 dietary 

biomarkers are only available in the WHI cohort. Blood 

biomarkers were measured from fasting plasma 

collected at baseline. Food groups and nutrients are 

inclusive, including all types and all preparation 
methods, e.g. folic acid includes synthetic and natural, 

dairy includes cheese and all types of milk. The 

individual variables of WHI are explained in [25].  

The study variables are listed in Supplementary Table 

2.1. We also included the individuals with African 

American (AfricanA) ancestry (n up to 216) from the 

BLSA cohort, who were excluded from mortality 

analysis due to the very low death rate (8%). For each 

study cohort, we stratified the samples based on 

ethnic_gender category. For instance, the BLSA samples 

were stratified to 4 strata: White_male, White_female, 

AfricanA_male, and AfricanA_female. The WHI 

samples were stratified by European-, African-, and 

Hispanic- ancestry groups. Ancestry information was 

verified using ancestry informative SNP markers. We 

conducted robust correlation (bicor) analysis stratified 

by study cohort/ethnicity/sex and meta-analyzed the 

results with fixed effect models weighted by inverse 

variance. The fixed effect models yield a meta estimate 

of bicor. As a caveat, the bicor analysis did not 

accommodate the intra-pedigree (e.g. FHS) or intra-

subject correlation (e.g. LBC1921). We did not employ 

statistical analyses such as linear mixed models to 

accommodate these factors since some models failed to 

reach convergence due to the unbalanced design in the 

data structure or high intra-subject correlations. The 

patterns for the failures of convergence were 

heterogeneous in terms of study cohort or study 

variables (dependent or independent variables). Our 

robust correlation (bicor) results in individual strata were 

meta-analyzed across strata resulting in meta estimates 

of bicor and its P-value, which could be inflated by intra 

pedigree/subject correlations. The harmonization of 

educational level across cohorts was challenging since 

some cohorts report years of education while others 

simply report categorical variables for education status. 

Here correlation coefficients can be attractive since they 

are invariant with respect to linear transformations. 

 

Polygenic risk score analysis 

 

We performed polygenic risk score (PRS) analysis in 

women of European ancestry from the WHI BA23 and 

AS315, using the GWAS results of AgeAccelGrim from 

our previous study [33]. The PRS analysis was restricted 

to the women of European ancestry since the GWAS 

results were based on the European ancestry meta-

analyses on 34,710 individuals. The PRS scores were 

generated using default settings of the PRSice software 

[41] (clump-window = 250 kb, clump-p = 1; clump-r2 = 

0.25). P-value thresholds for SNP associations were set 

at < 5 × 10−8, < 0.01, < 0.05, < 0.1, < 0.5, and 1. The 

linkage disequilibrium (LD) estimation was calculated 

using the target data (WHI). The qualities of genotyped 

and imputed SNPs in the WHI cohort were controlled by 

empirical MAF >=0.005, Hardy-Weinberg equilibrium 
(HWE) P-value >=1.0e-06 and MaCH impute r2≥0.6 

[42]. Genotyped and imputed SNP array information are 

described in the Supplementary Note 2. We performed 
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linear regression analyses of AgeAccelGrim2 (or 

AgeAccelGrim) on PRS to compute the proportions for 

the variation of the age acceleration measure explained 

by PRS at different thresholds. We report the proportion 

of R2 in percentages (%). 

 

Computed tomography data from the Framingham 

Heart Study 

 

The computed tomography (CT) in liver, spleen, 

paraspinal muscle, subcutaneous adipose tissue (SAT), 

and visceral adipose tissue (VAT) were performed in 

n=2,803 individuals from the FHS Offspring, Third 

Generation and Omni 2 Cohort participants between 

September 2008 and December 2011 [27, 28]. Of those, 

1,174 Offspring Cohort participants were included in 

our FHS study (869 in training and 305 in test data). 

The age at CT scan was in general slightly older than 

the age at blood draw for the DNA methylation profile 

(mean age difference= 3.7 years, ranging from 1.2 to 

6.1 years).  

 

Organ density measures, more precisely CT attenuation 

coefficients, reflect how easily a target can be 

penetrated by an X-ray. The Hounsfield unit (HU) scale 

is a linear transformation of the original linear 

attenuation coefficient measurement into one in which 

the radiodensity of distilled water is defined as zero 

Hounsfield units (HU). Radiation attenuation in liver, 

spleen, or muscle is inversely related to respective 

measures of fat content. 

 

The CT measures from three areas of the liver, two 

areas of the spleen and two areas of the paraspinal 

muscle were averaged to determine the average 

Hounsfield units in liver, spleen and muscle, 

respectively. The CT-scan measures of visceral and 

subcutaneous adipose tissue are described in [28].  

 

In our analysis, we first performed marginal robust 

correlation analysis (biweight midcorrelation, bicor 

coefficient) [26] to study the association between the 

CT-scan derived measures and DNAm based 

biomarkers. As sex affects adipose associated 

parameters, we performed the analysis in males and 

females, separately. Next we combined the results 

using fixed effects meta analysis. To adjust for 

potential confounders, we also performed four types of 

multivariate linear mixed effects models that included 

sex and BMI as fixed effects and pedigree structure as 

a random effect. In Model I, we regressed a DNAm 

based biomarker (e.g. AgeAccelGrim2) on CT derived 

covariates: liver density, spleen density, and paraspinal 
muscle density. In Model II, we regressed the DNAm 

based biomarker (dependent variable) on volumetric 

measures of adipose tissue (both SAT and VAT 

volume). In Model III, we regressed the DNAm based 

biomarker (dependent variable) on both volumetric (in 

units of cm3) and density (in units of HU) measures of 

adipose tissue (both SAT and VAT). This model 

allows us to assess which measure is more sensible for 

our DNAm biomarkers. In Model IV, we used all CT 

measures as covariates (i.e. liver, spleen and muscle 

density, SAT volume, and VAT volume). We did not 

include the density measures of SAT or VAT as Model 

III showed that they were not significant after 

adjusting for SAT/VAT volumes in most of our 

analysis. Also, it can protect the model fit in Model IV 

from the issue of multi-collinearity. We used the BMI 

measure assessed at exam 9 in the FHS, i.e. the closest 

exam following the CT-scan exam. We used all the 

FHS individuals from training and test dataset as our 

previous study showed the results were not biased by 

the training status [1]. 

 

Application in saliva samples in National Growth 

and Health Study (NGHS) cohort 

 

We applied our mortality clocks in 432 mothers from the 

NHLBI Growth and Health Study (NGHS) cohort [31]. 

The NGHS cohort was a longitudinal study conducted 

from 1985 to 2000 that investigated the racial differences 

in factors relating to the development of obesity in Black 

and White pre-adolescent girls, who were recruited at age 

9 or 10 years. A 30-year follow-up of the Contra Costa 

County cohort was conducted in 2016 [31] to assess 

midlife health and well-being. Methylation data from the 

Illumina 850k array were profiled in saliva samples from 

688 individuals including mothers (n=442) and their most 

recent children (n=246). We only used mothers in our 

analysis. Of the 442 mothers, 10 women had either 

missing ethnic status, low confidence in the estimate of 

chronological age, or were technical outliers and 

removed from analysis, yielding 432 mothers for our 

study. The mothers in our study are balanced by 

ethnic/racial groups: White (n=218) and African 

American (n=214). More details of the NGHS cohort are 

described in Supplementary Note 2. 

 

We performed multivariate linear regression analysis to 

study the association between 1) dependent variables: 

clinically relevant measures: metabolic Z score, high 

sensitivity C-reactive protein (CRP), insulin resistant and 

HOMA for insulin resistance (HOMA-IR) [32] and 2) 

independent variables: AgeAccelGrim2, AgeAccelGrim, 

and nine scaled DNAm-based surrogates of proteins and 

DNAm PACKYS. The HOMA-IR stands for 

homeostatic model assessment of insulin resistance 

defined by Matthews et al. [32, 43]. The equations for 
HOMA1-IR = (FPI × FPG)/22.5, where FPI is fasting 

plasma insulin concentration (mU/l) and FPG is fasting 

plasma glucose (mmol/l) [43]. Higher scores of HOMW-
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IR represent greater levels of insulin resistance. We 

applied the analysis in all mothers and stratified analysis 

by ethnic/racial group, respectively. All the analysis was 

adjusted for chronological age, batch effect and for race 

as needed. 

 

Meta analysis for EWAS of age acceleration of 

GrimAge clocks 

 

We performed EWAS of AgeAccelGrim2 (and 

AgeAccelGrim) in each cohort stratified by gender and 

race. EWAS of epigenetic age acceleration was carried 

out with the R function standardScreeningNumericTrait 

from the R WGCNA package. AgeAccelGrim2 

(AgeAccelGrim) was based on the residuals adjusted for 

pedigree correlation or intra-subject correlation via 

linear mixed analysis in the FHS, InChinanti, LBC21, 

LBC36 and NAS cohorts. EWAS results were combined 

via fixed effect models weighted by inverse variance 

with effect sizes based on correlation estimates, as 

implicated in R metafor.  

 

Meta analysis for EWAS of time-to-death and time-

to-CHD 

 

We performed EWAS of time-to-death on each cohort 

based on three Cox regression models of models. Model 

I is a basicmodel that adjusted for chronological age and 

sex (Female: 1 indicates females, 0 males), and batch 

effect, pedigree correlation or intrasubject correlation as 

needed. Model II adjusted for the same variables as in 

Model I plus smoking history based on pack-years. 

Model III adjusted for the same variables as in Model I 

plus 7 imputed blood cell compositions/counts: CD8 

naïve, CD8pCD28nCD45Ran (exhausted cytotoxic T 

cells), plasma blasts, CD4+ T, nature killer cells, 

monocytes and granulocytes (Houseman estimates, 

Horvath estimates). Robust standard errors (the Huber 

sandwich estimator) was used if the Cox regression 

analysis involved pedigree correlation or intrasubject 

correlation. As information on smoking pack-years was 

missing in JHS, BLSA and LBC21, we used smoking 

status (never, past and current) in the Model II. EWAS 

results were combined via fixed effect models weighted 

by inverse variance with effect sizes based on beta 

values (log hazard ratios), from the Cox regression 

models, as implicated in R metafor.  

 

For all the individual EWAS, we restricted the analysis 

to CpGs present on 450k array. For each CpG, 

individuals with extreme methylation levels (six 

standard deviations away from the mean) were set to 

missing. EWAS of AgeAccelGrim2/AgeAccelGrim 
using the FHS cohort was only performed on the 711 

individuals from the test set. The meta analysis for 

AgeAccelGrim2/AgeAccelGrim was performed on 

n=12,430. The meta analysis was performed on 

n=13,260 for time-to-death and n=6,143 for time-to-

CHD based on FHS, WHI BA23 and JHS cohorts. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Note 1: DNAm based surrogates 

for plasma proteins 
 

The model of DNAm GrimAge2 is composed of nine 

DNAm based plasma proteins, DNAm based pack 

years, age and gender. Below we briefly describe these 

nine plasma proteins. 

 

A1C (hemoglobin A1C, HbA1c; glycosylated 

hemoglobin; Glycated hemoglobin) is a blood test 

that shows average blood sugar (glucose) levels over 

the last 3 months. This biomarker is widely used  

in clinic to check for prediabetes or diabetes and  

help guide diabetes treatment over time 

(http://uclahealthib.staywellsolutionsonline.com/Bedsid

e/167,a1c). Previous studies also indicated that higher 

levels of A1C were associated with cardiovascular 

heart disease and mortality [1, 2]. The log scale of 

A1C is a new component in DNAm GrimAge2. 

 

ADM (adrenomedullin) is a vasodilator peptide 

hormone. Plasma ADM, initially isolated from adrenal 

gland, is increased in individuals with hypertension and 

heart failure [3]. A recent study showed that ADM was 

involved in age-related memory loss in mice and aging 

human brains [4]. 

 

B2M (Beta-2 microglobulin) is a component of major 

histocompatibility complex class 1 (MHC I) molecular. 

Plasma B2M is a clinical biomarker associated with 

cardiovascular disease, kidney function, inflammation 

severity [5]. B2M is a pro-aging factor associated with 

cognitive and regenerative function in aging process 

and suggests B2M may be targeted therapeutically in 

old age [6]. A previous study showed that systemic 

B2M accumulation in aging blood promoted age-related 

cognitive dysfunction and impairs mouse models [6]. 

 

Cystatin C or cystatin 3 (formerly gamma trace, post-

gamma-globulin, or neuroendocrine basic polypeptide) 

is mainly used as a biomarker of kidney function. 

Plasma cystatin-C is a clinical relevant biomarker 

indicating kidney function [7]. Cystatin-C seems plays a 

role in cardiovascular disease [8] or amyloid deposition 

associated with Alzheimer’s disease [9]. 

 

C-reactive protein (CRP) test is clinically used to 

find inflammation in your body that could be  

caused by different types of conditions such as  

an infection or autoimmune disorders like  

rheumatoid arthritis or inflammatory bowel disease, 

(https://uclahealthib.staywellsolutionsonline.com/Searc

h/167,c_reactive_protein_serum). Several previous 

studies indicated that CPR protein concentration is 

associated with coronary heart disease, stroke, and 

non-vascular mortality (e.g. [10, 11]). The log scale of 

CRP is a new component in DNAm GrimAge2. 

 

GDF-15 (growth differentiation factor 15) is one of 

transforming growth factor beta subfamily. GDF-15 has 

been implicated in aging and age- related disorders. It 

also plays a role in age-related mitochondria 

dysfunction [12]. 

 

Leptin is a hormone predominantly in adipose cells. 

Leptin plays a role in regulating energy balance by 

inhibiting hunger and is implicated in Alzheimer’s 

disease [13].  

 

Plasminogen activator inhibitor antigen type 1(PAI-

1) is the major inhibitor of tissue-type plasminogen 

activator and unokinase plasminogen activator. PAI-1, 

released in response to inflammation process, plays a 

central role in a number of age-related subclinical (i.e., 

inflammation, atherosclerosis, insulin resistance) and 

clinical conditions (i.e., obesity, comorbidities) [14].  

 

TIMP-1 or TIMP metallopeptidase inhibitor 1 is a 

tissue inhibitor of metalloproteinases. It is also involves 

chromatin structures, promoting cell proliferation in a 

wide range of cell types, and may also have an anti-

apoptotic function [15]. 

 

Supplementary Note 2: Description of datasets 
 

Our study participants with blood samples came from 

nine independent cohorts: Framingham Heart Study 

Offspring Cohort (FHS), Women ’s Health Initiatives 

(WHI) BA23, WHI EMPC, Jackson Heart Study (JHS), 

InCHIANTI (baseline and the third follow-up), Baltimore 

Longitudinal Study of Aging (BLSA), Lothian Birth 

Cohort 1921 (LBC21) and LBC 1936 (LBC36), and 

Normative Aging Study (NAS). We also studied saliva 

samples collected from an independent study: the NHLBI 

Growth and Health Study (NGHS) cohort. Below we 

describe each study cohort/datasets in more details. 

 

Study 1: Framingham Heart Study cohort  

 

The FHS cohort [16] is a large-scale longitudinal  

study started in 1948, initially investigating  

the common factors of characteristics that  

contribute to cardiovascular disease (CVD), 

https://www.framinghamheartstudy.org/index.php. The 

study initially enrolled participants living in the town 

of Framingham, Massachusetts, who were free of overt 

symptoms of CVD, heart attack or stroke at 

enrollment. In 1971, the study started the FHS 

http://uclahealthib.staywellsolutionsonline.com/Bedside/167,a1c
http://uclahealthib.staywellsolutionsonline.com/Bedside/167,a1c
https://uclahealthib.staywellsolutionsonline.com/Search/167,c_reactive_protein_serum
https://uclahealthib.staywellsolutionsonline.com/Search/167,c_reactive_protein_serum
https://www.framinghamheartstudy.org/index.php
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Offspring Cohort to enroll a second generation of the 

original participants ’ adult children and their spouses 

(n= 5124) to conduct similar examinations [17]. 

Participants from the FHS Offspring Cohort were 

eligible for our study if they attended both the seventh 

and eighth examination cycles and consented to having 

their molecular data used for the study. We used the 

2,544 participants from the group of 

Health/Medical/Biomedical (IRB, MDS) consent with 

available DNA methylation array data. The FHS data 

are available in dbGaP (accession number: 

phs000363.v16.p10 and phs000724.v2.p9).  

 

We computed the total number of age-related conditions 

based on dyslipidemia, hypertension, cardiovascular 

disease (including coronary heart disease [CHD] or 

congestive heart failure [CHF]), type 2 diabetes, cancer 

and arthritis. Time to CHD or time to CHF was 

truncated at zero if it occurred before exam 8. Deaths 

among the FHS participants that occurred prior to 

January 1, 2013 were ascertained using multiple 

strategies, including routine contact with participants 

for health history updates, surveillance at the local 

hospital and in obituaries of the local newspaper, and 

queries to the National Death Index. Death certificates, 

hospital and nursing home records prior to death, and 

autopsy reports were requested. When cause of death 

was undeterminable, the next of kin were interviewed. 

The date and cause of death were reviewed by an 

endpoint panel of 3 investigators.  

 

DNA methylation quantification 

Peripheral blood samples were collected at the 8th 

examination. Genomic DNA was extracted from buffy 

coat using the Gentra Puregene DNA extraction kit 

(Qiagen) and bisulfite converted using the EZ DNA 

Methylation kit (Zymo Research Corporation). DNA 

methylation quantification was conducted in two 

laboratory batches using the Illumina Infinium 

HumanMethylation450 array (Illumina). Methylation 

beta values were generated using the Bioconductor 

minfi package with Noob background correction [18].  

 

Studies 2 and 3 :Women’s Health Initiative 

 

The WHI is a national study that enrolled 

postmenopausal women aged 50-79 years into the 

clinical trials (CT) or observational study (OS) cohorts 

between 1993 and 1998 [19, 20]. We included 4,079 

WHI participants with available phenotype and DNA 

methylation array data: 2,107 women from  “Broad 

Agency Award 23” (WHI BA23) and 1,972 women 

from “Epigenetic Mechanisms of PM-Mediated CVD 
Risk” (WHI EMPC). WHI BA23 focuses on identifying 

miRNA and genomic biomarkers of coronary heart 

disease (CHD), integrating the biomarkers into 

diagnostic and prognostic predictors of CHD and other 

related phenotypes, and other objectives can be found in 

https://www.whi.org/researchers/data/WHIStudies/Stud

ySites/BA23/Pages/home.aspx. WHI EMPC is a study 

of epigenetic mechanisms underlying associations 

between ambient particulate matter (PM) air pollution 

and cardiovascular disease [21]. WHI EMPC and BA23 

span three WHI sub-cohorts including GARNET, 

WHIMS and SHARe. 936 EMPC participants were not 

in any of the WHI GWAS (either GARNET, WHIMS, 

SHARe, MOPMAP, HIPFX, or GECCO). The largest 

overlap was with SHARE and GARNET. There was 

almost no overlap with WHIMS and MOPMAP. The 

death status was based on the variable DEATHALL 

(All Discovered Death) as listed in the form  “All 

Discovered Death Outcome Detail (Form 124/120)”. 

This variable does not censor deaths that occur after the 

participants ’last consent period. The original WHI 

study began in the early 1990s and concluded in 2005. 

Since 2005, the WHI has continued as Extension 

Studies (Ext1), which are annual collections of health 

updates and outcomes in active participants. The second 

Extension Study (Ext2) enrolled 93,500 women in 2010 

and follow-up of these women continues annually. 

Death was adjudicated for clinical trial (CT) and 

observational study (OS) participants through Ext1. In 

Ext2, death is only adjudicated for the Medical Record 

Cohort (MRC). Non MRC cause of death is determined 

by the initial cause of death form (form 120).  

 

The total number of age-related conditions was based 

on Alzheimer’s disease, amyotrophic lateral sclerosis, 

arthritis, cancer, cataract, CVD, glaucoma, emphysema, 

hypertension, and osteoporosis.  

 

DNA methylation quantification for BA23  

In brief, bisulfite conversion using the Zymo EZ DNA 

Methylation Kit (Zymo Research, Orange, CA, USA) as 

well as subsequent hybridization of the 

HumanMethylation450k Bead Chip (Illumina, San 

Diego, CA), and scanning (iScan, Illumina) were 

performed according to the manufacturers protocols by 

applying standard settings. DNA methylation levels (β 

values) were determined by calculating the ratio of 

intensities between methylated (signal A) and un-

methylated (signal B) sites. Specifically, the β value was 

calculated from the intensity of the methylated (M 

corresponding to signal A) and un-methylated (U 

corresponding to signal B) sites, as the ratio of 

fluorescent signals β = Max(M,0)/[Max(M,0)+ 

Max(U,0)+100]. Thus, β values range from 0 (completely 

un-methylated) to 1 (completely methylated).  

 
DNA methylation quantification for WHI EMPC  

Illumina Infinium HumanMethylation450 BeadChip 

data from the Northwestern University Genomics Core 

https://www.whi.org/researchers/data/WHIStudies/StudySites/BA23/Pages/home.aspx
https://www.whi.org/researchers/data/WHIStudies/StudySites/BA23/Pages/home.aspx
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Facility for WHI EMPC participants sampled in stages 

1a, 1b, and 2 were quality controlled, normalized and 

batch adjusted. Beta-mixture quantile normalization was 

implemented using BMIQ [22] and empirical Bayes 

methods of batch adjustment for stage and plate were 

implemented in ComBat [23].  

 

SNP array data  

WHI SNP array data were generated under different  

sub-study groups: GARNET, SHARe and WHIM.  

The genotyped SNPs were profiled in different platforms. 

The information is presented in the format of platform 

(dbGAP access number): Illumina HumanOmni1- 

Quad v1-0 B (phs000200.v10.p3), Illumina 

HumanOmniExpressExome-8v1_B (phs000200.v10.p3), 

Affymetrix 6.0 (phs000200.v10.p3) and Affymetrix 6.0 

(phs000200.v10.p3). More details can be found in our 

earlier GWAS study [24]. 

 

Lifestyle factors and dietary assessment in the 

Women’s Health Initiative (WHI) 

WHI participants completed self-administered 

questionnaires at baseline which provided personal 

information on a wide range of topics, including 

sociodemographic information (age, education, race, 

income), and current health behaviors (recreational 

physical activity, tobacco and alcohol exposure, and 

diet). Participants also visited clinics at baseline where 

certified Clinical Center staff collected blood specimens 

and measured anthropometrics (weight, height, hip and 

waist circumferences) and blood pressures (systolic, 

diastolic). Body mass index and waist to hip ratio were 

calculated from these measurements. 

 

Dietary intake was assessed at baseline using the WHI 

Food Frequency Questionnaire [25]. Briefly, 

participants were asked to report on dietary habits in the 

past three months, including intake, frequency, and 

portion sizes of foods or food groups, along with 

questions concerning topics such as food preparation 

practices and types of added fats. Nutrient intake levels 

were then estimated from these responses. For current 

drinker, we use the threshold of more than one serving 

equivalent (14g) within the last 28 days. 

 

Study 4: Jackson Heart Study  

 

The JHS is a large, population-based observational 

study evaluating the etiology of cardiovascular, renal, 

and respiratory diseases among African Americans 

residing in the three counties (Hinds, Madison, and 

Rankin) that make up the Jackson, Mississippi 

metropolitan area [26] The age at enrollment for the 
unrelated cohort was 35-84 years; the family cohort 

included related individuals >21 years old. Participants 

provided extensive medical and social history, had an 

array of physical and biochemical measurements and 

diagnostic procedures, and provided genomic DNA 

during a baseline examination (2000-2004) and two 

follow-up examinations (2005-2008 and 2009-2012). 

Annual follow-up interviews and cohort surveillance are 

ongoing. In our analysis, we used the visits at baseline 

from 1747 individuals as part of project JHS ancillary 

study ASN0104, available with both phenotype and 

DNA methylation array data. Total numbers of age-

related conditions were based on hypertension, type 2 

diabetes, kidney dysfunction based on ever dialysis, and 

CVD.  

 

DNA methylation quantification  

Peripheral blood samples were collected at the baseline. 

Methylation beta values were generated using the 

Bioconductor minfi package with Noob background 

correction [18].  

 

Study 5: Invecchiare in Chianti, aging in the Chianti 

area (InCHIANTI) 

 

The InCHIANTI (Invecchiare in Chianti, aging in the 

Chianti area) cohort is a representative population-based 

study of older persons enrolling individuals aged 20 

years and older from two areas in the Chianti region of 

Tuscany, Italy, http://inchiantistudy.net/wp/. One major 

goal of the study is to translate epidemiological research 

into geriatric clinical tools, ultimately advancing 

clinical applications in older persons. Of the cohort, 

1430 observations from 728 individuals with both 

phenotype information and DNA methylation data were 

including in our studies. The observations were 

collected from baseline in 1998 and the third follow-up 

visit in 2007. All participants provided written informed 

consent to participate in this study. The study complied 

with the Declaration of Helsinki. The Italian National 

Institute of Research and Care on Aging Institutional 

Review Board approved the study protocol. We 

computed the total number of age-related conditions 

based on cancer, hypertension, myocardial infarction, 

Parkinson’s disease, stroke and type 2 diabetes.  

 

DNA methylation quantification  

Genomic DNA was extracted from buffy coat samples 

using an AutoGen Flex and quantified on a 

Nanodrop1000 spectrophotometer prior to bisulfite 

conversion. Genomic DNA was bisulfite converted 

using Zymo EZ-96 DNA Methylation Kit (Zymo 

Research Corp., Irvine, CA) as per the manufacturer’s 

protocol. CpG methylation status of 485,577 CpG sites 

was determined using the Illumina Infinium 

HumanMethylation450 BeadChip (Illumina Inc., San 
Diego, CA) as per the manufacturer’s protocol and as 

previously described [27]. Initial data analysis was 

performed using GenomeStudio 2011.1 (Model M 

http://inchiantistudy.net/wp/
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Version 1.9.0, Illumina Inc.). Threshold call rate for 

inclusion of samples was 95%. Quality control of 

sample handling included comparison of clinically 

reported sex versus sex of the same samples determined 

by analysis of methylation levels of CpG sites on the X 

chromosome [27]. Methylation beta values were 

generated using SeSAMe [28].  

 

Study 6: Baltimore Longitudinal Study of Aging 

(BLSA) 

 

Established in 1958 The Baltimore Longitudinal Study 

of Aging (BLSA) is the longest-running scientific study 

of human aging in the United States [29], 

https://www.blsa.nih.gov/. The study population is a 

continuously enrolled cohort of community dwelling 

adults aged 20 or older who meet rigorous screening 

criteria. BLSA Participants return at age dependent 

intervals for study visits that include comprehensive 

clinical testing as well as evaluations of physical and 

cognitive function [30]. In the BLSA, blood samples 

were collected for DNA extraction. The mortality 

analysis was restricted to participants who self-identify 

as White (n=572). The downstream analysis including 

lifestyle factors was also performed among participants 

who self-identify as Black or African American 

(n=216). We computed the total number of age-related 

conditions based on the number of chronic diseases  

as defined in Fabbri et al. [31]. The BLSA data can be 

applied from https://www.blsa.nih.gov/. 

 

DNA methylation quantification 

DNA was quantified using Quant-iT Picogreen Reagent 

(Invitrogen, Grand Island, NY, USA) according to the 

manufacturer ’s instructions. 1 ug of DNA was bisulfite 

treated using the EZ-96 DNA methylation kit (Zymo 

Research, Irvine, CA, USA) according to the 

manufacturer ’s specifications for the 450k array. 

Converted genomic DNA was eluted in 22 μl of elution 

buffer. DNA methylation level was measured using 

Illumina Infinium HD Methylation Assay (Illumina) 

according to the manufacturer ’s instructions. Background 

subtraction was applied using the preprocessIllumina 

command in the minfi Bioconductor package [18]. 

 

There are a total 501 participants available for both 

DNA methylation and SNP array data remained in 

analysis. 

 

Studies 7 and 8: Lothian Birth Cohorts (LBC) of 

1921 and 1936 

 

The Lothian Birth Cohorts (LBC) [32] of 1921 and 1936 
are longitudinal studies of distribution and causes of 

cognitive functioning changes across most of the human 

life course, http://www.lothianbirthcohort.ed.ac.uk/. 

The participants of LBC1921 (born in 1921) took part 

in the Scottish Mental Survey (SMS) of 1932 while the 

participants of LBC1936 (born in 1936) took part in the 

SMS in 1947. Both surveys were associated with 

general intelligence tests for children at age 11 years 

and were carried out by the Scottish Council for 

Research in Education. The LBC1921 (n=550) began in 

1999 and examined 5 waves at mean ages 79, 83, 87. 90 

and 92 years while the LBC1936 (n=1091) began in 

2004 and examined 5 waves at mean ages 70,73, 76, 79 

and 82 years [32, 33]. 

 

We obtained DNA methylation data used in the earlier 

study for predicting all-cause mortality [34] in which 

SNP array data were also available for the study 

individuals. The LBC1921 is composed of 469 

individuals across waves 1 and 3 individuals 

(ndeaths=451) and the LBC1936 is composed of 1044 

individuals (ndeaths=378) across waves 1,2,3, and 4. All 

participants were of White Scottish ancestry. Following 

informed consent, venesected whole blood was collected 

for DNA extraction in both LBC1921 and LBC1936. 

Ethics permission for the LBC1921 was obtained from 

the Lothian Research Ethics Committee (Wave 1: 

LREC/1998/4/183). Ethics permission for the LBC1936 

was obtained from the Multi-Centre Research Ethics 

Committee for Scotland (Wave 1: MREC/01/0/56), the 

Lothian Research Ethics Committee (Wave 1: 

LREC/2003/2/29). Written informed consent was 

obtained from all individuals. LBC methylation data 

have been submitted to the European Genome-phenome 

Archive under accession number EGAS00001000910. 

 

DNA methylation quantification 

As described in [34], DNA was extracted from 514 

whole blood samples in LBC1921 and from 1,004 

samples in LBC1936. Raw intensity data were 

backgroundcorrected and methylation beta-values 

generated using the R minfi package [18]. Quality 

control analysis was performed to remove probes with a 

low (<95%) detection rate at P <0.01. Manual 

inspection of the array control probe signals was used to 

identify and remove low quality samples. The Illumina-

recommended threshold was used to eliminate samples 

with a low call rate (samples with <450,000 probes 

detected at P <0.01). As SNP genotyping was 

previously performed on LBC samples, genotypes 

derived from the 65 SNP control probes on the 

methylation array using the wateRmelon package [35] 

were compared to those obtained from the genotyping 

array to ensure sample integrity. Samples with a low 

match of genotypes with SNP control probes, which 

could indicate sample contamination or mix-up, were 
excluded (n = 9). Moreover, eight subjects whose 

predicted sex, based on XY probes, did not match 

reported sex were also excluded. 

https://www.blsa.nih.gov/
https://www.blsa.nih.gov/
http://www.lothianbirthcohort.ed.ac.uk/
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Study 9: Normative Aging Study  

 

The Normative Aging Study (NAS) is a closed and 

ongoing cohort established in 1963 by the U.S. 

Veterans Administration in the Greater Boston Area 

[36]. The participants were aged 21–82 years and were 

free of any known chronic diseases at enrollment. They 

have undergone health examinations in a clinical 

center, including blood collection, every 3–5 years. We 

only analyzed participants who self-identify as White 

(98% of our samples). DNA methylation arrays were 

profiled in 1455 blood samples across 751 participants 

from first to 4th visit. Of the blood samples, 82 were 

entirely removed from our study based on our quality 

control for missingness in CpG sites (number of  

sites > 5000), yielding 732 participants (1373 blood 

samples) remained in our study. All study participants 

provided written informed consent before enrollment 

and sample collection. This study was approved by the 

Harvard T.H. Chan School of Public Health and the 

Institutional Review Boards of the Department of 

Veterans Affairs. 

 

DNA methylation quantification 

DNA samples were extracted using the IQAamp DNA 

Blood Kit (Qiagen, CA, U.S.) from the buffy coat of the 

whole blood collected between 1999 and 2013. We 

measured DNAm by the Illumina Infinium Human 

Methylation450K BeadChip (450 K; Illumina Inc., San 

Diego, CA, U.S.), which provides information on ~ 

485,000 CpG sites. To minimize batch effects, we 

randomized the samples across 450 K BeadChip and 

96-well plates based on a two-stage age-stratified 

algorithm so that age distributed similarly across plates 

[37]. Quality control analysis was quided by detection P 

values. More details for quality control can be found in 

the study from Wang et al. [38]. 

 

Saliva study: NHLBI Growth Health Study Cohort 

 

The NHLBI Growth and Health Study (NGHS) cohort 

[39] was a longitudinal study conducted from 1985 to 

2000 that investigated the racial differences in factors 

relating to the development of obesity in Black  

and White pre-adolescent girls. The study initially 

recruited girls 9 and 10 years of age from Richmond 

(CA, USA), Cincinnati (OH, USA), and Washington 

(D.C., USA). The NGHS Contra Costa County cohort 

(n = 887) was recruited in 1987-1988 from public and 

parochial schools in the Richmond Unified School 

District area. The area was chosen due to census data 

that showed approximately equal percentages of Black 

and White children with the smallest degree of income 
and occupational disparity between races. A 30-year 

follow-up of the Contra Costa County cohort was 

conducted in 2016 [39], enrolling eligible Black  

(n = 307) and White (n = 317) women from the original 

cohort approximately at 39 to 42 years of age to assess 

midlife health and well-being. Eligibility criteria 

included not being pregnant at the time of recruitment, 

not experiencing a pregnancy, miscarriage, or abortion 

in the three months prior to recruitment, and not living 

abroad, being incarcerated, or being otherwise 

institutionalized. Consenting participants participated in 

a baseline survey as well as biospecimen collection, 

which included saliva collection. 
 

DNA methylation quantification  

Methylation arrays were profiled in saliva samples from 

688 individuals including mothers (n=442) and their 

most recent children (n=246). The saliva samples were 

analyzed at the Semel Institute UCLA Neurosciences 

Genomics Core (UNGC) using the Illumina 850k 

BeadChip. Genomic DNA was isolated using 

temperature denaturation and subjected to bisulfite 

conversion, PCR amplification, and DNA sequencing 

(EZ DNA Methylation-Gold Kit, Zymo Research). Of 

the 442 mothers, 10 women missing for ethnic status, 

with low confidence in the estimate of chronological 

age, or technical outliers were removed from our 

analysis, yielding 432 mothers (218 White and 214 

Black) remained in our study. 

 

Supplementary Methods: Estimation of blood 

cell counts based on DNAm levels 
 

We estimated blood cell counts using two different 

software tools. First, Houseman’s estimation method 

[40] was used to estimate the proportions of CD8+ T 

cells, CD4+ T, natural killer, B cells, and granulocytes 

(mainly neutrophils). Second, the Horvath blood cell 

estimation method, implemented in the advanced 

analysis option of the epigenetic clock software [41, 

42], was used to estimate the percentage of exhausted 

CD8+ T cells (defined as CD28-CD45RA-), the number 

(count) of naïve CD8+ T cells (defined as 

CD45RA+CCR7+) and plasma blasts cells. We and 

others have shown that the estimated blood cell counts 

have moderately high correlations with corresponding 

flow cytometric measures [40, 43]. 
 

Supplementary Figures 
 

In the figures, we use abbreviations for the names of our 

study cohorts as the following: FHS train and test 

datasets, Women’s Health Initiatives (WHI) BA23, 

WHI EMPC, Jackson Heart Study (JHS), InCHIANTI 

(baseline and the third follow-up), Baltimore 

Longitudinal Study of Aging (BLSA), Lothian Birth 
Cohort 1921 (LBC21) and LBC 1936 (LBC36), and 

Normative Aging Study (NAS). The three racial/ethnic 

groups (notations) in our study cohorts are Caucasian 
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(White), African American (AfricanA) and Hispanic 

(Hispanic). 
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Supplementary Figures 
 

 

 
 

Supplementary Figure 1. New DNAm proteins. The top panels (A, B) and bottom panels (C, D) are based on FHS training and test 
dataset, respectively. (A, C) The panels depict scatter plots of log scale of C-reactive protein (CRP, x-axis) versus DNAmlogCRP (y-axis). (B, D) 
The panels depict scatter plots of log scale of hemoglobin A1C (x-axis) versus DNAmlogA1C (y-axis). The title of each panel reports the data 
set. The Pearson correlation coefficient (cor) and a corresponding correlation test p-value are report at each panel. The top panels are based 
on the training dataset (70% pedigrees) of Framingham Heart Study (FHS) pedigree data that were used to develop DNAm based biomarkers. 
The bottom panels are based on FHS test dataset with individuals from the remaining 30% pedigrees to test the predictive power of the 
DNAm biomarkers. The extreme values for the CRP and A1C variables were defined if their scaled values were ≥ 6 and were winsorized 
before the training process. The plots depict the log scale applying on the variables after winsorization. 
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Supplementary Figure 2. Correlation heatmap among DNAmGrimAge2. The heatmap color-codes the pairwise Pearson correlations 

of DNAmGrimAge2 and its 10 components: (A) the heatmap based on the training dataset in FHS (n=1833), and (B) the heatmap based on the 
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test dataset in FHS (n=711). DNAm GrimAge2 is defined as a linear combination of chronological age (Age), sex (Female takes on the value 1 
for females and 0 otherwise), and ten DNAm-based surrogate markers for smoking pack-years (DNAm PACKYRS), adrenomedullin levels 
(DNAm ADM), beta-2 microglobulin (DNAm B2M), cystatin C (DNAm Cystatin C), growth differentiation factor 15 (DNAm GDF-15), leptin 
(DNAm Leptin), ) log scale of C reactive protein (CRP), log scale of hemoglobin A1C,plasminogen activation inhibitor 1 (DNAm PAI-1), and 
tissue inhibitor metalloproteinase 1 (DNAm TIMP-1). The figure also includes an estimator of mortality risk, mortality.res, which can be 
interpreted as a measure of “excess” mortality risk compared to the baseline risk in the study data. Formally, mortality.res is defined as the 
deviance residual from a Cox regression model for time-to-death due to all-cause mortality. The rows and columns of the figure are sorted 
according to a hierarchical clustering tree. The shades of color (blue, white, and red) visualize correlation values from -1 to 1. Each square 
reports a Pearson correlation coefficient. 
 

 
 

Supplementary Figure 3. DNAm GrimAge(2) versus chronological age in different study cohorts. Each panel depicts a scatter plot 

of GrimAge2/GrimAge (x-axis) versus chronological age at the time of the blood draw (x-axis). The title of each panel reports the data set and 
the sample size. The plots of the WHI cohorts are stratified by race/ethnic groups. The statistics Pearson correlation coefficient, and a 
corresponding correlation test p-value are reported at each panel stratified by DNAmGrimAge2 and DNAmGrimAge, respectively. Each point 
is marked by blue for DNAmGrimAge and yellow for DNAmGrimAge2, with a point shape based on race/ethnicity, as listed in legend. AfricanA 
denotes African American. 
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Supplementary Figure 4. AgeAccelGrim2 versus AgeAccelGrim in different study cohorts. Each panel depicts a scatter plot of 

AgeAccelGrim2(x-axis) versus AgeAccelGrim (y-axis) at the time of the blood draw. The title of each panel reports the data set and the sample 
size. The plots of the WHI cohorts are stratified by race/ethnic groups. The statistics Pearson correlation coefficient, and a corresponding 
correlation test p-value are reported at each panel stratified by gender. Each point is marked by blue for males and hot pink for females, with 
a point shape based on race/ethnicity, as listed in legend. AfricanA denotes African American. 
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Supplementary Figure 5. Association between epigenetic age acceleration of GrimAges versus ethnicity. The figure presents bar 

plots for the associations between AgeAccelGrim2/AgeAccelGrim (y-axis) and three racial/ethnic group: African American (AfricanA), Hispanic 
and White. The upper (A, B)/lower (C, D) panels are based on WHI BA23/WHI EMPC datasets, respectively. The left/right panels display 
AgeAccelGrim2/AgeAccelGrim on y-axis, respectively. The bar plots report the p-value of a non-parametric group comparison test (Kruskal-
Wallis). The y-axis of the bar plots depicts the mean and one standard error. The number under each bar presents number of individuals at 
each racial group. 
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Supplementary Figure 6. Meta analysis forest plots for predicting time-to-congestive heart failure. Fixed effect models meta 

analysis was performed to combine Cox regression analysis of congestive heart failure (CHF) across 7 strata from 3 study cohorts. Each panel 
reports a meta analysis forest plot for combining hazard ratios predicting time-to-CHF based on a DNAm based biomarker (reported in the 
figure heading) across different strata formed by racial group within cohort. (A, B) display the results for AgeAccelGrim2 and AgeAccelGrim. 
Each row reports a hazard ratio (for time-to-CHF) and a 95% confidence interval resulting from a Cox regression model in each stratum. (C–L) 
display the results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin (B2M), (E) 
cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale of 
hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years 
(PACKYRS). The sub-title of each panel reports the meta analysis P-value. (A, B) Each hazard ratio (HR) corresponds to a one-year increase in 
AgeAccel. (C–K) Each hazard ratio corresponds to an increase in one-standard deviation. (L) Hazard ratios correspond to a one-year increase 
in pack-years. The most significant meta analysis P-value is marked in red (DNAm logCRP), followed by hot pink (AgeAccelGrim2) and blue 
(DNAm logA1C), respectively. 
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Supplementary Figure 7. Meta analysis forest plots for predicting time-to-any cancer. Fixed effect models meta analysis was 

performed to combine Cox regression analysis of any cancer across 7 strata from 3 study cohorts. Each panel reports a meta analysis forest 
plot for combining hazard ratios predicting time-to-any cancer based on a DNAm based biomarker (reported in the figure heading) across 
different strata formed by racial group within cohort. (A, B) display the results for AgeAccelGrim2 and AgeAccelGrim. Each row reports a 
hazard ratio (for time-to-any cancer) and a 95% confidence interval resulting from a Cox regression model in each strata (defined by cohort 
racial group). (C–L) display the results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 
microglobulin (B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein 
(CRP), (I) log scale of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) 
smoking pack-years (PACKYRS). The sub-title of each panel reports the meta analysis p-value. (A, B) Each hazard ratio (HR) corresponds to a 
one-year increase in AgeAccelGrim. (C–K) Each hazard ratio corresponds to an increase in one-standard deviation. (L) Hazard ratios 
correspond to a 1 year increase in pack-years. A non-significant Cochran Q test p-value is desirable because it indicates that the hazard ratios 
don’t differ significantly across the strata. The most significant meta analysis P value is marked in red (DNAm PACKYRS), followed by hot pink 
(AgeAccelGrim2) and blue (AgeAccelGrim), respectively. 
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Supplementary Figure 8. Meta analysis for associations with Type 2 diabetes. Each panel reports a meta analysis forest plot based 

on Stouffer’s method to combine association results between disease free status and the DNAm-based biomarker (reported in the figure 

heading) across different strata, which are formed by racial group within cohort. (A, B) displays the results for AgeAccelGrim2 and 
AgeAccelGrim. (C–L) display the results for scaled DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin 
(B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale 
of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years 
(PACKYRS). The sub-title of each panel reports the meta analysis p-value. Each row reports an odds ratio (OR) and a 95% confidence interval 
resulting from a (GEE) logistic regression in each strata (defined by cohort racial or set group). (A, B) Each OR corresponds to a one-year 
increase in AgeAccel. (C–K) Each OR corresponds to an increase in one-standard deviation. (L) OR corresponds to a one-year increase in pack-
years. The most significant meta analysis P-value is marked in red (DNAm logA1C), followed by hot pink (DNAm PAI1) and blue (DNAm 
logCRP), respectively. 
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Supplementary Figure 9. Meta analysis for associations with hypertension. Each panel reports a meta analysis forest plot based on 

Stouffer’s method to combine association results between disease free status and the DNAm-based biomarker (reported in the figure 

heading) across different strata, which are formed by racial group within cohort. (A, B) display the results for AgeAccelGrim2 and 
AgeAccelGrim. (C–L) display the results for scaled DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin 
(B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale 
of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years 
(PACKYRS). The sub-title of each panel reports the meta analysis p-value. Each row reports an odds ratio (OR) and a 95% confidence interval 
resulting from a (GEE) logistic regression in each stratum (defined by cohort racial group). (A, B) Each OR corresponds to a one-year increase 
in AgeAccel. (C–K) Each OR corresponds to an increase in one-standard deviation. (L) OR corresponds to a one-year increase in pack-years. 
The most significant meta analysis P-value is marked in red (DNAm PAI-1), followed by hot pink (DNAm logA1C) and blue (DNAm logCRP), 
respectively. 
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Supplementary Figure 10. Meta analysis for associations with disease free status. Each panel reports a meta analysis forest plot 

based on Stouffer’s method to combine association results between disease free status and the DNAm-based biomarker (reported in the 

figure heading) across different strata, which are formed by racial group within cohort. (A, B) display the results for AgeAccelGrim2 and 
AgeAccelGrim. (C–L) display the results for scaled DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin 
(B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale 
of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years 
(PACKYRS). The sub-title of each panel reports the meta analysis p-value. Each row reports an odds ratio (OR) and a 95% confidence interval 
resulting from a (GEE) logistic regression in each strata (defined by cohort racial/set group). (A, B) Each OR corresponds to a one-year 
increase in AgeAccel. (C–K) Each OR corresponds to an increase in one-standard deviation. (L) OR corresponds to a one-year increase in pack-
years. The most significant meta analysis P-value is marked in red (DNAm logCRP), followed by hot pink (DNAm PAI1) and blue 
(AgeAccelGrim2), respectively. 
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Supplementary Figure 11. Meta analysis for associations with physical functioning level. Each panel reports a meta analysis forest 

plot based on Stouffer’s method to combine association results between physical functioning levels (dependent variable) and the DNAm-

based biomarker (independent variable, reported in the figure heading) across different strata, which are formed by racial group within 
cohort. (A, B) display the results for AgeAccelGrim2 and AgeAccelGrim. (C–L) display the results for scaled DNAm based surrogate markers of 
(C) adrenomedullin (ADM), (D) beta-2 microglobulin (B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, 
(H) log scale of C reactive protein (CRP), (I) log scale of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor 
metalloproteinase 1 (TIMP-1) and (L) smoking pack-years (PACKYRS). The sub-title of each panel reports the meta analysis p-value. Each row 
reports a beta coefficient β and a 95% confidence interval resulting from a (linear-mixed) regression model in each stratum (defined by 
cohort racial group). (A, B) Each β corresponds to a one-year increase in AgeAccel. (C–K) Each β corresponds to an increase in one-standard 
deviation. (L) β corresponds to a one-year increase in pack-years. The most significant meta analysis P-value is marked in red (DNAm logCRP), 
followed by hot pink (AgeAccelGrim2) and blue (AgeAccelGrim), respectively. 
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Supplementary Figure 12. Meta analysis of age-at-menopause. Each panel reports a meta analysis forest plot for combining 
regression coefficients (slopes) between age-at-menopause in women and the DNAm based biomarker (reported in the figure heading) 
across different strata, which are formed by racial group within cohort. Age at menopause was treated as independent variable as a causal 
effect on DNAm variables except for the association with DNAm PACKYRS, in which the pack year variable (independent variable) was used to 
predict age at menopause (dependent variable). (A, B) display the results for AgeAccelGrim2 and AgeAccelGrim. (C–L) display the results for 
scaled DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin (B2M), (E) cystatin C (Cystatin C), (F) growth 
differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale of hemoglobin A1C, (J) plasminogen 
activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years (PACKYRS). The sub-title of each 
panel reports the meta analysis P-value. Each row reports a beta coefficient β and a 95% confidence interval resulting from a (linear-mixed) 
regression model in each stratum (defined by cohort racial group). Each β corresponds to a one-year late of age at menopause except for the 
regression analysis with respect to DNAm PACKYRS, in which β corresponds to a one-year increase in pack years. The most significant meta 
analysis P-value is marked in red (AgeaccelGrim2), followed by hot pink (AgeAccelGrim) and blue (DNAm PACKYRS), respectively. 
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Supplementary Figure 13. Meta cross sectional correlations between DNAm biomarkers and lifestyle factors. Robust 

correlation coefficients (biweight midcorrelation [44]) between 1) AgeAccelGrim2, AgeAccelGrim, and ten age-adjusted underlying DNAm-
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based surrogate biomarkers underlying DNAmGrimAge2, and 2) up to 61variables including 27 self-reported diet, 9 dietary biomarkers, 19 
clinically relevant measurements related to vital signs, metabolic traits, inflammatory markers, cognitive function, lung function, central 
adiposity and leukocyte telomere length, and 6 life style factors including hand grip. Analysis was stratified by (A) Males and (B) Females, 
respectively. The y-axis lists lifestyle factor in the format of name (sample size), followed by a bar plot denoting number of studies. Variables 
are arranged by category displayed on the right annotation. The x-axis lists AgeAccelGrim2, AgeAccelGrim, followed by DNAm variables. The 
first few DNAm variables (log CRP, log A1C, PAI-1, smoking pack years) show strong correlation with the lifestyle factors in overall. Each cell 
presents meta bicor estimates and P-value, provided P<0.1. The color gradient is based on -log10 P-values times sign of bicor. P-values are 
unadjusted.  
 

 
 

Supplementary Figure 14. Correlation analysis of chronological age versus CT-scan fatty liver and adipose tissue density in 
the FHS. We present the scatter plots of chronological age at computed tomography (CT) scan (x-axis) versus CT-scan derived measures in 

the FHS. The CT-scan measures included attenuation in (A, B) liver, (C, D) spleen, (E, F) paraspinal muscle, (G–J) subcutaneous adipose tissue 
(SAT) and (K–N) visceral adipose tissue (VAT). (A–F, I, J, M, N) are in Hounsfield (HU) unit, obtained from a linear transformation of 
attenuation coefficients. (G, H, K, L) are measures of volume in units of cm3. 
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Supplementary Figure 15. Measures of blood cell composition versus DNAm based biomarkers. Each panel  reports how the 

respective DNAm based biomarker (heading) relates to 10 imputed measures of blood cell counts. (A, B) display the results for 
AgeAccelGrim2 and AgeAccelGrim. (C–L) display the results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), 
(D) beta-2 microglobulin (B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive 
protein (CRP), (I) log scale of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) 
and (L) smoking pack-years (PACKYRS). The height of each bar corresponding to the statistical significance level (meta analysis p-value) of an 
association test between the blood cell measure and the age-adjusted DNAm biomarker. More precisely, the y-axis presents the meta 
analysis estimates of the Pearson correlation coefficients. The numbers displayed on top of each bar are minus logarithm (base 10) 
transformed meta P values. The title is marked by red if any absolute correlation >0.25. The association analysis is not confounded by 
chronological age because we used age adjusted DNAm based biomarkers. The fixed effects meta analysis was performed across the 
validation study sets (N=11672): FHS test, WHI BA23, JHS, InCHIANTI, BLSA, LBC21, LBC36 and NAS. Abbreviations for cell counts are listed in 
the following: nature killer (NK), monocyte (MONO) and granulocyte (Gran), CD8pCD28nCD45Ran (CD8.ex for exhausted cytotoxic T cells), 
and plasma blast (PB). The blood cell counts were imputed based on DNA methylation levels as described in [40, 42] and the Supplementary 
Methods section (above). 
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Supplementary Figure 16. Meta analysis forest plots for predicting time-to-death adjusted for blood cell composition. Each 

panel reports a meta analysis forest plot for combining hazard ratios predicting time-to-death based on a DNAm based biomarker (reported 
in the figure heading) across different strata formed by racial group within cohort and set within LBC36. Here we re-conducted the survival 
analysis as listed in Figure 2 and adjusted additional 7 imputed blood cell counts: CD8 naïve, CD8pCD28nCD45Ran, plasma blasts, CD4+ T, 
nature killer cells, monocytes and granulocytes. (A, B) display the results for AgeAccelGrim2 and AgeAccelGrim. Each row reports a hazard 
ratio (for time-to-death) and a 95% confidence interval resulting from a Cox regression model in each of 15 strata. (C–L) display the results for 
(age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin (B2M), (E) cystatin C (Cystatin C), (F) 
growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale of hemoglobin A1C, (J) plasminogen 
activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years (PACKYRS). The sub-title of each 
panel reports the meta analysis P-value. (A, B) Each hazard ratio (HR) corresponds to a one-year increase in AgeAccel. (C–K) Each hazard ratio 
corresponds to an increase in one-standard deviation. (L) Hazard ratios correspond to a one-year increase in pack-years. The most significant 
meta analysis P-value is marked in red (AgeAccelGrim2), followed by hot pink (AgeAccelGrim) and blue (DNAm PACKYRS), respectively. 



www.aging-us.com 9533 AGING 

 
 

Supplementary Figure 17. Meta analysis forest plots for predicting time-to- coronary heart disease adjusted for blood cell 
composition. Each panel reports a meta analysis forest plot for combining hazard ratios predicting time-to-coronary heart disease (CHR) 

based on a DNAm based biomarker (reported in the figure heading) across different strata formed by racial group within cohort and set 
within LBC36. Here we re-conducted the survival analysis as listed in Figure 4 and adjusted additional 7 imputed blood cell counts: CD8 naïve, 
CD8pCD28nCD45Ran, plasma blasts, CD4+ T, natural killer cells, monocytes and granulocytes. (A, B) Results for AgeAccelGrim2 and 
AgeAccelGrim. Each row reports a hazard ratio (for time-to-CHD) and a 95% confidence interval resulting from a Cox regression model in each 
strata. (C–L) display the results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), (D) beta-2 microglobulin 
(B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive protein (CRP), (I) log scale 
of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) and (L) smoking pack-years 
(PACKYRS). The sub-title of each panel reports the meta analysis P-value. (A, B) Each hazard ratio (HR) corresponds to a one-year increase in 
AgeAccel. (C–K) Each hazard ratio corresponds to an increase in one-standard deviation. (L) Hazard ratios correspond to a one-year increase 
in pack-years. The most significant meta analysis P-value is marked in red (AgeAccelGrim2), followed by hot pink (AgeAccelGrim) and blue 
(DNAm logA1C), respectively. 
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Supplementary Figure 18. Measures of blood cell composition versus DNAm based biomarkers in males. Each panel reports 

how the respective DNAm based biomarker (heading) relates to 10 imputed measures of blood cell counts. (A, B) display the results for 
AgeAccelGrim2 and AgeAccelGrim. (C–L) display the results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), 
(D) beta-2 microglobulin (B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive 
protein (CRP), (I) log scale of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) 
and (L) smoking pack-years (PACKYRS). The height of each bar corresponding to the statistical significance level (meta analysis p-value) of an 
association test between the blood cell measure and the age-adjusted DNAm biomarker. More precisely, the y-axis presents the meta 
analysis estimates of the Pearson correlation coefficients. The numbers displayed on top of each bar are minus logarithm (base 10) 
transformed meta P values. The title is marked by red if any absolute correlation >0.25. The association analysis is not confounded by 
chronological age because we used age adjusted DNAm based biomarkers. The fixed effects meta analysis was performed on males only 
across the validation study sets (N=5153): FHS test, JHS, InCHIANTI, BLSA, LBC21, LBC36 and NAS. Abbreviations for cell counts are listed in 
the following: nature killer (NK), monocyte (MONO) and granulocyte (Gran), CD8pCD28nCD45Ran (CD8.ex for exhausted cytotoxic T cells), 
and plasma blast (PB). The blood cell counts were imputed based on DNA methylation levels as described in [40, 42] and the Supplementary 
Methods section. 
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Supplementary Figure 19. Measures of blood cell composition versus DNAm based biomarkers in females. Each panel reports 

how the respective DNAm based biomarker (heading) relates to 10 imputed measures of blood cell counts. (A, B) display the results for 
AgeAccelGrim2 and AgeAccelGrim. (C–L) display the results for (age-adjusted) DNAm based surrogate markers of (C) adrenomedullin (ADM), 
(D) beta-2 microglobulin (B2M), (E) cystatin C (Cystatin C), (F) growth differentiation factor 15 (GDF-15), (G) leptin, (H) log scale of C reactive 
protein (CRP), (I) log scale of hemoglobin A1C, (J) plasminogen activation inhibitor 1 (PAI-1), (K) tissue inhibitor metalloproteinase 1 (TIMP-1) 
and (L) smoking pack-years (PACKYRS). The height of each bar corresponding to the statistical significance level (meta analysis p-value) of an 
association test between the blood cell measure and the age-adjusted DNAm biomarker. More precisely, the y-axis presents the meta 
analysis estimates of the Pearson correlation coefficients. The numbers displayed on top of each bar are minus logarithm (base 10) 
transformed meta P values. The title is marked by red if any absolute correlation >0.25. The association analysis is not confounded by 
chronological age because we used age adjusted DNAm based biomarkers. The fixed effects meta analysis was performed on females only 
across the validation study sets (N=6519): FHS test, WHI BA23, JHS, InCHIANTI, BLSA, LBC21, and LBC36. Abbreviations for cell counts are 
listed in the following: nature killer (NK), monocyte (MONO) and granulocyte (Gran), CD8pCD28nCD45Ran (CD8.ex for exhausted cytotoxic T 
cells), and plasma blast (PB). The blood cell counts were imputed based on DNA methylation levels as described in [40, 42] and the 
Supplementary Methods section. 
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Supplementary Figure 20. Applying GrimAge clocks on young people in Jackson Heart Study. We evaluated our GrimAge clocks 
on the young population (age <40, n=173 with 62% females) in Jackson Heart Study (JHS) cohort. (A–F) present the assessments for (A) 
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correlation between chronological age and DNAmGrimAge2 and (B–F) associations between AgeAccelGrim2 with log2 C-reactive protein, 
log2 triglyceride, body mass index (BMI), log2 (alcohol assumption +1), and smoking status (0=never, 1=past, and 2=current). For (B–E) we 
report the P value (P.reg) from linear regression analysis, Pearson correlation estimate and P value. (F) reports the P value (P.reg) from linear 
regression analysis and the p-value of a non-parametric group comparison test (Kruskal-Wallis). The y-axis of the bar plot depicts the mean 
and one standard error. For (B–D) linear regression analysis was performed for outcome measures (as dependent variable) on 
AgeAccelGrim2 (as independent variable), adjusted for chronological age and gender. For (E, F) linear regression analysis was performed for 
AgeAccelGrim2 (as dependent variable) on life style variable (as independent variable), adjusted for chronological age and gender. The 
number under each bar presents number of individuals at each racial group. The lower (G–L) present the same assessments for 
DNAmGrimAge and AgeAccelGrim. 
 

 
 

Supplementary Figure 21. Correlation analysis of DNAmGrimAge(2) versus chronological age in NGHS mothers . We present 
the scatter plots of chronological age versus (A) DNAmGrimAge2, and (B) DNAmGrimAge estimated in methylation array profiled in saliva 
samples from 432 mothers in NGHS. Each dot represents an individual sample colored based on ethnic/racial groups: White (n=218) and 
African American (n=214). The title of each panel repot the median of absolute error in units of years. The Pearson correlation coefficient 
(cor) and a corresponding correlation test p-value are reported at each panel. 



www.aging-us.com 9538 AGING 

 
 

Supplementary Figure 22. Polygenic risk score analysis using WHI cohort. Polygenic risk score analysis (PRS) was applied to the 

women with European ancestry from (A) WHI BA23 and (B) EMPC cohorts, respectively. We calculate the proportion of the variation in 
AgeAccelGrim/AgeAccelGrim2 that can be explained by PRS at SNP P values thresholds set at <5.0e-08,0.01,0.05,0.1,0.5, and 1. The y-axis 
displays the proportion in percentage (%) and the x-axis displays different thresholds of P values. The proportions (in percentage %) are listed 
on the top of each bar.  
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Supplementary Figure 23. Epigenome-wide association study (EWAS) for mortality related traits. Meta-analysis p-value (-log 

base 10 transformed) versus chromosomal location (x-axis) according to human genome assembly 19 (hg19) in (A), linear regression of 
AgeAccelGrim2, (B) linear regression of AgeAccelGrim, (C) Model I: Cox regression of time-to-death adjusted for age, gender, and batch effect 
(D) Model II: Cox regression of time-to-death adjusted for age, gender, batch effect, and smoking pack-years (or smoking status) and (E) 
Model III : Cox regression of time-to-death adjusted for age, gender, batch effect, and 7 imputed blood cell counts: CD8 naïve, 
CD8pCD28nCD45Ran, plasma blasts, CD4+ T, nature killer cells, monocytes and granulocytes. In (A, B) age acceleration of GrimAge clocks are 
increasing/decreasing with the methylation levels of the CpGs in the top/bottom panes. In (C, D) the hazard ratios of time-to-death are 
increasing/decreasing with the methylation levels of the CpGs in the top/bottom panes. Red dashed horizontal lines denote P at 1.0E-07. 
Gene names are annotated for the top 30 CpGs with positive and negative associations, respectively. CpGs are labeled by adjacent genes with 
the most significant one marked in bold in both top and bottom panes. 
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Supplementary Figure 24. Correlation between EWAS of age acceleration of GrimAge clocks and EWAS of time-to-death. 
Following the meta-analysis displayed in Supplementary Figure 23, the top panels display the meta Z scores from the EWAS of AgeAccelGrim2 
on x-axis versus the meta Z scores from the EWAS of time-to-death based on Model I (A), Model II (B) and Model III (C) on y-axis. The bottom 
panels display the meta Z scores from the EWAS of AgeAccelGrim on x-axis versus the meta Z scores from the EWAS of time-to-death based 
on Model I (D), Model II (E) and Model III (F) on y-axis. Each dot corresponds to a CpG. Labels are provided for the top 10 CpGs in quadrant I 
and III, respectively, according to the product of Z scores in x and y axis. The title lists the Pearson correlation coefficient and corresponding 
nominal (unadjusted) two-sided correlation test P-value. 

 

 
 

Supplementary Figure 25. Epigenome-wide association study (EWAS) for time-to-coronary heart disease. Meta-analysis p-value 

(-log base 10 transformed) versus chromosomal location (x-axis) according to human genome assembly 19 (hg19). (A) Model I: Cox regression 
of time-to-coronary heart disease (CHD) adjusted for age, gender, and batch effect (B) Model II: Cox regression of time-to-CHD adjusted for 
age, gender, batch effect, and smoking pack-years (or smoking status) and (C) Model III : Cox regression of time-to-CHD adjusted for age, 
gender, batch effect, and 7 imputed blood cell counts: CD8 naïve, CD8pCD28nCD45Ran, plasma blasts, CD4+ T, nature killer cells, monocytes 
and granulocytes. At each panel, the hazard ratios of time-to-CHD are increasing/decreasing with the methylation levels of the CpGs in the 
top/bottom panes. Red dashed horizontal lines denote P at 1.0E-07. Gene names are annotated for the top 30 CpGs with positive and 
negative associations, respectively. CpGs are labeled by adjacent genes with the most significant one marked in bold in both top and bottom. 
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Supplementary Figure 26. Correlation between EWAS of age acceleration of GrimAge clocks and EWAS of time-to-coronary 
heart disease. Following the meta-analysis displayed in Supplementary Figures 23, 25, the top panels display the meta Z scores from the 
EWAS of AgeAccelGrim2 on x-axis versus the meta Z scores from the EWAS of time-to-coronary heart disease (CHD) based on Model I (A), 
Model II (B) and Model III (C) on y-axis. The bottom panels display the meta Z scores from the EWAS of AgeAccelGrim on x-axis versus the 
meta Z scores from the EWAS of time-to-CHD based on Model I (D), Model II (E) and Model III (F) on y-axis. Each dot corresponds to a CpG. 
Labels are provided for the top 10 CpGs in quadrant I and III, respectively, according to the product of Z scores in x and y axis. The title lists 
the Pearson correlation coefficient and corresponding nominal (unadjusted) two-sided correlation test P-value. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2.2–2.13, 4.1–4.3. 

 

Supplementary Table 1.1. GrimAge2 stage 1: DNAm-based surrogate biomarkers of plasma proteins and smoking 
pack-years. 

Variable 
Num 

CpGs 

correlation with 

biomarker in training data 

correlation with age 

in training data 

correlation with biomarker 

in test data 

correlation with age in 

test data 
Exam 

adm 186 0.653693573174295 0.625525905864977 0.381687444097942 0.639017395854806 exam 7 

B2M 91 0.617158399278239 0.825073799472286 0.426041190563136 0.848465319002703 exam 7 

cd56 607 0.86375831161774 0.172605242662232 0.361637489604755 0.170522481815106 exam 7 

Cystatin_C 87 0.580806669506421 0.812098347065102 0.392285471797308 0.827175556961344 exam 7 

EFEMP1 57 0.589686685159107 0.719151039155843 0.412150311207909 0.872303871874163 exam 7 

GDF_15 137 0.737468260449462 0.71492538275353 0.534804728797616 0.806519824631994 exam 7 

leptin 187 0.681181180674115 0.0581128431496463 0.352344410014838 0.0514309778202585 exam 7 

log.A1C 86 0.525131694119941 0.31582295531732 0.339957448360379 0.26677461707641 exam 8 

log.CRP 132 0.569330798879011 0.272903575140915 0.476839364307574 0.261805340722653 exam 8 

PACKYRS 172 0.785 0.17 0.66 0.13 exam 8 

pai_1 211 0.691865627259714 0.190154508514923 0.362625398311644 0.16187195108164 exam 7 

TIMP_1 42 0.431107933469501 0.917716575776463 0.350384409802195 0.898106800656296 exam 7 

 

Supplementary Table 1.2. GrimAge2: Distribution of DNAm 
proteins based on FHS training dataset. 

Variable mean sd 

DNAmADM 337.443763330646 26.8386567435564 

DNAmB2M 1633051.85941816 166877.416872265 

DNAmCystatinC 591129.33954085 41113.1707392004 

DNAmGDF15 678.704154283819 175.497882136521 

DNAmLeptin 8360.49439150999 4368.05918344219 

DNAmlogA1C 1.73769184385078 0.03209281978435 

DNAmlogCRP 0.447021928835783 0.439141130146429 

DNAmPAI1 19804.6891037806 3325.68848188053 

DNAmTIMP1 34348.2946807127 1548.59018754715 

 

  



www.aging-us.com 9543 AGING 

Supplementary Table 2.1. Description of variable availability for Diet, clinically relevant measurements, and life style 
factors. 

Order Category Var NumData n FHS WHI JHS InCHIANTI BLSA LBC21 LBC36 NAS 

1 Diet log2(Total energy) 2 4221  x     x  

2 Diet Carbohydrate 2 4222  x     x  

3 Diet Protein 2 4221  x     x  

4 Diet Fat 2 4221  x     x  

5 Diet log2(1+Red meat) 3 4873 x x     x  

6 Diet log2(1+Poultry) 3 4832 x x     x  

7 Diet log2(1+Fish) 3 4873 x x     x  

8 Diet log2(1+Dairy) 3 4868 x x     x  

9 Diet log2(1+Whole grains) 2 4108 x x       

10 Diet log2(1+Nuts) 1 3463  x       

11 Diet log2(Fruits) 3 4864 x x     x  

12 Diet log2(Vegetables) 3 4864 x x     x  

14 Diet log(OMEGA3) 1 643 x        

15 Diet log(VitaminA) 1 651 x        

16 Diet log(VitaminC) 2 1409 x      x  

17 Diet log(VitaminB6) 2 1407 x      x  

18 Diet log(VitaminE) 2 1397 x      x  

19 Diet log(Selenium) 2 1401 x      x  

20 Diet log(Iron) 1 633 x        

21 Diet log(Zinc) 2 1404 x      x  

22 Diet log(Calcium) 2 1407 x      x  

23 Diet log(FolicAcid) 2 1407 x      x  

24 Diet log(VitaminD) 2 1397 x      x  

25 Diet log(Copper) 1 643 x        

26 Diet log(BrewYeast) 1 643 x        

27 Diet log(BetaCaroteneSup) 1 645 x        

28 Diet log(Magnesium) 1 641 x        

29 Dietary 

Biomarkers 

Retinol 1 2053  x       

30 Dietary 

Biomarkers 

Mean carotenoids 1 2052  x       

31 Dietary 

Biomarkers 

Lycopene 1 2053  x       

32 Dietary 

Biomarkers 

log2(alpha-Carotene) 1 2053  x       

33 Dietary 

Biomarkers 

log2(beta-Carotene) 1 2052  x       

34 Dietary 

Biomarkers 

log2(Lutein+Zeaxanthin) 1 2053  x       

35 Dietary 

Biomarkers 

log2(beta-Cryptoxanthin) 1 2053  x       

36 Dietary 

Biomarkers 

log2(alpha-Tocopherol) 1 2053  x       

37 Dietary 

Biomarkers 

log2(gamma-Tocopherol) 1 2053  x       

38 Measurements log(A1C) 1 711 x        

39 Measurements log2(C-reactive protein) 8 11281 x x x x x x x x 

40 Measurements log2(Insulin) 3 5912  x  x    x 

41 Measurements log2(Glucose) 5 7392 x x  x x   x 

42 Measurements log2(Triglyceride) 6 9847 x x x x x   x 

43 Measurements Total cholesterol 8 13002 x x x x x x x x 

44 Measurements LDL cholesterol 4 7688  x x x x    

45 Measurements HDL cholesterol 6 9844 x x x x x   x 

46 Measurements log2(Creatinine) 3 4770 x x  x     
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47 Measurements log2(IL6) 3 3185    x x   x 

48 Measurements log2(TNFA) 3 2621    x x   x 

49 Measurements log2(Urine Creatinine) 3 1793 x  x x     

50 Measurements FEV1 5 5836 x    x x x x 

52 Measurements Systolic blood pressure 6 11980 x x x x   x x 

53 Measurements Diastolic blood pressure 6 11980 x x x x   x x 

54 Measurements log2(Waist / hip ratio) 3 5887 x x      x 

55 Measurements BMI 8 13420 x x x x x x x x 

56 Measurements MMSE 6 7017 x x  x x x x  

57 Measurements Telomere length 3 2193 x x      x 

58 Life style Education 8 13312 x x x x x x x x 

59 Life style Income 3 6687  x x     x 

60 Life style Hand grip 5 5962 x   x x x x  

61 Life style log2(1+Exercise) 4 7278  x x  x   x 

62 Life style Current smoker 6 10247 x x   x x x x 

63 Life style log2(1+Alcohol) 5 8050 x x x x   x  

 

Supplementary Table 2.2. AgeAccelGrim:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.3. AgeAccelGrim2:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.4. DNAmADMAdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.5. DNAmB2MAdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.6. DNAmCystatinCAdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.7. DNAmGDF15AdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.8. DNAmLeptinAdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.9. DNAmlogA1CAdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.10. DNAmlogCRPAdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.11. DNAmPACKYRSAdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.12. DNAmPAI1AdjAge:Diet, clinically relevant measurements, and life style factors. 

 

Supplementary Table 2.13. DNAmTIMP1AdjAge:Diet, clinically relevant measurements, and life style factors. 
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Supplementary Table 3.1. Multivariate regression analysis of AgeAccelGrim2 on CT-scan derived fatty liver and 
adipose tissue density in FHS. 

Model Y X Beta SE P 

I AgeAccelGrim2 

LIVER -0.0725552450066406 0.0157640950628678 0.0000052462134978876 

SPLEEN -0.0641606466770295 0.0314759794731426 0.0420133477051177 

MUSCLE -0.0299140728046785 0.0217670903459476 0.1699445683868 

Female -2.05039351096843 0.291933038291549 6.7760496877205E-12 

BMI 0.0318418769471347 0.0376401403591607 0.39796528544538 

Age at CT scan -0.00992439979265223 0.0185602226136875 0.593075731831915 

II AgeAccelGrim2 

SAT_CM3 0.0001175063321704 0.000168522663672719 0.485902386408158 

VAT_CM3 0.000648438884697252 0.000143475978795086 0.0000074714159508801 

Female -1.79179445483356 0.377885807483643 2.65222492382836E-06 

BMI 0.0423208062396213 0.0516700617304267 0.413078749384451 

Age at CT scan -0.0137130451222446 0.0166979368071955 0.411835229253499 

III AgeAccelGrim2 

SAT_CM3 0.000213266609903971 0.000185658369273936 0.251137868322493 

SAT_HU 0.0518858581680036 0.0496768333623689 0.296691687990567 

VAT_CM3 0.000696277354148539 0.000225770022520319 0.00213665798620851 

VAT_HU -0.00215892686800074 0.0479969355962227 0.964137881257326 

Female -1.66540746493659 0.393922098195233 0.000027303482094446 

BMI 0.026757674678966 0.053215234920054 0.615276396289478 

Age at CT scan -0.0180851191986976 0.0171297109908854 0.291498115855943 

IV AgeAccelGrim2 

LIVER -0.0626818541708387 0.0170574563176948 0.00026328300052734 

SPLEEN -0.054951643047811 0.0333075558382417 0.0995944208257338 

MUSCLE -0.0326249567509138 0.022474793765515 0.147220950242196 

SAT_CM3 -0.0000979759784997684 0.000188785005675917 0.60399856899 

VAT_CM3 0.000374339356189572 0.00016747464759595 0.0258363385051958 

Female -1.46955858341664 0.423578131683179 0.000565817215577898 

BMI 0.0104187753954827 0.0559296045453909 0.852296337315191 

Age at CT scan -0.0232044991761183 0.0190935020988578 0.224810675512135 
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Supplementary Table 3.2. Multivariate regression analysis of AgeAccelGrim on CT-scan derived fatty liver and 
adipose tissue density in FHS. 

Model Y X Beta SE P 

I AgeAccelGrim 

LIVER -0.0546693939781844 0.0142894416560176 0.000146089526183766 

SPLEEN -0.0730238668554368 0.0285204177186902 0.0107352358788065 

MUSCLE -0.0254844566773724 0.0197229816192019 0.196887362219345 

Female -2.68970443896693 0.26432393954252 2.61572412382749E-22 

BMI 0.0105132397941722 0.0341221556735657 0.758124605518281 

Age at CT scan -0.00651440056132528 0.0168534212592124 0.699259606048942 

II AgeAccelGrim 

SAT_CM3 0.000157670637968458 0.000153593630455081 0.305049536220618 

VAT_CM3 0.000498830492411192 0.000130756509830738 0.00015034122401784 

Female -2.58845270816718 0.344355524447278 2.0572998267966E-13 

BMI 0.0229333865618026 0.0470891168061544 0.626421646578195 

Age at CT scan -0.00818237393770103 0.0152280190294081 0.591243652428715 

III AgeAccelGrim 

SAT_CM3 0.000220531127826131 0.00016921748252493 0.192994953803833 

SAT_HU 0.021640035705448 0.0452770463366346 0.632862767943247 

VAT_CM3 0.000635656503675089 0.000205758533910126 0.00209935350529376 

VAT_HU 0.0272304577727766 0.0437427061130195 0.533841472589256 

Female -2.471149627248 0.358947669020785 1.47274397318319E-11 

BMI 0.0128250099228703 0.0484980890476067 0.791529375255242 

Age at CT scan -0.0120919656881404 0.0156250044919964 0.439304797792829 

IV AgeAccelGrim 

LIVER -0.0475308664009919 0.0154590687712233 0.00222060338431433 

SPLEEN -0.0655966151283918 0.0301814115886675 0.0302088092527874 

MUSCLE -0.0288585724605927 0.0203601148345682 0.156974546502247 

SAT_CM3 -0.0000645277569592293 0.000171118131252568 0.706260014989643 

VAT_CM3 0.000267511621204019 0.000151750496110608 0.0785266023805075 

Female -2.27613778068489 0.383729334000118 5.53838746676851E-09 

BMI -0.00329955058654534 0.0506937234630215 0.948129478492866 

Age at CT scan -0.0180955318334558 0.0173395230458529 0.297164756461088 
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Supplementary Table 3.3. Multivariate regression analysis of DNAmPAI1AdjAge on CT-scan derived fatty liver and 
adipose tissue density in FHS. 

Model Y X Beta SE P 

I DNAmPAI1AdjAge 

LIVER -93.1160498683119 11.1566433936582 6.34802166163233E-16 

SPLEEN -9.46221758578595 22.3749459732659 0.672547175092448 

MUSCLE 1.50197350069059 15.4690268717859 0.922687791190797 

Female -1548.14293098737 209.468920594888 5.83551954372997E-13 

BMI9 58.241260706491 26.6190276309504 0.0291154380846502 

Age at CT scan 5.85774251435321 12.8861722223888 0.649603394362432 

II DNAmPAI1AdjAge 

SAT_CM3 0.278474449545414 0.11761948706386 0.0182212234117412 

VAT_CM3 0.764719539974853 0.100362509401461 9.99534455778813E-14 

Female -1185.68188545405 265.106918280431 9.25250195939522E-06 

BMI9 -18.1112674638562 36.1673090704662 0.616721540615711 

Age at CT scan -12.6372328432492 11.4360903315457 0.269589868759395 

III DNAmPAI1AdjAge 

SAT_CM3 0.348479480147811 0.129430579607252 0.00729296406555991 

SAT_HU 65.0792546734262 34.6363839191448 0.0607413584402037 

VAT_CM3 0.569510500269957 0.157782337342776 0.000332578216044617 

VAT_HU -64.1739654035311 33.535306514281 0.0561461426188171 

Female -1171.47467020196 276.165889678789 0.0000256828920671473 

BMI9 -29.7270181063069 37.1901222248041 0.424419520489371 

Age at CT scan -13.6131465698224 11.7440482420606 0.246857321082752 

IV DNAmPAI1AdjAge 

LIVER -73.0814526252046 11.8486649492233 1.40977703397388E-09 

SPLEEN 13.2395901044582 23.1746825945454 0.568051069566604 

MUSCLE -1.16768020363668 15.668413693673 0.940622293606083 

SAT_CM3 0.305262987704478 0.130871772484245 0.0200606974925636 

VAT_CM3 0.631192083678622 0.116514425102993 9.34151169101383E-08 

Female -1063.2913100898 295.19219180069 0.000346655934718117 

BMI9 -59.0176129450417 38.8452015553271 0.129306031677585 

Age at CT scan -7.74139415834141 13.0351867068401 0.55285274549796 
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Supplementary Table 3.4. Multivariate regression analysis of DNAmlogCRPAdjAge on CT-scan derived fatty liver and 
adipose tissue density in FHS. 

Model Y X Beta SE P 

I DNAmlogCRPAdjAge 

LIVER -0.00780143813357888 0.00135865529996456 1.58923063186677E-08 

SPLEEN 0.00184718877057261 0.00272140514411132 0.497588935065418 

MUSCLE -0.00110300818926791 0.00188190714149873 0.558053651258652 

Female 0.203304682834499 0.0254062027717669 7.96441025158663E-15 

BMI 0.0134030663180608 0.00324206486118264 0.0000415110836793144 

Age at CT scan -0.000982251385415205 0.00157747554513246 0.533771363011607 

II DNAmlogCRPAdjAge 

SAT_CM3 0.0000200597481523092 0.0000145217529854608 0.167683781857688 

VAT_CM3 0.0000549319489027089 0.000012382355443839 0.0000108915405143277 

Female 0.21061338971306 0.0326729016255463 2.3624915827945E-10 

BMI 0.00711705268065337 0.00446049554545465 0.111111269960812 

Age at CT scan -0.00174607502539682 0.00142077528165995 0.219569630405629 

III DNAmlogCRPAdjAge 

SAT_CM3 0.0000320524594988421 0.0000159819165804588 0.0453555604941175 

SAT_HU 0.00851327102506476 0.00427687493696753 0.0469874908294514 

VAT_CM3 0.0000437656295960282 0.0000194657512869669 0.024918505461753 

VAT_HU -0.00494246127130323 0.00413771126527481 0.232760084235606 

Female 0.220732514611499 0.0340409966410324 1.87007287920982E-10 

BMI 0.00514539586289426 0.00458830461081485 0.262561906328698 

Age at CT scan -0.00213946455128356 0.00145732380758355 0.14260977827154 

IV DNAmlogCRPAdjAge 

LIVER -0.00652565473064705 0.00146822997100933 0.0000108119617565713 

SPLEEN 0.00354378934615982 0.00287020416541773 0.217517443301476 

MUSCLE -0.000904409619672705 0.00193971730671087 0.641229585826029 

SAT_CM3 0.0000201274044847075 0.0000162298017621343 0.215489821931786 

VAT_CM3 0.0000364285045369923 0.0000144333453528689 0.0119082147047212 

Female 0.224349787525412 0.0365489444612348 1.67705762083865E-09 

BMI 0.00540326213183127 0.00481296824459281 0.26211587010049 

Age at CT scan -0.00145663212648968 0.00162319617077255 0.369936859405074 
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Supplementary Table 3.5. Multivariate regression analysis of DNAmlogA1CAdjAge on CT-scan derived fatty liver and 
adipose tissue density in FHS. 

Model Y X Beta SE P 

I DNAmlogA1CAdjAge 

LIVER -0.000886026145980581 0.000104515193453869 2.36931537104274E-16 

SPLEEN 0.0000539545090005328 0.000208681172918216 0.79608440974091 

MUSCLE -0.0000863308257918765 0.000144312594205194 0.549951938534319 

Female 0.00405851826142004 0.00193541896672057 0.0364766380341877 

BMI 0.000397450587047914 0.000249553164556365 0.111844292206913 

Age at CT scan 0.0000479742781959997 0.000123061465613299 0.696813893289029 

II DNAmlogA1CAdjAge 

SAT_CM3 -6.95761606082695E-07 1.10853729924978E-06 0.530479425152961 

VAT_CM3 7.58779757829765E-06 9.44120867660531E-07 4.92559999606763E-15 

Female 0.0126329755006024 0.00248770020810905 5.09585747438412E-07 

BMI 0.000287382014295494 0.000340019110863444 0.398340159071714 

Age at CT scan -0.000136011233502378 0.000109502327109008 0.214691163753782 

III DNAmlogA1CAdjAge 

SAT_CM3 8.48946007625696E-07 1.21022613490267E-06 0.483278625204431 

SAT_HU 0.00136184271902832 0.000323838785763361 0.0000300728268376565 

VAT_CM3 3.91453755062786E-06 1.47226301375199E-06 0.00805090738099513 

VAT_HU -0.00124305231457744 0.000312986705597368 0.000080110639284532 

Female 0.0131916675535521 0.0025704731474462 0.0000003883233966291 

BMI 0.0000308550730229477 0.000347028177090041 0.929181427163583 

Age at CT scan -0.000161614306873522 0.000111303689050094 0.147023550524075 

IV DNAmlogA1CAdjAge 

LIVER -0.000706010410787347 0.000111258710493928 4.89407595344815E-10 

SPLEEN 0.000130584499919972 0.000217298775464703 0.548143946031757 

MUSCLE -0.000100052075614054 0.000146674601482737 0.495462423372083 

SAT_CM3 -1.18094156504028E-06 1.23112588499746E-06 0.337893861513122 

VAT_CM3 6.02335217277869E-06 1.09265587636537E-06 5.62401973827812E-08 

Female 0.013255014929255 0.00276426806108236 2.13670536595381E-06 

BMI 0.0000148746940111846 0.000364766907404142 0.967488336247237 

Age at CT scan -0.000105767228089239 0.00012421602671623 0.394903441179087 

 

Supplementary Table 4.1. Association with blood cell composition. 

 

Supplementary Table 4.2. Association with blood cell composition in males. 

 

Supplementary Table 4.3. Association with blood cell composition in females. 


