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INTRODUCTION 
 

Aging is widely accepted as a major risk factor for 

many chronic diseases and resultant physiological 

decline leading to mortality [1]. Research on many 

fronts is revealing potential ways to postpone age-

related decline, maintain normal physiological 

function longer and improve healthspan. Some of the 

most promising research seeks to limit nutrient intake 

or increase daily fasting time as a means to improve 

healthspan in humans [2–4]. Still, these strategies 

will be difficult for most humans to adhere to in order 

to gain health benefits. Pharmacological agents offer 

a potential way to obtain the beneficial effects of 

nutrient limitation, but such compounds have yet to 

be identified although progress is encouraging 
[1, 5, 6]. 

 

We have identified a potential pharmacological agent, 

the natural product myriocin (Myr, ISP-1), that 
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ABSTRACT 
 

As the elderly population increases, chronic, age-associated diseases are challenging healthcare systems 
around the world. Nutrient limitation is well known to slow the aging process and improve health. 
Regrettably, practicing nutrient restriction to improve health is unachievable for most people. 
Alternatively, pharmacological strategies are being pursued including myriocin which increases lifespan in 
budding yeast. Myriocin impairs sphingolipid synthesis, resulting in lowered amino acid pools which 
promote entry into a quiescent, long-lived state. Here we present transcriptomic data during the first  
6 hours of drug treatment that improves our mechanistic understanding of the cellular response to 
myriocin and reveals a new role for ubiquitin in longevity. Previously we found that the methionine 
transporter Mup1 traffics to the plasma membrane normally in myriocin-treated cells but is not active and 
undergoes endocytic clearance. We now show that UBI4, a gene encoding stressed-induced ubiquitin, is 
vital for myriocin-enhanced lifespan. Furthermore, we show that Mup1 fused to a deubiquitinase domain 
impairs myriocin-enhanced longevity. Broader effects of myriocin treatment on ubiquitination are 
indicated by our finding of a significant increase in K63-linked ubiquitin polymers following myriocin 
treatment. Although proteostasis is broadly accepted as a pillar of aging, our finding that ubiquitination of 
an amino acid transporter promotes longevity in myriocin-treated cells is novel. Addressing the role of 
ubiquitination/deubiquitination in longevity has the potential to reveal new strategies and targets for 
promoting healthy aging. 
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increases chronological lifespan in budding yeasts 

(Saccharomyces cerevisiae) by more than two-fold [7]. 

Myr works, at least in part, by reducing the free pool of 

most amino acids similar to what amino acid restriction 

does [5, 8, 9]. Our interest in Myr stems from its target 

enzyme serine palmitoyltransferase (SPT), catalyzing 

the first and rate limiting step in sphingolipid 

biosynthesis in all eukaryotes [10–12]. In addition, Myr 

was first identified in a search for antibiotics [13] and 

anti-inflammatory drugs [14]. More recently, it has 

shown beneficial effects in treating age-associated 

diseases including diabetes, cancers, neurological and 

cardiovascular disorders [15–20] and other diseases 

including muscular dystrophies, cystic fibrosis and 

retinopathy [21–23]. 

 

Sphingolipids serve as both structural components of 

cellular membranes and as signal or regulatory 

molecules influencing many physiological processes, 

particularly in mammals [15, 24–26]. Because most de 

novo lipid biosynthesis begins in the endoplasmic 

reticulum and continues in the Golgi Apparatus before 

the terminal products are distributed to cellular 

membranes, Myr treatment has the potential to 

diminish or enhance a variety of processes. Our recent 

studies identified diminished processes that may foster 

longer lifespan: newly synthesized Mup1, the major 

high-affinity methionine (Met) transporter, trafficked 

normally to the plasma membrane (PM) but was 

inactive in drug-treated cells resulting in reduced Met 

uptake, starting after about 2 h of drug treatment, as 

the fraction of active Mup1 was diluted by cell growth 

and division. Moreover, Myr promoted endocytic 

clearance of Mup1, indicating that altered sphingolipid 

levels trigger remodeling of nutrient transporter 

composition at the PM [7]. Thus, post-translational 

effects are vital to Myr-induced down-sizing of amino 

acid pools. 

 

Previously we found that Myr treatment had large, 

global effects on transcription after 6–7 cell 

doublings [27]. In the present work, we examined 

mRNA levels during the initial stages of Myr 

treatment to construct an overview of transcriptional 

changes with the aim of identifying how long it takes 

cells to respond to drug treatment and to identify 

novel factors critical for Myr-enhanced lifespan. We 

find that transcription is strongly up-regulated 

starting after 4 h of Myr treatment when cells 

progress through a second cell division cycle. In 

addition, transcript data suggested a novel role for 

ubiquitin in lifespan and targeted studies identified 

ubiquitination of Mup1 as essential for Myr-enhanced 

longevity. Our transcriptomics data provide a 

valuable resource to better understand how myriocin 

treatment enhances longevity. 

RESULTS 
 

Four hours of myriocin treatment induce robust 

transcriptional changes 

 

To examine transcriptional changes induced by Myr 

treatment, we diluted stationary phase prototrophic 

BY4741 cells (50–60% of cells synchronized for first 

two cell cycles over a 6 h time frame [7]) into fresh 

culture medium (Time 0), with and without Myr 

treatment. Samples for analysis of mRNA abundance by 

RNA seq were taken at 1 h intervals over a 6 h time 

course (Figure 1A). The normalized RNA seq data for 

the time course contained transcripts, expressed as 

transcripts per million (TPM), mapped to 6198 genes, 

5169 of which were uniquely annotated and of 

sufficient signal intensity for subsequent analysis 

(Supplementary Table 1, Filter tab). Filtered data were 

analyzed by two-way ANOVA with a statistical cutoff 

of p = ≤ 0.01 to give a set of 4964 significant genes 

(Figure 1B). These were further sorted into drug (D), 

time (T), both time and drug (T&D) and Interactions (I) 

(Figure 1B, Euhler diagram), and assigned a p-value. 

Genes found to be significant in any of these three 

categories are referred to as differentially expressed 

(DEG). 

 

DEGs that change up or down over time were identified 

by using a ‘template assignment tool’ (MATERIALS 

AND METHODS, example in Figure 2A, center panel). 

Most DEGs (99.86%) were assigned to a template. For 

DEGs significant by Time (T), Drug (D), or both 

(T&D), post hoc analysis categorized each DEG into 

one of 11 different temporal patterns plus one with no 

temporal effect (Figure 1C, Supplementary Table 1 - 

Pattern Graph tab can be used to plot the pattern of any 

gene). Within each temporal pattern (other than ’00’) a 

gene was placed in one of two horizontal reflections 

(Figure 1C, columns ‘a’ or ‘b’). Three types of Drug 

effects are shown in each pattern (Figure 1C, Y-axis: 

light blue, black or orange curves) along with the 

number of genes in each category (see Legend for 

Figure 1C for more details). These 11 patterns explained 

the majority (77%) of all DEGs. Results of DEGs in 

significantly enriched patterns are shown as a heatmap 

and a graph for Vehicle and Myriocin treatments 

(Figure 1D, see Legend for details and pattern labels). A 

graph of any gene transcript across the 1–6 h time-

frame can be plotted using the Graph Reporter tab in 

Supplementary Table 1. The most significant GO terms 

enriched in these patterns are shown in Table 1 and a 

complete list of genes in each GO term is presented in 

Supplementary Table 2 (Webgestalt patterns combined 

tab). These GO terms primarily represent major 

processes, cellular compartments or molecular functions 

needed to drive cell growth and division such as 
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Figure 1. Summary of transcriptomics data. (A) Experimental Design- samples were taken every hour as indicated from vehicle (Veh) 

and myriocin (Myr) treated cultures. RNA was isolated and mRNA was quantified using RNA-seq. (B) Differentially expressed genes (DEGs)-
RNA-seq data were filtered to include well-annotated genes with sufficient signal intensity prior to statistical analysis. Two-way ANOVA 
(Time: 6 time points; Drug: two conditions- Veh and Myr) was applied. The ANOVA test produces 3 p-values for each gene, one for the main 
effect of time (T- black circle), one for the main effect of drug (D- red circle), and one for the ‘Interaction’ between Time and Drug (I- green 
circle; analyzed separately- see Figure 2). DEGs (p ≤ 0.01 on at least one of the three p-values) are shown. Because each DEG could be 
significant by 1-3 ANOVA p-values, data are displayed in a Euler diagram to indicate overlap. (C) For DEGs significant by Time (T), Drug (D), 
or both (T&D), post hoc analysis categorized each DEG into one of 11 different temporal patterns (00- no temporal effect; 01 and 05- 
changed at the first or last time point; 02–04- plateaus at intermediate time points; 06–09- spikes at intermediate time points; 10- linear 
change with time; for each temporal pattern other than ’00’, a gene could be assigned to one of two horizontal reflections- ‘a’ or ‘b’), and 
within each temporal pattern, one of three drug effects (increased by Myr- ↑ orange, decreased by Myr- ↓ blue, not changed by Myr- ↔ 
black) was defined. Numbers of genes assigned to each pattern are included on the right side of each pattern diagram (* significantly more 
DEGs than expected by chance; p ≤ 0.01, binomial test). (D) Results for each asterisked pattern from C are shown. On the left, heatmaps of 
standardized average signal at each time point for vehicle and myriocin groups for 5 representative DEGs are shown. On the right, the 
graphed standardized averages (± SD) for all genes assigned to each pattern are shown (scale bar at bottom). Pattern names are given by 
the Euler diagram region, then the temporal pattern # and ‘a’ or ‘b’ designation, followed by drug effect (in parentheses) and the number 
of genes assigned. All data for the 5169 RNA seq transcripts that passed filtering metrics are shown in Supplementary Table 1 along with 
the two-way ANOVA analysis results which can be used to sort for genes in each sector of the Euler diagram. 
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Table 1. Gene ontology overrepresentation analysis (Webgestalt) for the interaction group of the Euler diagram. 

Pattern GO ID Ont Description Tot Sig exp Ratio p-value FDR 
D

(↑
) 

GO:0006325 BP chromatin organization 343 50 22.26 2.25 2.12E-08 6.99E-06 

GO:0044427 CC chromosomal part 470 56 30.50 1.84 3.04E-06 2.92E-04 

GO:0051172 BP 
negative regulation of nitrogen compound metabolic 
process 

436 53 28.30 1.87 3.20E-06 2.92E-04 

GO:0140110 MF transcription regulator activity 261 37 16.94 2.18 3.54E-06 2.92E-04 

GO:0010629 BP negative regulation of gene expression 431 52 27.97 1.86 5.04E-06 3.33E-04 

GO:0006357 BP regulation of transcription by RNA polymerase II 453 53 29.40 1.80 1.01E-05 4.77E-04 

T
&

D
0

1
a(

↑
) 

GO:0000278 BP mitotic cell cycle 388 29 8.24 3.52 7.68E-10 1.27E-07 

GO:0048285 BP organelle fission 283 24 6.01 4.00 2.55E-09 2.80E-07 

GO:0007010 BP cytoskeleton organization 273 21 5.79 3.62 1.67E-07 1.10E-05 

GO:0000003 BP reproduction 474 28 10.06 2.78 2.94E-07 1.62E-05 

GO:0016817 MF hydrolase activity, acting on acid anhydrides 424 25 9.00 2.78 1.57E-06 5.75E-05 

GO:0044427 CC chromosomal part 470 26 9.98 2.61 3.10E-06 1.02E-04 

T
0

1
b

(↔
) 

GO:0022613 BP ribonucleoprotein complex biogenesis 494 50 25.30 1.98 1.14E-06 3.04E-04 

GO:0005730 CC nucleolus 283 34 14.50 2.35 1.84E-06 3.04E-04 

GO:0034660 BP ncRNA metabolic process 493 45 25.25 1.78 6.37E-05 0.00701 

GO:0032259 BP methylation 161 20 8.25 2.43 1.77E-04 0.014594 

GO:0140098 MF catalytic activity, acting on RNA 245 25 12.55 1.99 6.42E-04 0.037068 

GO:0016071 BP mRNA metabolic process 311 29 15.93 1.82 0.001047 0.043178 

T
&

D
0

1
b

(↑
) 

GO:0022613 BP ribonucleoprotein complex biogenesis 494 221 62.91 3.51 <1E-16 <1E-16 

GO:0034660 BP ncRNA metabolic process 493 215 62.78 3.42 <1E-16 <1E-16 

GO:0005654 CC nucleoplasm 365 111 46.48 2.39 <1E-16 <1E-16 

GO:0005730 CC nucleolus 283 161 36.04 4.47 <1E-16 <1E-16 

GO:0140098 MF catalytic activity, acting on RNA 245 99 31.20 3.17 <1E-16 <1E-16 

GO:0032259 BP methylation 161 68 20.50 3.32 <1E-16 <1E-16 

T&D02b(↑): N.S. 

T
&

D
0

4
a(

↑
) GO:0098798 CC mitochondrial protein complex 204 17 6.12 2.78 1.08E-04 0.035628 

GO:0005759 CC mitochondrial matrix 237 18 7.11 2.53 2.20E-04 0.036326 

T&D05a(↑): N.S. 

T
&

D
0

6
a 

(↑
) 

GO:0044445 CC cytosolic part 209 13 2.64 4.92 1.39E-06 4.59E-04 

GO:0005856 CC cytoskeleton 255 12 3.23 3.72 6.39E-05 0.007031 

GO:0044427 CC chromosomal part 470 16 5.95 2.69 1.68E-04 0.00958 

T
&

D
1

0
a(

↑
) 

GO:0016192 BP vesicle-mediated transport 432 92 48.58 1.89 1.69E-10 2.80E-08 

GO:0098805 CC whole membrane 455 91 51.16 1.78 6.79E-09 7.47E-07 

GO:0005794 CC Golgi apparatus 282 64 31.71 2.02 1.12E-08 9.28E-07 

GO:0031982 CC vesicle 279 62 31.37 1.98 4.54E-08 2.50E-06 

GO:0098796 CC membrane protein complex 320 67 35.98 1.86 1.46E-07 6.88E-06 

GO:0061919 BP process utilizing autophagic mechanism 194 42 21.82 1.93 1.53E-05 5.62E-04 

GO:0006886 BP intracellular protein transport 472 81 53.08 1.53 3.35E-05 0.001106 

T
1

0
a(

↔
) 

GO:0005975 BP carbohydrate metabolic process 271 35 13.49 2.59 1.07E-07 3.52E-05 

GO:0044432 CC endoplasmic reticulum part 394 39 19.62 1.99 1.82E-05 0.003009 

GO:1901135 BP carbohydrate derivative metabolic process 366 36 18.23 1.98 4.59E-05 0.005049 

GO:0042175 CC nuclear outer membrane-ER membrane network 383 36 19.07 1.89 1.19E-04 0.009846 

GO:0005794 CC Golgi apparatus 282 28 14.04 1.99 2.96E-04 0.016268 
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GO:0006457 BP protein folding 111 15 5.53 2.71 3.45E-04 0.016286 

GO:0098796 CC membrane protein complex 320 30 15.93 1.88 4.85E-04 0.019998 

GO:0072524 BP pyridine-containing compound metabolic process 94 13 4.68 2.78 6.84E-04 0.02507 

GO:0098805 CC whole membrane 455 38 22.66 1.68 8.52E-04 0.026987 

T
&

D
1

0
b

 (
↑

) GO:0034660 BP ncRNA metabolic process 493 24 5.94 4.04 5.05E-10 1.67E-07 

GO:0022613 BP ribonucleoprotein complex biogenesis 494 23 5.95 3.87 3.30E-09 5.44E-07 

GO:0016741 MF transferase activity, transferring one-carbon groups 100 9 1.20 7.47 2.31E-06 1.90E-04 

GO:0051169 BP nuclear transport 179 9 2.16 4.18 2.46E-04 0.009008 

T10b(↔): N.S. 

Columns- Ont: Abbreviations: BP: Biological Process; CC: Cellular Compartment; MF: Molecular function; Tot: total number of genes in the 
dataset assigned to GO term; Sig: number of total genes that were significant and were assigned to the indicated pattern of expression; 
Exp: number of genes expected to be found in that pathway for that pattern of expression by chance; Ratio: Sig/Exp. P-value: 
overrepresentation analysis (ORA- [46]); FDR: multiple testing adjusted ORA p-value according the BH procedure ([47]). Note- complete list 
of all pathways, and the genes assigned to them, is provided in Supplementary Table 2. 

 

chromatin organization, transcription regulation, mitotic 

cell cycle and biochemical pathways. 

 

In contrast to the Time x Drug sector, the 1009 genes in 

the Time sector of the Euler diagram fall primarily into 

three patterns (Figure 1C and 1D, T01b(↔), T10A (↔) 

and T10b(↔)). Genes in these patterns are not 

significantly changed by Myr treatment but are 

significantly changed with time and serve as an example 

of time-related changes. All of these patterns will 

require further effort to determine their significance, if 

any, in Myr-induced longevity. 

 

The Drug sector of the Euler diagram (Figure 1C and 

1D, pattern D(↑)) contains 329 up-regulated genes 

(Table 1 and Supplementary Table 2). Because of our 

experimental design, we cannot be sure if some genes in 

this sector are driving the changes associated with time 

that we see, but they could be. The most enriched GO 

terms relate to chromosomes, and transcription 

(Table 1), indicating a strong response to Myr treatment 

independent of time in culture. 

 

Next, we analyzed the 1570 genes in the Interaction 

group for temporal patterns responding to Myr 

treatment (Figure 2A). Five patterns contained more 

than 100 DEGs (Figure 2A, center panel, numeric 

results for this grid are available in Supplementary 

Table 1, tab called ‘I intersections’). The right-hand 

graph in Figure 2A indicates the number of up- and 

down-regulated genes in these 5 patterns. Five 

templates for these patterns (Figure 2B, left-side graphs) 

along with heatmaps of representative genes in each 

pattern for Vehicle and Myriocin treated samples are 

shown in Figure 2B (center panels). The right-most 

panels in Figure 2B represent average Z-scored gene 

expression profiles for the 5 patterns examined. Both 

the heatmaps and the data plots on the right side of 

Figure 2A reveal that Myr treatment enhances 

transcription at the 5 and 6 hour time points. This 

observation was tested by examining all genes found to 

be significant by the two-way ANOVA’s in the 

interaction term. For this test we plotted the log 2-fold 

changes of Myr treatment/vehicle treatment at each time 

point and color-coded the results if they were 

significantly down-regulated (blue) or up-regulated 

(orange) (p ≤ 0.05, pairwise Fisher’s LSD). As 

predicted, the predominant effect of Myr was to 

upregulate genes at the 5 and 6 h time points (Figure 

2C). Functional overexpression analysis of significant 

DEGs at these two time points (called: I: 5 and 6(↑)) 

revealed a more generalized picture of the biological 

processes and cellular compartments responding to  

Myr (Figure 2C, right panel, all genes listed in 

Supplementary Table 2). As we discuss in detail below, 

up-regulation of genes starting between the 4th and  

5th hour occurs when the majority of cells enter their 

second cell division cycle [7]. Thus, these data explain 

much of the effect of time and drug components within 

the interaction gene set. 

 

We recently reported that Myr treatment has a notable 

effect on the size of most amino acid pools which 

remain significantly smaller in drug-treated cells 

starting before the 1 h time point, and remaining smaller 

over the six hour time course studied [7]. To determine 

if transcription has roles in lowering and maintaining 

smaller amino acid pools, we performed functional 

enrichment analysis on the 1570 genes in the Interaction 

group (Figure 2A) because this group captures a large 

fraction of genes responding differently over time with 

Myr treatment. We hypothesized that down-regulation 

of genes would imply a contribution to lower amino 

acid pools while up-regulation would imply the 

opposite effect or an attempt to restore pools to the size 

found in vehicle-treated cells. The KEGG pathway term 

‘sce01100:Metabolic pathways’, containing 314 genes, 

is highly enriched in this gene set (p = 1,6E-27, 
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Figure 2. Detailed analysis of the Interaction group. (A) Left: Euler diagram of significant genes (also in Figure 1), focusing on the 
1576 DEGs rated significant by the two-way ANOVA ‘interaction’ term. Center: A grid of all possible temporal patterns of expression for 
Vehicle samples (horizontal) and Myriocin samples (vertical) was used to count the number of Interaction DEGs assigned to each pattern. 
Results are shown as a heatmap with green highlighting. There are five patterns of interest (labels indicated) that each showed >100 DEGs 
(total results for this grid are available in Supplementary Table 1, tab called ‘I Intersections’). Right: The number of interaction-significant 
DEGs within each of these five patterns of interest are graphed according to whether Myr increased (orange) or decreased (blue) 
expression levels compared to vehicle-treated samples. Myr’s effect was predominantly to increase expression. (B) Left: Templates of 
expression for the five Myr-increased patterns of interest. Center: Heatmaps showing signal intensities for representative genes within 
each statistically identified pattern. Right: average Z-scored expression levels for all genes assigned to each selected pattern (functional 
overrepresentation analysis results for these patterns are presented in Table 2). (C) Left: The analysis of interaction-significant DEGs, 
particularly in 2B, suggested a simplified and more general trend among the genes found to be significant by the two-way ANOVA’s 
Interaction term. That is, Myr treatment appeared to increase expression at time points 5 and 6 regardless of the temporal pattern of 
expression. To test this, we plotted the log 2-fold changes of Myr treatment/vehicle treatment at each time point, and color-coded those 
results if they were significantly (p ≤ 0.05, pairwise Fisher’s LSD) downregulated (blue) or upregulated (orange). As expected, the 
predominant effect was upregulation at time points 5 and 6. Right: Functional overrepresentation analysis. Columns- Tot: total number of 
genes in the dataset assigned to GO term; Sig: number of total genes that were significant and were assigned to the indicated pattern of 
expression; Exp: number of genes expected to be found in that pathway for that pattern of expression by chance; Ratio: Sig/Exp; p-value: 
overrepresentation analysis ([46]); FDR: multiple testing adjusted ORA p-value according the BH procedure ([47]; Note- complete list of all 
pathways, and the genes assigned to them, is provided in Supplementary Table 2, Webgestalt patterns combined tab). 
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Table 2. Overrepresentation analysis of expression patterns for DEGs significant by the two-way ANOVA in the 
interaction group. 

Pattern GO ID Ont Description Tot Sig Exp Ratio p-value FDR 

I: 01b|01b(↑) GO:0044283 BP small molecule biosynthetic process 386 16 36.04 4.47 1.82E-04 0.036084 

I: 01b|01b(↑) GO:0006811 BP ion transport 358 15 31.20 3.17 2.67E-04 0.036084 

I: 01b|01b(↑) GO:0055085 BP transmembrane transport 425 16 20.50 3.32 5.45E-04 0.036084 

I: 01b|01b(↑) GO:0030312 CC external encapsulating structure 124 8 5.94 4.04 5.47E-04 0.036084 

I: 01b|01b(↑) GO:0006082 BP organic acid metabolic process 433 16 5.95 3.87 6.71E-04 0.03688 

I:01b|04a N.S. 

I: 05a|04a(↑) GO:0055114 BP oxidation-reduction process 421 35 1.20 7.47 2.54E-04 0.02852 

I: 05a|04a(↑) GO:0005773 CC vacuole 262 25 2.16 4.18 2.73E-04 0.02852 

I: 05a|04a(↑) GO:0051186 BP cofactor metabolic process 266 25 5.91 2.71 3.46E-04 0.02852 

I: 05a|04a(↑) GO:0098805 CC whole membrane 455 36 5.48 2.74 5.40E-04 0.033417 

I: 05a|04a(↑) GO:1901565 BP organonitrogen compound catabolic process 390 32 6.51 2.46 6.08E-04 0.033417 

I: 05a|04a(↑) GO:0016788 MF hydrolase activity, acting on ester bonds 279 25 1.90 4.22 7.10E-04 0.033493 

I: 05a|04a(↑) GO:0016311 BP dephosphorylation 149 16 6.63 2.41 0.001035 0.042687 

I: 10a|04a(↑) GO:0016192 BP vesicle-mediated transport 432 31 19.07 1.83 2.77E-09 9.13E-07 

I: 10a|04a(↑) GO:1901565 BP organonitrogen compound catabolic process 390 20 11.87 2.11 3.89E-04 0.031287 

I: 10a|10a(↑) GO:0006508 BP proteolysis 361 62 12.05 2.07 2.87E-10 4.74E-08 

I: 10a|10a(↑) GO:1901565 BP organonitrogen compound catabolic process 390 64 20.61 1.75 1.02E-09 1.12E-07 

I: 10a|10a(↑) GO:0016192 BP vesicle-mediated transport 432 68 17.67 1.81 1.77E-09 1.46E-07 

I: 10a|10a(↑) GO:0098805 CC whole membrane 455 69 12.64 1.98 6.73E-09 4.44E-07 

I: 10a|10a(↑) GO:0098796 CC membrane protein complex 320 53 6.75 2.37 2.53E-08 1.39E-06 

I: 10a|10a(↑) GO:0043248 BP proteasome assembly 35 14 9.79 3.17 9.45E-08 3.90E-06 

I: 10a|10a(↑) GO:0030029 BP actin filament-based process 145 30 8.83 2.26 2.87E-07 9.46E-06 

Columns- Abbreviations: Tot: total number of genes in the dataset assigned to GO term; Sig: number of total genes that were 
significant and were assigned to the indicated pattern of expression; Exp: number of genes expected to be found in that 
pathway for that pattern of expression by chance; Ratio: Sig/Exp; p-value: overrepresentation analysis ([46]); FDR: multiple 
testing adjusted overrepresentation analysis p-value according the BH procedure ([47]). Note- complete list of all pathways, 
and the genes assigned to them, is provided in Supplementary Table 2. 
 

FDR 1.54E-25) (Supplementary Table 2, 

INTERACTION group and 314 genes Metabolic 

pathways tabs). Importantly, there is strong enrichment 

for genes in other KEGG pathways including 

tryptophan, methionine and branched chain amino acid 

metabolism. Additionally, within the Interaction group 

the term ‘GO:0003333~amino acid transmembrane 

transport,’ with 16 genes, is enriched. A distinguishing 

feature of most genes in these three pathways plus the 

transporters is up-regulation in Myr-treated cells with 

many genes peaking at 5 and 6 h. These data suggest 

that Myr-treated cells are attempting to increase amino 

acid uptake and de novo synthesis as a way to increase 

amino acid pool levels, however, we consider other 

interpretations in the Discussion. 

Correlation analysis of transcriptomics data identifies 

clues to amino acid metabolism 

 

As another approach to understand effects of Myr on 

the transcriptome, we analyzed transcript data using the 

R program package of Weighted Gene Correlation 

Network Analysis, WGCNA [28], to identify clusters 

(modules) of highly correlated genes showing a similar 

response to Myr over the 1–6 h time course. A gene 

dendrogram produced by average linkage of 

hierarchical clustering revealed many modules with the 

seven most correlated having from 18 to 2490 genes 

(Supplementary Table 3, column L in Cluster Analysis 

tab, see also the Module Eigengenes tab). We then 

examined the relationship of these gene modules to free 
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amino acid pools over the same 1–6 hr time course as 

an alternative way to determine if transcription played a 

role in lowering or maintaining smaller amino acid 

pools in drug-treated cells as we had previously found 

[7]. Results of this analysis are presented in Figure 3A 

as a heatmap plot. For amino acids (abbreviation shown 

on the X-axis), the numbers in a column represent the 

correlation p-value and the correlation (in parentheses) 

between a module eigengene (ME, Y-axis) expression 

value and an amino acid level. Here a ME corresponds 

 

 
 

Figure 3. Correlation analysis of transcriptomics data. (A) The 7 color-coded modules (MEs, left side, Y-axis of heatmap), whose 

member genes are highly correlated over time, were analyzed for their correlation to each amino acid pool ((amino acids indicated on the 
X-axis, pool data are from [7]). The degree of correlation is indicated by the red-green (correlated-anticorrelated) scale at the right-side of 
the diagram and by numbers in columns which represent the correlation p-value and the correlation value (in parentheses). These values 
and the green highlighting indicate negative or anticorrelation: amino acid pools are small which transcripts are up-regulated, not down-
regulated by Myr treatment. Additionally, the values in the column labeled 'InQ' represent the correlation between ME gene expression 
and the incubation time frame (1–6 hr) where the Turquoise module is the most correlated with time as shown graphically in panel F. The 
values in the column labeled 'myriocin' represent the association between ME gene expression and the absence/presence of myriocin 
where the no drug sample was set as 0 and the myriocin-treated sample was set as 1 for this calculation. This column indicates that the 
Green and Brown modules are the most anti-correlated (red shading) with amino acid pools, most of which are lowered by Myr treatment. 
(B) Network diagram showing the relationship of genes in the Green and Brown modules which are connected by genes in the Turquoise 
module. Genes are indicated by Nodes (circles) and relationships by edges. All genes and relationship values are presented in 
Supplementary Table 3. (C) Scatter plot of the Brown Eigengene across the 1–6 h time frame. (D) Enriched GO terms found in the Brown 
module. (E) Scatter plot of the Green Eigengene across the 1–6 h time. (F) Scatter plot of the Turquoise Eigengene across the 1–6 h time 
frame. (G) Enriched GO terms found in the Turquoise module. Genes used in calculating the mean Eigengene along with the 7 mean 
Eigengene values and their scatter plots are shown in Supplementary Table 3. 
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to the first principal component of the expression matrix 

of the module. The ME can be considered the most 

representative gene in a module and, as used here, it 

represents the average effect of Myr on genes compared 

to the untreated drug control (Supplementary Table 3, 

Module Eigengenes tab). The heatmap shows that the 

Brown and Green modules with 1126 and 144 genes, 

respectively, have the greatest negative correlation to 

Myr treatment. That is, Myr maintains low pool levels 

but enhances the level of a transcript at one or more 

time points. The values in the ‘InQ’ column of the 

heatmap represent the correlation p-value and 

correlation value (parentheses) between the module 

eigengene expression and incubation time course (1–6 

h). For these association calculations, the control (no 

drug) samples were set as 0 and Myr-treated samples 

were set as 1. Thus, the MEturquoise row has a strong 

correlation with time (Figure 3A, column inQ) as shown 

graphically in Figure 3F. The values in the ‘myriocin’ 

column represent the association between the module 

eigengene expression and the absence/presence of Myr 

and they indicate that the Green and Brown MEs are the 

most negatively correlated MEs. 

 

As another way to represent the effects of Myr 

treatment on MEs and to detect interactions between 

MEs, we performed network analysis and visualized the 

results by using Cytoscape. One such network, 

representing the relationship between genes in the 

Brown and Green modules, includes the Turquoise 

module because genes interact with multiple genes in 

both the Brown and Green modules (Figure 3B). We 

further analyzed these three MEs by plotting the ME for 

each time point with and without Myr treatment (Figure 

3C). For example, the ME representing the Brown 

module reveals Myr induces transcription starting at 4 h 

(Figure 3C) whereas there is no increase in amino acid 

pool size in drug-treated cells [7]. This opposite effect 

of Myr on transcription and amino acid pools 

corresponds to the negative correlation represented by 

the green shading in Figure 3A. The highest-ranking 

GO term in the Brown module is Regulation of 

Transcription (Figure 3D) where drug treatment enhances 

transcript levels particularly after 4 h, consistent with 

the ANOVA analysis (Figure 2B and 2C). A different 

negative correlation pattern is seen for the ME 

representing the small Green module where genes are 

up-regulated by Myr across the 1–6 h time frame 

compared to vehicle control but gene expression drops 

in both control and drug-treated samples starting at 2 h 

(Figure 3E). The main GO term in the Green module is 

Translation (Biological Process, p = 1.7E-88) along 

with Ribosome Assembly and related processes 
responding to drug-induced slowing of protein synthesis 

and growth rate [7]. Lastly, the large Turquoise module 

with 2490 genes captures Myr-induced transcriptional 

events involving processes or pathways or cell components 

each with more than 200 genes (Figure 3F, 3G). 

Interestingly, transcripts represented in the Turquoise 

module increase across the 1–6 h time frame with drug-

treated cells always having higher transcript levels, 

substantiating the ANOVA analysis represented in Figure 

1D (patterns T10a(↔), T&D04a(↑)., T&D05a(↑)), Figure 

2B (patterns I05a(04a(↑)), I10a(04a(↑)) and I10a(10a(↑))) 

and Figure 2C. Functional enrichment analysis for all MEs 

in presented in Supplementary Table 3. 

 

Deubiquitination of Mup1 impairs Myr-enhanced 

longevity 

 

A drawback of WGCNA and pathway and pattern 

analyses is a reduced ability to identify significant 

biological features involving smaller numbers of genes 

or to identify genes that do not fit a specific pattern 

across the 1–6 h time-frame. To circumvent these 

limitations and to discover transcript changes with 

potential roles in lowering amino acid pools or novel 

roles in longevity enhancement, we examined genes 

with the highest possible significance (1E-16) in the 

Drug, Time and Interactions columns of data from the 

two-way ANOVA analysis of mRNA levels. This 

approach identified only 16 genes out of the 4964 genes 

(Supplementary Table 1, Filter tab, columns M, N  

and O). The UBI4 gene, which is stress-induced and 

encodes for ubiquitin, captured our attention because 

stresses of various types have known roles in aging and 

longevity and we previously identified increased stress 

responses in Myr-treated cells [27, 29]. A defining 

feature of UBI4 transcript abundance in our studies is a 

rapid increase at the 5–6 h time period (Figure 4A, 

statistical significance of Area Under Curve (AUC) 

95% CI (difference of the means): −189.081 to 

−137.609, p-value = 0.00006). The path of the UBI4 

transcript level corresponds to the 5–6 h time period in 

which Myr has its most significant effect on 

transcription (Figure 2B and 2C) and it falls within 

Interaction pattern I: 5 and 6(↑) (Figure 2C and 

Supplementary Table 2, Webgestalt patterns combined 

tab). Proteolysis is a highly enriched GO term in this 

pattern of gene expression (Figure 2C, table on the 

right). The potential biological significance of the UBI4 

transcript pattern may relate to our previous analyses of 

Mup1-pHluorin trafficking. We found that the 

fluorescent signal decreases in the PM more rapidly 

during the 4–7 h time-frame in Myr-treated cells, in a 

dose-dependent manner, which requires ubiquitin 

conjugation for endocytosis to occur [7]. 

 

To determine if ubiquitination has roles in Myr-
enhanced chronological lifespan (CLS), we examined 

untreated ubi4∆ cells and found a faster loss of viability 

compared to untreated BY4741 cells (Figure 4B, 50% 
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Figure 4. Ubiquitin plays a central role in Myr-enhanced longevity. (A) Summary of the relative abundance of UBI4 transcripts 

across the 1–6 h time frame in Myr-treated or untreated cells. (B) CLS assay showing decreased survival of untreated (- Myr) ubi4Δ cells 
verses WT (BY4741) untreated cells and the complete lack of Myr-enhancement of lifespan in ubi4Δ cells compared to strong enhancement 
in WT cells. Error bars: SD (N = 3). (C) Data showing that removing ubiquitin from Mup1 impairs Myr-enhanced CLS. Cells having Mup1-
pHlurion tagged with a UL36 deubiquitinase domain (DUB) are not able to respond to Myr treatment and enhance CLS. In contrast, 
replacing catalytically active UL36 with a catalytically dead UL36 domain (UL36-CD) restores Myr-enhanced lifespan. WT = BY4741 Mup1-
pHluorin cells. Statistical significance at day 8 was determined (Student’s t-test) for Myr-treated WT vs. UL36 and UL36-CD vs. UL36 cells:  
p-values ≤ 0.024 and 0.032, respectively. Error bars: SEM (N = 3). (D) Lifespan assays reveal that deletion of mup1 does not impair Myr-
enhanced longevity. WT (BY4741) and MUP1 putback (mup1 allele replaced by MUP1) are control strains for the presence of a functional 
MUP1 gens. Error bars: SEM (N = 3). (E) Affinity purified ubiquitin (from a yeast strain encoding N-terminally FLAG-tagged ubiquitin at two 
native, chromosomal ubiquitin genes) and blotted for total ubiquitin (top panel) captured as well as K63- and K48-linked polyubiquitin 
(middle and bottom panels, respectively) in cells treated on not treated with Myr after 2 or 4 h of cell growth. (F) SILAC-MS analysis of 
untreated (Heavy) or myriocin-treated (Light) yeast cells at the indicated time point. Heavy:Llight ratio quantifies relative abundance 
between the two samples. In this experiment, a negative LOG value indicates increased abundance in the myriocin-treated sample (and 
vice versa). All measurements were normalized to the Heavy:Light ratio for total ubiquitin (unmodified peptides), which did not significantly 
differ with Myr treatment at either 2 or 4 h post-myriocin treatment. 
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survival day 3 vs. day 5, respectively). Additionally, the 

CLS of ubi4∆ cells treated with Myr does not increase 

and remains the same as untreated cells. Untreated wild-

type (WT, BY4741) cells show 50% survival at day 5–6 

which is extended to day 11 by Myr treatment (AUC, 

95% CI: −6.828 to −2.840, p-value = 0.0025). From 

these data we conclude that UBI4 is required for Myr to 

enhance CLS. 

 

Since ubiquitin has many functions, we studied its role 

in ubiquitin-mediated endocytosis of Mup1 using the 

same strains as used in our published analyses of 

endocytosis [7]. Specifically, CLS was assayed using 

cells with chromosomal MUP1 tagged with pHluorin-

UL36 (catalytic active or catalytic dead, CD). UL36 is a 

viral deubiquitinase (DUB) that can reverse localized 

ubiquitin conjugation activity, thus protecting the fusion 

protein from ubiquitin-mediated degradation or 

trafficking events [30]. CLS is strongly enhanced by 

Myr treatment in two of these strains, namely WT cells 

(BY4741, MUP1-pHluorin) and cells with the 

catalytically dead UL36-CD domain (MUP1-pHluorin-

UL36-CD) (Figure 4C, AUC of Myr-treated vs. 

untreated cells, 95% CL: −2.710 to −1.018, p-value = 

0.0036 for WT and CI: −3.450 to −1.346, p-value = 

0.0032 for UL36-CD). These significance values are 

probably an underestimate because both strains tend to 

regrow or gasp after day 8 which is why data are not 

shown beyond this time point. In contrast, CLS is only 

slightly enhanced by Myr treatment in cells with a 

catalytically active UL36 domain (Figure 4C, AUC, 

95% CI: −1.864 to −0.0284, p-value = 0.05). Statistical 

significance was also evaluated by using a t-test for the 

day 8 survival values for Myr treated cells: WT vs. UL36 

(p-value = 0.024) and UL36-CD vs. UL36 (p-value = 

0.032). Taken together, these data show that Myr-

enhanced longevity depends on Mup1 ubiquitination. 

 

Our results reveal that Myr-enhanced longevity is 

prevented by Mup1 deubiquitination, which is a gain-of-

function condition since it promotes PM stability. To 

determine how MUP1 loss of function affects drug-

enhanced longevity, we compared the CLS of mup1Δ 

cells to wild-type cells and cells with the mup1Δ allele 

replaced with wild-type MUP1. Myr treatment 

significantly enhanced CLS in each of the three strains 

(Figure 4D, for WT BY4741, mup1Δ and MUP1 the 

AUC for Myr-treated vs. untreated cells, p-values ≤ 

0.009, 0.026 and 0.0024, respectively). The viability 

curves for untreated mup1Δ and MUP1 cells do not differ 

significantly (AUC, 95% CI: −1.682 to 0.860, p-value = 

0.42). We conclude from these data that deleting MUP1 

does not prevent Myr-enhanced longevity. 
 

Given the increased UBI4 transcript level after 4–6 h of 

Myr treatment (Figure 4A), we hypothesized that Myr 

treatment might affect total ubiquitin and its cellular 

distribution. To test this, we affinity purified FLAG-

ubiquitin (from yeast cells harboring N-terminal FLAG 

fusions at two endogenous ubiquitin-encoding loci 

(RPS31 and RPL40B)) from untreated or Myr-treated 

yeast cells. Immunoblot analysis revealed that Myr 

treatment for 2 h or 4 h did not significantly alter the 

amount of FLAG-ubiquitin recovered or the amount of 

K48-linked ubiquitin polymers recovered (Figure 4E). 

In contrast, we observed a significant increase in K63-

linked ubiquitin polymers after 4 h of Myr treatment 

(Figure 4E, right lane in bottom immunoblot), 

suggesting that increased conjugation of ubiquitin in 

K63-linked polymers is part of the cellular response to 

depletion of sphingolipids. 

 

To confirm this result, and to resolve other linkage 

types, we performed stable isotope labeling with amino 

acids in cell culture (SILAC) on yeast cells and 

subjected heavy-labelled and light-labelled cells to 

mock-treatment and Myr-treatment, respectively. At  

2 hours and 4 hours of treatment, we collected cells, 

prepared lysates, and affinity purified FLAG-ubiquitin, 

followed by mixing, tryptic digestion, and processing 

of peptides for analysis by mass spectrometry. This 

SILAC-MS analysis resolved various peptides 

corresponding to the different linkage types of 

ubiquitin polymers, including K6-linked, K11-linked, 

K48-linked, and K63-linked polymers. Interestingly, 

we detected only modest changes in linkage types after 

2 hours of Myr treatment, while 4 hours of Myr 

treatment resulted in increased formation of several 

polymer types, most notably for K63-linked ubiquitin 

polymers (Figure 4F). This finding is consistent with 

the immunoblot results shown in Figure 4E, confirming 

that yeast cells increase the formation of K63-linked 

ubiquitin polymers in response to Myr treatment. 

Taken together, these results suggest that yeast cells 

respond to Myr treatment by remodeling ubiquitin 

pools, partly by increasing production of ubiquitin via 

transcription of UBI4 and partly by deploying existing 

ubiquitin pools to promote increased formation of K63-

linked ubiquitin conjugates. 

 

DISCUSSION 
 

We performed transcriptomics analysis to determine if 

Myr treatment caused a major transcriptional shift 

during a specific time-frame and to search for novel 

processes or pathways required for Myr-enhanced 

longevity. From our analysis, we are able to draw 

several conclusions. First, the major effect of Myr 

treatment is to up-regulate gene transcription (Figures 

1D and 2B and 2C - heatmaps and graphs). Second, 

transcription is robustly up-regulated after 5 to 6 h of 

Myr treatment when the majority of cells advance 
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through the second cell division cycle [7] (Figure 2B 

and 2C). Third, transcriptional changes are not the 

major statistically significant force promoting initial 

amino acid pool lowering since there is no enrichment 

for genes involved in amino acid metabolism in 

transcript patterns (Figure 1C and 1D). Additionally, 

enrichment analysis of genes in the Interaction group 

(Figure 2C) found enrichment for several amino acid 

metabolic pathways and transmembrane transporters 

(Supplementary Table 2, Tabs labelled INTERACTION 

group and 314 Metabolic pathways – see yellow 

highlighting), but these genes are mostly up-regulated 

by Myr treatment, suggesting that cells are attempting 

to increase amino acid pool size. Furthermore, 

correlation analysis found an anticorrelation or negative 

relationship between gene modules and amino acid pool 

sizes (Figure 3A). For example, the large Turquoise 

module containing genes up-regulated across the 1–6 h 

time-frame (Figure 3F) reveals enrichment for 

metabolic pathways including ones for amino acid 

metabolism (Figure 3G and Supplementary Table 3, tab 

labelled GO terms Turquoise module). Notably, we 

showed previously [7] that amino acid pool lowering, 

starting after about 2 h of cell growth, is at least partly 

due to inactivation of amino acid transporters at the PM 

following Myr treatment. Fourth, ubiquitination of the 

methionine transporter Mup1 at the PM is vital for Myr-

enhanced longevity (Figure 4B, 4C). However, we 

cannot altogether exclude a role for transcription of a 

small number of genes as playing roles in reducing or 

maintaining smaller amino acid pools. Lastly, Myr 

treatment strongly up-regulates K63-linked 

ubiquitination of proteins (Figure 4E, 4F). Importantly, 

we have also recently reported that reducing 

sphingolipid synthesis inhibits the endocytosis of many 

nutrient transporters, while specifically promoting 

endocytic clearance of the methionine transporter Mup1 

[31]. Taken together, our analysis reveals a complex 

cellular response to Myr that involves modulation of 

several biological processes including endocytic 

trafficking, proteostasis, and amino acid homeostasis. 

 

The transcriptomics data presented here provide a 

valuable resource not only for constructing a more 

mechanistic understanding of how Myr treatment 

reprograms yeast cells to live longer, but it also provides 

a strategy for discovering new mechanisms to promote 

longevity. For instance, GO terms involving 

transcription are highly enriched in the D(↑) temporal 

pattern (Table 1, genes in this pattern are listed in 

Supplementary Table 2) where they represent 4 of the 6 

top GO terms. Many of these encode transcription 

regulators including GCN4 whose transcription is up-
regulated by amino acid starvation in order to promote 

de novo amino acid biosynthesis [32]. Thus, the failure 

of cells to increase amino acid pools in response to 

increased GCN4 transcription implies activation of non-

transcriptional mechanisms by Myr treatment to lower 

and maintain smaller amino acid pools. The GO term 

Metabolic Pathways (314 genes) was enriched in the 

Interaction group during a part or all of the 1–6 h time-

frame (Figure 2C, Supplementary Table 2, 

INTERACTION group and 314 genes Metabolic 

pathways tabs). Functional enrichment analysis of these 

314 genes identified KEGG pathways for carbon 

metabolism, secondary metabolites, amino acid 

metabolism (tryptophan, methionine, branched-chain 

amino acids, lysine, arginine, proline, histidine) and 

other types of metabolism as being significantly 

enriched. Several of these pathways have known roles in 

longevity (e.g., methionine, branched-chain amino acids, 

glycogen, trehalose metabolism, etc.), suggesting that 

the Myr-sensitive pathways defined in this work are 

novel but include elements of pathways defined in prior 

work as having roles in longevity. Endocytosis is 

another GO term found to be highly enriched in the 

Interaction analysis of transcripts across the 1–6 h time-

frame (Supplementary Table 2, INTERACTION group 

tab). GO term analysis of this group of 54 genes found 

enrichment for genes involved in ubiquitin-mediated 

endocytosis which provide clues to identify the proteins, 

lipids and cellular machinery controlling the Myr-

induced endocytosis of Mup1 that we previously 

observed [7]. Detailed analysis of the gene interaction 

network shown in Figure 3B should aid in identifying 

the most important Node/Hub genes along with their 

edges potentially involved in controlling Mup1 

endocytosis. Lastly, a novel feature of the Interaction 

group is enrichment of GO terms representing nearly 

every cellular component, many of which are 

membrane-bound (Supplementary Table 2, 

INTERACTION group tab). We hypothesize that Myr 

treatment starts early (~ 5 h or the second cell division) 

to widely and coordinately rewire cellular physiology 

towards enhanced longevity well before many hallmarks 

of aging and longevity are detectible. For instance, we 

previously showed that autophagy begins after 3–5 cell 

divisions [27] whereas many autophagy genes in the 

INTERACTION group are strongly up-regulated in the 

second cell division (4–5 h) following Myr treatment. 

Our transcriptomics dataset will be a valuable resource 

for determining if coordinated rewiring is promoted by 

cell cycle mechanisms or cross-talk between cellular 

components or by both mechanisms. 

 

In addition to the limitations inherent in WGCNA, 

pattern and pathway analyses such as genes not falling 

into any category, there are other potential limitations in 

our analyses to consider. For example, improved 
detection and resolution of drug effects might be 

obtained with increased cell cycle synchronization, 

more time points and more sample replicates but these 
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are not likely to alter the overall results of this work. 

Additionally, analysis of transcripts before 1 hr might 

identify potential mechanisms for maintaining smaller 

amino acid pools in drug-treated cells. Adding Myr 

after cells have reentered the cell division cycle would 

be an alternative approach for studying early effects of 

Myr on transcription, but integrating such data with 

results presented here and in our earlier studies could be 

difficult [7, 27, 29]. 

 

Healthy proteostasis relies on proper functioning of 

protein degradation networks to maintain proteome 

quality control and prevent accumulation of misfolded 

and damaged proteins. Thus, a decline in proteostasis is 

a hallmark of aging and age-related diseases [33]. 

Analysis of the yeast transcriptional response to Myr 

treatment revealed a significant induction of the mRNA 

transcript encoded by UBI4 (Figure 4A) – one of four 

genes in the yeast genome encoding for ubiquitin. The 

other three [34] ubiquitin genes (RPS31, RPL40A, and 

RPL40B) encode ubiquitin fusions to ribosomal 

subunits and generate most cellular ubiquitin in normal 

growth conditions, which inherently couples the 

translational and degradative capacities in the cell. By 

comparison, UBI4 encodes a linear (heat-to-tail) 

ubiquitin pentamer that does not contribute significantly 

to the total pool of ubiquitin in normal growth 

conditions. However, in conditions of heat stress, 

oxidative stress, or starvation UBI4 is transcriptionally 

induced which serves to increase the degradation 

capacity of the cell and uncouple it from ribosome 

biogenesis and translational capacity [34, 35]. Thus, our 

observation that Myr induces transcription of UBI4 but 

not the other genes encoding ubiquitin (transcript levels 

of other ubiquitin genes can be displayed by using the 

‘Graph Reporter’ tab in Supplementary Table 1) is 

suggestive of a proteotoxic and/or starvation stress 

response involving activation of protein degradation 

networks and sizeable proteome remodeling. The 

importance of UBI4 in Myr-enhanced longevity is 

underscored by our finding that the CLS of untreated 

ubi4Δ yeast cells decreased compared to WT cells and 

was not significantly enhanced by Myr treatment 

(Figure 4B). In addition, our finding that cells with 

chromosomal MUP1 tagged with pHluorin-UL36 fail to 

show Myr-enhanced CLS (Figure 4C) suggests a novel 

role for ubiquitination in longevity. Importantly, we 

previously reported that UL36 fusion to Mup1 impedes 

its Myr-induced endocytosis [7], underscoring the 

linkage of ubiquitin-mediated endocytosis of Mup1 to 

Myr-mediated longevity. One limitation of this analysis 

is the potential for proximal effects on other proteins in 

the vicinity of the Mup1-pHluorin-UL36 protein [30, 
36]. Thus, we cannot exclude the possibility that 

ubiquitination of Mup1-associated factors is critical for 

Myr-mediated longevity. Future studies will be required 

to evaluate if such proximal effects are involved in the 

impairment of Myr-enhanced lifespan. The outcomes of 

these studies will potentially provide new targets or 

strategies for improving human healthspan. 

 

MATERIALS AND METHODS 
 

Strains, culture conditions, lifespan assays and 

statistical significance 
 

Strains (Table 3), culture conditions, lifespan assays and 

their statistical significance were similar to ones 

described previously [7]. Specifically, yeast cells, made 

prototrophic by transformation with pHLUM (carries 

HIS3, LEU2, URA3 and MET, Addgene, Watertown, 

MA, USA [37]) and stored at −80°C, were streaked 

onto minimal glucose plates and incubated at 30°C for 3 

days. One to three colonies were inoculated into 5 ml of 

SD complete medium (SDC) [38] and incubated on a 

gyratory water bath shaker for 18–24 h at 30°C. Typical 

culture densities were 7–9 A600 nm/ml (1.5 × 107 

cells/A600 nm). Cells were diluted into 25 ml fresh 

SDC warmed to 30°C in a 125 ml long-neck flask, 

containing vehicle (EtOH) or Myr (details described in 

the next paragraph), to give a starting cell density of 

0.15 A600 nm. Flasks were incubated at 30°C on a 

gyratory air-bath shaker (200 rpm). After 72 h of 

incubation cells were diluted (1:50 × 1:100) and from 

10 to 40 μL was spread on a YPD plate [38] and 

incubated 48–72 h at 30°C followed by colony 

counting. CLS assays were performed at least twice 

using triplicate cultures. Concentrations of Myr used in 

CLS assays ranged from 475–525 ng/ml depending on 

the sensitive of strains compared to wild-type, 

prototrophic BY4741. Drug-sensitivity was measured 

by culture density (A600 nm) after 24 h of growth using 

cultures started at 0.15 A600 nm units of cells/ml. All 

BY4741 yeast strains used for lifespan assays and for 

RNA extraction were made prototrophic by 

transformation with the pHLUM plasmid. The DUB 

(UL36) fusion yeast strains used in this study were 

generated by homologous recombination in BY4741 

and SEY6210 background strains using the reagents and 

strategy previously described (Hepowit et al. 2022). The 

MUP1 knock-in strain (NHY945) was generated in 

BY4741 by swapping the endogenous MUP1 coding 

region with NATMX (NHY930), shuffling the 

chromosomally integrated NATMX with URA3 

(NHY938.1), and snipping out URA3 by homologous 

reintegration of a PCR-amplified MUP1 coupled with 

counter selection on 5-fluoroorotic acid (5-FOA) 

synthetic media plate. A two-tailed Student’s t-test and 

Area Under the Curve (AUC) (Sigma Plot) were used to 

evaluate statistical significance of CLS assays done 

with at least 3 biological replicates. Results were 

verified by one or more repeat experiments. 
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Table 3. Strains used in this study. 

Strain Genotype References 

BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 [43] 

SEY6210 MATalpha leu2-2, 112 ura3-52 his 3delta200 trp1-delta901 lys2-801 suc2-delta9 [44] 

NHY413 SEY6210 Mup1-pHluorin::NATMX [7] 

NHY414 SEY6210 Mup1-pHluorin::NATMX Vph1-MARS::TRP1 [7] 

NHY447 SEY6210 Mup1-pHluorin-UL36(N-term 15-260 HSV1 UL36, active)::KANMX [7] 

NHY431 SEY6210 Mup1-pHluorin-UL36(N-term 15-260 HSV1 UL36 C40S, inactive)::KANMX [7] 

RCD2073 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 ubi4∆::KAN [45] 

NHY415 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Mup1-pHluorin (NATMX) This study 

NHY425 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Mup1-pHluorin-UL36 (KANMX) This study 

NHY426 
BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Mup1-pHluorin-UL36 catalytic dead 
(KANMX) 

This Study 

NHY930 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Δmup1::NATMX This Study 

NHY938.1 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Δmup1::URA3 This Study 

NHY938.2 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Δmup1::URA3 This Study 

NHY945 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 MUP1 knockin This Study 

JMY1312 SEY6210 MATα arg4::KANMX FLAG-RPS3::TRP1, FLAG-RPL40B::TRP1 [42] 

 

Budding yeast mRNA-enriched profiles were generated 

from 42 individual samples of prototrophic BY4741 

cells, including 3 replicates at 7 time points and 2 

treatments (control and drug-treated). Culture 

conditions were similar to ones described previously 

(Hepowit et al. 2021, Aging) except for the following 

modifications. Prototrophic BY4741 yeast cells were 

grown in 200 ml of SDC culture medium in a 1 L flask 

with the medium heated to 30°C before addition of 

EtOH (final concentration of 0.3% for control samples). 

For drug-treated samples, myriocin was added after 

addition of EtOH to give final concentrations of 0.3% 

EtOH and 700 ng/ml myriocin. Lastly, cells from a 

saturated overnight culture were diluted into the 200 ml 

cultures to give an initial A600 nm units/ml of 0.15. 

Flasks were incubated at 30°C and 200 rpm on a rotary 

shaker. Control and myriocin-treated cells were 

harvested at time 0, 1, 2, 3, 4, 5 and 6 h (all time points 

for each replication were from the same culture flask). 

 

RNA extraction 

 

Culture conditions, medium and prototrophic BY4741 

cells were the same as for lifespan and amino acid pool 

assays [7]. RNA was extracted from 5 A600 nm unit/ml 

of yeast cells harvested by filtration on a membrane 
filter at each time point (1–6 h, Figure 1A) [7]. Filtered 

cells were washed once with 5 ml of ice-cold nanopure 

water and the filter was quickly transferred to a chilled 

1.5 ml microfuge tube containing 0.5 ml cold nanopure 

water. Tubes were vortexed 10 sec followed by 

centrifugation for 15 sec. Supernatant fluid (450 μl) was 

transferred to a new tube and frozen in a dry-ice EtOH 

bath followed by storage at −80°C. Cold acid-washed 

glass beads (300 μl, 0.5 mm dia.) were added to a 

frozen cell pellet followed by addition of 300 μl of RLT 

buffer (RNAeasy mini kit, Qiagen, Germantown, MD, 

USA). Tubes were vortexed 5 min at room temperature 

and placed on ice for 1 min. After 4 cycles 300 μl of 

ice-cold RLT buffer was added followed by mixing and 

centrifugation at 13,000 × g for 2 min at room 

temperature. Supernatant fluid (450 μl) was transferred 

to a new microfuge tube and then mixed with 1 ml of 

70% (v/v) EtOH before transfer to a RNeasy spin 

column and processed according to the manufacturer’s 

instructions. Processed samples were frozen in a dry-ice 

EtOH bath and stored at −80°C. 

 

RNA-seq analysis 

 

RNA sequencing was performed on total RNA samples 

at the Roy J. Carver Biotechnology Center at the 

University of Illinois. Two different mixes of ERRC 

spike-in RNA controls were added to the samples; one 

mix for the control samples, and one mix for the drug-

treated samples. Libraries were constructed with 
Illumina’s ‘TruSeq Stranded mRNAseq Sample Prep 

kit’. Each library was quantitated by qPCR and 

sequenced on one lane for 151 cycles from each end of 

the fragments on a HiSeq 4000 using a HiSeq 4000 
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sequencing kit version 1. Fastq files were generated and 

demultiplexed with the bcl2fastq v2.17.1.14 Conversion 

Software (Illumina). Each sample’s pair of fastq files 

were run through trimmomatic 0.36 to first remove any 

remaining standard Illumina PE v3 adapters, then trim 

bases from both ends with quality scores below 28, and 

finally to remove individual reads shorter than 30 bp 

and their paired read, regardless of length (parameters 

ILLUMINACLIP:/home/apps/trimmomatic/trimmomati

c-0.36/adapters/TruSeq3-PE.fa:2:15:10 TRAILING:28 

LEADING:28 MINLEN:30). Paired reads per sample 

were pseudo-aligned to the Yeast R64 transcriptome 

and 92 ERRC spike-in control sequences using Salmon 

0.8.2 with parameters -l A –numbootstraps = 30 --

seqBias –gcBias. 

 

Resulting FASTQ files mapped to the yeast genome 

(R64), resulted in count files and normalized using the 

transcripts per million (TPM) algorithm [39] using 

WebMev [40]. Resulting data were downloaded as flat 

files and loaded into Excel for further analysis. From a 

total of 6198 mapped genes, 5169 were uniquely 

annotated with gene symbols and had sufficient non-

zero readings for further analysis. The filtered data were 

analyzed by two-way ANOVA for the main effects of 

drug and time, as well as for interaction and assigned a 

p-value. A gene found to be significant in any of these 

three categories was referred to as differentially 

expressed (DEG). Significant by the time term or both 

the drug and time term, data were further analyzed by 

post-hoc pairwise Fisher’s protected Least Significant 

Difference (pLSD), and log 2-fold change comparison 

to further isolate the effects of drug over time. 

 

To identify DEGs that change up or down over time we 
built a ‘template assignment tool’ that took each DEG 

and attempted to assign it to each of 63 patterns. The 

pattern to which a DEG fit best (by Pearson’s 

correlation, had to be R > 0.85) became the pattern to 

which it was assigned. This is reported in Figure 1C 

(99.86% of all DEGs were assigned to a template). To 

determine which templates had significantly more 

DEGs than expected by chance, we ran a binomial test- 

this is the basis for some templates being bolded and 

having an asterisk in Figure 1C- they had a binomial p < 

0.01. The 12 patterns of expression that had more DEGs 

than expected by chance assigned to them explained the 

majority (77%) of all DEGs. Data have been deposited 

in the GEO (GSE199904) [NCBI tracking system 

#22817261]. GO terms were analyzed by using DAVID 

software [41] or online WebGestalt. 

 

Gene regulatory network using WGCNA 

 

The WGCNA (v1.70-3) [28] was used to identify gene 

modules and build unsigned co-expression networks, 

which include negative and positive correlations. 

Briefly, WGCNA constructs a gene co-expression 

matrix, uses hierarchical clustering in combination with 

the Pearson correlation coefficient to cluster genes into 

groups of closely co-expressed genes termed modules, 

and then uses singular value decomposition (SVD) 

values as module eigengenes to determine the similarity 

between gene modules or to calculate association with 

sample traits (for example, incubation time or amino 

acid levels). The top 2,000 variable genes were  

used to identify gene modules and network 

construction. Soft power 8 was chosen by the WGCNA 

function pick SoftThreshold. Then, the function 

TOMsimilarityFromExpr was used to calculate the 

TOM similarity matrix via setting power = 8, 

networkType = "signed. The distance matrix was 

generated by subtracting the values from similarity 

adjacency matrix by one. The function flashClust 

(v.1.01) was used to cluster genes based on the distance 

matrix, and the function cutreeDynamic was utilized to 

identify gene modules by setting deepSplit = 3. 

Cytoscape (v.3.8.2) was applied for the network 

visualizations. 

 

Analysis of ubiquitin and its linkage types 

 

For immunoblotting assays 5 A600 nm unit of cells 

were precipitated in 10% trichloroacetic acid on ice  

for 30 min. The protein precipitate was washed twice 

with ice-chilled acetone, lyophilized by vacuum 

centrifugation, and resuspended in urea sample buffer 

(75 mM Tris-HCl [pH 6.8], 6 M urea, 1 mM EDTA,  

3% SDS, 20% glycerol, bromophenol blue), heated at 

65°C for 5 min, and vortexed for 5 min. Proteins were 

separated by SDS-PAGE and transferred onto 

Immobilon-PSQ membrane (0.2 µm; Millipore). 

Immunoblotting was performed using the following 

primary antibodies: anti-ubiquitin (1:10,000; 

LifeSensors; MAb; clone VU-1), anti-K48 (1:10,000; 

Cell Signaling; RAb; clone D9D5), and anti-K63 

(1:4000; EMD Millipore; RAb; clone apu3). Secondary 

antibodies were anti-mouse (IRDye 680RD-Goat anti-

mouse) or anti-rabbit (IRDye 800CW-Goat anti-rabbit) 

obtained from LI-COR Biosciences). Blots were 

scanned using Odyssey CLx and signal fluorescence 

was visualized using Image Studio Lite (LI-COR 

Biosciences). Ubiquitin linkage types in JMY1312 yeast 

cells were determined and quantified by SILAC-based 

mass spectrometry as previously described except for a 

change in the cell lysis buffer: 50 mM Tris-HCl 

[pH7.5], 150 mM NaCl, sodium pyrophosphate, 20 mM 

β-glycerophosphate, 2 mM sodium orthovanadate,  

1 mM phenylmethylsulfonyl fluoride, 0.2% NP-40,  
10 mM iodoacetamide, 20 µM MG132, 1 mM 1,10-

phenanthroline, 1× EDTA-free protease inhibitor 

cocktail (Roche), 1× PhosStop (Roche) [42]. 



www.aging-us.com 487 AGING 

AUTHOR CONTRIBUTIONS 
 

Project conception: RCD, NLH and JAM; Execution: 

NLH and RCD. Data analysis: EB, SL, KMB, JAM, 

NLH and RCD. Manuscript writing: RCD and JAM; 

Review and Critique: NLH, EB and SL. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest related to 

this study. 

 

FUNDING 
 

Research reported herein was supported by the National 

Institute on Aging of the National Institutes of Health 

under Award Number R56AG024377 (RCD) and the 

National Institute of General Medical Sciences of the 

National Institutes of Health under Award Number 

R35GM144112 (JAM). The content is solely the 

responsibility of the authors and does not necessarily 

represent the official views of the National Institutes of 

Health. 

 

REFERENCES 
 
1. Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-

Romero J, Ferrucci L, Bernier M, de Cabo R. The road 
ahead for health and lifespan interventions. Ageing 
Res Rev. 2020; 59:101037. 
https://doi.org/10.1016/j.arr.2020.101037 
PMID:32109604 

2. Aon MA, Bernier M, Mitchell SJ, Di Germanio C, 
Mattison JA, Ehrlich MR, Colman RJ, Anderson RM, 
de Cabo R. Untangling Determinants of Enhanced 
Health and Lifespan through a Multi-omics 
Approach in Mice. Cell Metab. 2020; 32:100–
16.e4. 
https://doi.org/10.1016/j.cmet.2020.04.018 
PMID:32413334 

3. Stekovic S, Hofer SJ, Tripolt N, Aon MA, Royer P, Pein 
L, Stadler JT, Pendl T, Prietl B, Url J, Schroeder S, Tadic 
J, Eisenberg T, et al. Alternate Day Fasting Improves 
Physiological and Molecular Markers of Aging in 
Healthy, Non-obese Humans. Cell Metab. 2019; 
30:462–76.e6. 
https://doi.org/10.1016/j.cmet.2019.07.016 
PMID:31471173 

4. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. 
Caloric Restriction Mimetics against Age-Associated 
Disease: Targets, Mechanisms, and Therapeutic 
Potential. Cell Metab. 2019; 29:592–610. 
https://doi.org/10.1016/j.cmet.2019.01.018 
PMID:30840912 

 5. Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging 
diets: Separating fact from fiction. Science. 2021; 
374:eabe7365. 
https://doi.org/10.1126/science.abe7365 
PMID:34793210 

 6. Tyshkovskiy A, Bozaykut P, Borodinova AA, 
Gerashchenko MV, Ables GP, Garratt M, Khaitovich P, 
Clish CB, Miller RA, Gladyshev VN. Identification and 
Application of Gene Expression Signatures Associated 
with Lifespan Extension. Cell Metab. 2019; 30:573–
93.e8. 
https://doi.org/10.1016/j.cmet.2019.06.018 
PMID:31353263 

 7. Hepowit NL, Macedo JKA, Young LEA, Liu K, Sun RC, 
MacGurn JA, Dickson RC. Enhancing lifespan of 
budding yeast by pharmacological lowering of amino 
acid pools. Aging (Albany NY). 2021; 13:7846–71. 
https://doi.org/10.18632/aging.202849 
PMID:33744865 

 8. Green CL, Lamming DW. Regulation of metabolic 
health by essential dietary amino acids. Mech Ageing 
Dev. 2019; 177:186–200. 
https://doi.org/10.1016/j.mad.2018.07.004 
PMID:30044947 

 9. Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg 
HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, 
Gems D, Ingram DK, Johnson TE, Kennedy BK, et al. 
Interventions to Slow Aging in Humans: Are We 
Ready? Aging Cell. 2015; 14:497–510. 
https://doi.org/10.1111/acel.12338 
PMID:25902704 

10. Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, 
Kawasaki T. Serine palmitoyltransferase is the 
primary target of a sphingosine-like 
immunosuppressant, ISP-1/myriocin. Biochem 
Biophys Res Commun. 1995; 211:396–403. 
https://doi.org/10.1006/bbrc.1995.1827 
PMID:7794249 

11. Hanada K. Serine palmitoyltransferase, a key enzyme 
of sphingolipid metabolism. Biochim Biophys Acta. 
2003; 1632:16–30. 
https://doi.org/10.1016/s1388-1981(03)00059-3 
PMID:12782147 

12. Dickson RC, Lester RL. Metabolism and selected 
functions of sphingolipids in the yeast Saccharomyces 
cerevisiae. Biochim Biophys Acta. 1999; 1438:305–21. 
https://doi.org/10.1016/s1388-1981(99)00068-2 
PMID:10366774 

13. Kluepfel D, Bagli J, Baker H, Charest MP, Kudelski A. 
Myriocin, a new antifungal antibiotic from 
Myriococcum albomyces. J Antibiot (Tokyo). 1972; 
25:109–15. 

https://doi.org/10.1016/j.arr.2020.101037
https://pubmed.ncbi.nlm.nih.gov/32109604
https://doi.org/10.1016/j.cmet.2020.04.018
https://pubmed.ncbi.nlm.nih.gov/32413334
https://doi.org/10.1016/j.cmet.2019.07.016
https://pubmed.ncbi.nlm.nih.gov/31471173
https://doi.org/10.1016/j.cmet.2019.01.018
https://pubmed.ncbi.nlm.nih.gov/30840912
https://doi.org/10.1126/science.abe7365
https://pubmed.ncbi.nlm.nih.gov/34793210
https://doi.org/10.1016/j.cmet.2019.06.018
https://pubmed.ncbi.nlm.nih.gov/31353263
https://doi.org/10.18632/aging.202849
https://pubmed.ncbi.nlm.nih.gov/33744865
https://doi.org/10.1016/j.mad.2018.07.004
https://pubmed.ncbi.nlm.nih.gov/30044947
https://doi.org/10.1111/acel.12338
https://pubmed.ncbi.nlm.nih.gov/25902704
https://doi.org/10.1006/bbrc.1995.1827
https://pubmed.ncbi.nlm.nih.gov/7794249
https://doi.org/10.1016/s1388-1981(03)00059-3
https://pubmed.ncbi.nlm.nih.gov/12782147
https://doi.org/10.1016/s1388-1981(99)00068-2
https://pubmed.ncbi.nlm.nih.gov/10366774


www.aging-us.com 488 AGING 

https://doi.org/10.7164/antibiotics.25.109 
PMID:5034807 

14. Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, 
Toyama R, Chiba K, Hoshino Y, Okumoto T. Fungal 
metabolites. Part 11. A potent immunosuppressive 
activity found in Isaria sinclairii metabolite. J Antibiot 
(Tokyo). 1994; 47:208–15. 
https://doi.org/10.7164/antibiotics.47.208 
PMID:8150717 

15. Quinville BM, Deschenes NM, Ryckman AE, Walia JS. 
A Comprehensive Review: Sphingolipid Metabolism 
and Implications of Disruption in Sphingolipid 
Homeostasis. Int J Mol Sci. 2021; 22:5793. 
https://doi.org/10.3390/ijms22115793 
PMID:34071409 

16. Petit CS, Lee JJ, Boland S, Swarup S, Christiano R, Lai 
ZW, Mejhert N, Elliott SD, McFall D, Haque S, Huang 
EJ, Bronson RT, Harper JW, et al. Inhibition of 
sphingolipid synthesis improves outcomes and 
survival in GARP mutant wobbler mice, a model of 
motor neuron degeneration. Proc Natl Acad Sci U S A. 
2020; 117:10565–74. 
https://doi.org/10.1073/pnas.1913956117 
PMID:32345721 

17. Woo CY, Baek JY, Kim AR, Hong CH, Yoon JE, Kim HS, 
Yoo HJ, Park TS, Kc R, Lee KU, Koh EH. Inhibition of 
Ceramide Accumulation in Podocytes by Myriocin 
Prevents Diabetic Nephropathy. Diabetes Metab J. 
2020; 44:581–91. 
https://doi.org/10.4093/dmj.2019.0063 
PMID:31701696 

18. Piano I, D'Antongiovanni V, Novelli E, Biagioni M, Dei 
Cas M, Paroni RC, Ghidoni R, Strettoi E, Gargini C. 
Myriocin Effect on Tvrm4 Retina, an Autosomal 
Dominant Pattern of Retinitis Pigmentosa. Front 
Neurosci. 2020; 14:372. 
https://doi.org/10.3389/fnins.2020.00372 
PMID:32435178 

19. Lin G, Wang L, Marcogliese PC, Bellen HJ. 
Sphingolipids in the Pathogenesis of Parkinson's 
Disease and Parkinsonism. Trends Endocrinol Metab. 
2019; 30:106–17. 
https://doi.org/10.1016/j.tem.2018.11.003 
PMID:30528460 

20. Tippetts TS, Holland WL, Summers SA. Cholesterol - 
the devil you know; ceramide - the devil you don't. 
Trends Pharmacol Sci. 2021; 42:1082–95. 
https://doi.org/10.1016/j.tips.2021.10.001 
PMID:34750017 

21. Laurila PP, Luan P, Wohlwend M, Zanou N, Crisol B, 
Imamura de Lima T, Goeminne LJE, Gallart-Ayala H, 
Shong M, Ivanisevic J, Place N, Auwerx J. Inhibition of 

sphingolipid de novo synthesis counteracts muscular 
dystrophy. Sci Adv. 2022; 8:eabh4423. 
https://doi.org/10.1126/sciadv.abh4423 
PMID:35089797 

22. Mingione A, Pivari F, Plotegher N, Dei Cas M, Zulueta 
A, Bocci T, Trinchera M, Albi E, Maglione V, Caretti A, 
Bubacco L, Paroni R, Bottai D, et al. Inhibition of 
Ceramide Synthesis Reduces α-Synuclein 
Proteinopathy in a Cellular Model of Parkinson's 
Disease. Int J Mol Sci. 2021; 22:6469. 
https://doi.org/10.3390/ijms22126469 
PMID:34208778 

23. Shiwani HA, Elfaki MY, Memon D, Ali S, Aziz A, Egom 
EE. Updates on sphingolipids: Spotlight on 
retinopathy. Biomed Pharmacother. 2021; 
143:112197. 
https://doi.org/10.1016/j.biopha.2021.112197 
PMID:34560541 

24. Dickson RC. Thematic review series: sphingolipids. 
New insights into sphingolipid metabolism and 
function in budding yeast. J Lipid Res. 2008; 49:909–
21. 
https://doi.org/10.1194/jlr.R800003-JLR200 
PMID:18296751 

25. Merrill AH Jr. Sphingolipid and glycosphingolipid 
metabolic pathways in the era of sphingolipidomics. 
Chem Rev. 2011; 111:6387–422. 
https://doi.org/10.1021/cr2002917 
PMID:21942574 

26. Hannun YA, Obeid LM. Principles of bioactive lipid 
signalling: lessons from sphingolipids. Nat Rev Mol 
Cell Biol. 2008; 9:139–50. 
https://doi.org/10.1038/nrm2329 
PMID:18216770 

27. Liu J, Huang X, Withers BR, Blalock E, Liu K, Dickson 
RC. Reducing sphingolipid synthesis orchestrates 
global changes to extend yeast lifespan. Aging Cell. 
2013; 12:833–41. 
https://doi.org/10.1111/acel.12107 
PMID:23725375 

28. Langfelder P, Horvath S. WGCNA: an R package for 
weighted correlation network analysis. BMC 
Bioinformatics. 2008; 9:559. 
https://doi.org/10.1186/1471-2105-9-559 
PMID:19114008 

29. Huang X, Liu J, Dickson RC. Down-regulating 
sphingolipid synthesis increases yeast lifespan. PLoS 
Genet. 2012; 8:e1002493. 
https://doi.org/10.1371/journal.pgen.1002493 
PMID:22319457 

30. MacDonald C, Buchkovich NJ, Stringer DK, Emr SD, 
Piper RC. Cargo ubiquitination is essential for 

https://doi.org/10.7164/antibiotics.25.109
https://pubmed.ncbi.nlm.nih.gov/5034807
https://doi.org/10.7164/antibiotics.47.208
https://pubmed.ncbi.nlm.nih.gov/8150717
https://doi.org/10.3390/ijms22115793
https://pubmed.ncbi.nlm.nih.gov/34071409
https://doi.org/10.1073/pnas.1913956117
https://pubmed.ncbi.nlm.nih.gov/32345721
https://doi.org/10.4093/dmj.2019.0063
https://pubmed.ncbi.nlm.nih.gov/31701696
https://doi.org/10.3389/fnins.2020.00372
https://pubmed.ncbi.nlm.nih.gov/32435178
https://doi.org/10.1016/j.tem.2018.11.003
https://pubmed.ncbi.nlm.nih.gov/30528460
https://doi.org/10.1016/j.tips.2021.10.001
https://pubmed.ncbi.nlm.nih.gov/34750017
https://doi.org/10.1126/sciadv.abh4423
https://pubmed.ncbi.nlm.nih.gov/35089797
https://doi.org/10.3390/ijms22126469
https://pubmed.ncbi.nlm.nih.gov/34208778
https://doi.org/10.1016/j.biopha.2021.112197
https://pubmed.ncbi.nlm.nih.gov/34560541
https://doi.org/10.1194/jlr.R800003-JLR200
https://pubmed.ncbi.nlm.nih.gov/18296751
https://doi.org/10.1021/cr2002917
https://pubmed.ncbi.nlm.nih.gov/21942574
https://doi.org/10.1038/nrm2329
https://pubmed.ncbi.nlm.nih.gov/18216770
https://doi.org/10.1111/acel.12107
https://pubmed.ncbi.nlm.nih.gov/23725375
https://doi.org/10.1186/1471-2105-9-559
https://pubmed.ncbi.nlm.nih.gov/19114008
https://doi.org/10.1371/journal.pgen.1002493
https://pubmed.ncbi.nlm.nih.gov/22319457


www.aging-us.com 489 AGING 

multivesicular body intralumenal vesicle formation. 
EMBO Rep. 2012; 13:331–8. 
https://doi.org/10.1038/embor.2012.18 
PMID:22370727 

31. Hepowit NL, Moon B, Dickson RC, MacGurn JA. 
Sphingolipid depletion inhibits bulk endocytosis while 
triggering selective clearance of the methionine 
transporter Mup1. bioRxiv. 2022. 
https://doi.org/10.1101/2022.05.20.492841  

32. Hinnebusch AG. Translational regulation of GCN4 and 
the general amino acid control of yeast. Annu Rev 
Microbiol. 2005; 59:407–50. 
https://doi.org/10.1146/annurev.micro.59.031805.13
3833 
PMID:16153175 

33. López-Otín C, Blasco MA, Partridge L, Serrano M, 
Kroemer G. The hallmarks of aging. Cell. 2013; 
153:1194–217. 
https://doi.org/10.1016/j.cell.2013.05.039 
PMID:23746838 

34. Finley D, Ozkaynak E, Varshavsky A. The yeast 
polyubiquitin gene is essential for resistance to high 
temperatures, starvation, and other stresses. Cell. 
1987; 48:1035–46. 
https://doi.org/10.1016/0092-8674(87)90711-2 
PMID:3030556 

35. Cheng L, Watt R, Piper PW. Polyubiquitin gene 
expression contributes to oxidative stress resistance 
in respiratory yeast (Saccharomyces cerevisiae). Mol 
Gen Genet. 1994; 243:358–62. 
https://doi.org/10.1007/BF00301072 
PMID:8190089 

36. Stringer DK, Piper RC. A single ubiquitin is sufficient 
for cargo protein entry into MVBs in the absence of 
ESCRT ubiquitination. J Cell Biol. 2011; 192:229–42. 
https://doi.org/10.1083/jcb.201008121 
PMID:21242292 

37. Mülleder M, Capuano F, Pir P, Christen S, Sauer U, 
Oliver SG, Ralser M. A prototrophic deletion mutant 
collection for yeast metabolomics and systems 
biology. Nat Biotechnol. 2012; 30:1176–8. 
https://doi.org/10.1038/nbt.2442 
PMID:23222782 

38. Fabrizio P, Longo VD. The chronological life span of 
Saccharomyces cerevisiae. Methods Mol Biol. 2007; 
371:89–95. 
https://doi.org/10.1007/978-1-59745-361-5_8 
PMID:17634576 

39. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan 
G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 
Transcript assembly and quantification by RNA-Seq 
reveals unannotated transcripts and isoform 

switching during cell differentiation. Nat Biotechnol. 
2010; 28:511–5. 
https://doi.org/10.1038/nbt.1621 
PMID:20436464 

40. Wang YE, Kutnetsov L, Partensky A, Farid J, 
Quackenbush J. WebMeV: A Cloud Platform for 
Analyzing and Visualizing Cancer Genomic Data. 
Cancer Res. 2017; 77:e11–4. 
https://doi.org/10.1158/0008-5472.CAN-17-0802 
PMID:29092929 

41. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane 
HC, Imamichi T, Chang W. DAVID: a web server for 
functional enrichment analysis and functional 
annotation of gene lists (2021 update). Nucleic Acids 
Res. 2022; 50:W216–21. 
https://doi.org/10.1093/nar/gkac194 
PMID:35325185 

42. Hepowit NL, Pereira KN, Tumolo JM, Chazin WJ, 
MacGurn JA. Identification of ubiquitin Ser57 kinases 
regulating the oxidative stress response in yeast. 
Elife. 2020; 9:e58155. 
https://doi.org/10.7554/eLife.58155 
PMID:33074099 

43. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, 
Hieter P, Boeke JD. Designer deletion strains derived 
from Saccharomyces cerevisiae S288C: a useful set of 
strains and plasmids for PCR-mediated gene 
disruption and other applications. Yeast. 1998; 
14:115–32. 
https://doi.org/10.1002/(SICI)1097-
0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 
PMID:9483801 

44. Robinson JS, Klionsky DJ, Banta LM, Emr SD. Protein 
sorting in Saccharomyces cerevisiae: isolation of 
mutants defective in the delivery and processing of 
multiple vacuolar hydrolases. Mol Cell Biol. 1988; 
8:4936–48. 
https://doi.org/10.1128/mcb.8.11.4936-4948.1988 
PMID:3062374 

45. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, 
Anderson K, Andre B, Bangham R, Benito R, Boeke JD, 
Bussey H, Chu AM, Connelly C, Davis K, et al. 
Functional characterization of the S. cerevisiae 
genome by gene deletion and parallel analysis. 
Science. 1999; 285:901–6. 
https://doi.org/10.1126/science.285.5429.901 
PMID:10436161 

46. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry 
JM, Sherlock G. GO::TermFinder--open source 
software for accessing Gene Ontology information 
and finding significantly enriched Gene Ontology 
terms associated with a list of genes. Bioinformatics. 
2004; 20:3710–5. 

https://doi.org/10.1038/embor.2012.18
https://pubmed.ncbi.nlm.nih.gov/22370727
https://doi.org/10.1101/2022.05.20.492841
https://doi.org/10.1146/annurev.micro.59.031805.133833
https://doi.org/10.1146/annurev.micro.59.031805.133833
https://pubmed.ncbi.nlm.nih.gov/16153175
https://doi.org/10.1016/j.cell.2013.05.039
https://pubmed.ncbi.nlm.nih.gov/23746838
https://doi.org/10.1016/0092-8674(87)90711-2
https://pubmed.ncbi.nlm.nih.gov/3030556
https://doi.org/10.1007/BF00301072
https://pubmed.ncbi.nlm.nih.gov/8190089
https://doi.org/10.1083/jcb.201008121
https://pubmed.ncbi.nlm.nih.gov/21242292
https://doi.org/10.1038/nbt.2442
https://pubmed.ncbi.nlm.nih.gov/23222782
https://doi.org/10.1007/978-1-59745-361-5_8
https://pubmed.ncbi.nlm.nih.gov/17634576
https://doi.org/10.1038/nbt.1621
https://pubmed.ncbi.nlm.nih.gov/20436464
https://doi.org/10.1158/0008-5472.CAN-17-0802
https://pubmed.ncbi.nlm.nih.gov/29092929
https://doi.org/10.1093/nar/gkac194
https://pubmed.ncbi.nlm.nih.gov/35325185
https://doi.org/10.7554/eLife.58155
https://pubmed.ncbi.nlm.nih.gov/33074099
https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c115::AID-YEA204%3e3.0.CO;2-2
https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c115::AID-YEA204%3e3.0.CO;2-2
https://pubmed.ncbi.nlm.nih.gov/9483801
https://doi.org/10.1128/mcb.8.11.4936-4948.1988
https://pubmed.ncbi.nlm.nih.gov/3062374
https://doi.org/10.1126/science.285.5429.901
https://pubmed.ncbi.nlm.nih.gov/10436161


www.aging-us.com 490 AGING 

https://doi.org/10.1093/bioinformatics/bth456 
PMID:15297299 

47. Benjamini Y, Hochberg Y. Controlling the False 
Discovery Rate - a Practical and Powerful Approach to 
Multiple Testing. J R Stat Soc B. 1995; 57:289–300. 
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

 

 

https://doi.org/10.1093/bioinformatics/bth456
https://pubmed.ncbi.nlm.nih.gov/15297299
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x


www.aging-us.com 491 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

 

Supplementary Table 1. Complete table of genes analyzed by ANOVA in our RNA seq dataset. 

 

Supplementary Table 2. Results for genes in the Interaction group of 1570 genes.  

 

Supplementary Table 3. Genes in each of eight clusters (modules) of highly correlated genes showing a similar 
response to Myr over the 1–6 h time course. 

 

 


