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INTRODUCTION 
 

Despite many years of research and clinical trials for 

neurodegenerative disorders, the cause of progressive 

loss of neurons in these devastating diseases remains 

controversial. Neurodegenerative disorders, including 

Alzheimer’s disease (AD) are on track of becoming a 

major global health crisis. The complexity of these 

disorders is best evidenced by the obvious challenges 

in finding effective treatments against its classic 

pathology markers; the insoluble amyloid aggregates 

in senile plaques and the hyperphosphorylated Tau-

containing neurofibrillary tangles. Immunotherapies 

for removal of Amyloid Beta plaques are currently the 

forefront of treatments against the disease, although 

serious complications have been reported as 

development of Amyloid-Related Imaging 

Abnormalities (ARIA) such as ARIA-E (edema) or 

ARIA-H (hemorrhage) in AD patients (Sperling et al., 

2012). Despite these controversies, accelerated 

approval of Aduhelm in 2021 is an indication of  

high demand for new treatments, even though its 

effectiveness remains to be proven in clinics 

(https://www.fda.gov/drugs/postmarket-drug-safety-

information-patients-and-providers/aducanumab-

marketed-aduhelm-information). There is currently no 

information available on the potential reversal of 

cognitive loss in patients undergoing these inter-

ventions. The standard pharmacological treatments 

currently in use are aimed at treating the symptoms 
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ABSTRACT 
 

Aging is an inevitable fact of life which brings along a series of age-associated diseases. Although medical 
innovations and patient care improvement have increased our life expectancy, the rate of age-associated 
diseases have also increased. Nervous system is specifically prone to these diseases that cause neuronal loss in 
different anatomical regions. Alzheimer’s disease is the best-known example of age-associated illnesses and is 
diagnosed by accumulation of intracellular Neurofibrillary tangles and extracellular Amyloid Plaques resulting 
in dementia. However, therapeutic attempts aiming at the removal of these plaques and tangles to reverse 
the cognitive decline have generally failed in human patients and may compromise the patient’s health. We 
have learnt that interruption of neuronal housekeeping systems such as autophagy contributes to formation 
of these aggregates, and therefore understanding the underlying mechanisms that lead to failure of these 
endogenous protective systems may provide valuable information and novel therapies. The house keeping 
systems are delicately regulated through gene expression and chromatin modifications in the nucleus, 
however, the contribution of this largest cellular organelle in pathophysiology of the disease has been 
overlooked. During the last few years, a wealth of information on neuronal nucleus has emerged that provides 
a strong rationale for examining its contribution to the pathophysiology of the disease. In this research 
perspective, I have attempted to summarize the latest research on neuronal nucleus, with a special focus on 
nuclear lamina damage and its downstream events to rationalize the need for focusing on the neuronal 
nucleus as a therapeutic target. 
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rather than preventing the actual disease. There are 

many ongoing or terminated clinical trials that have 

failed to provide the desired effect; however, these 

disappointing outcomes while frustrating for the 

patients and their families, may hint that the senile 

plaques and tangles are not the cause of the disease, 

but they might be the consequence of unknown 

upstream events. 

 

An increasing body of literature indicate changes in 

neuronal nuclei that are associated with neuro-

degeneration. These include structural damages to the 

nucleus accompanied by changes in chromatin 

rearrangement and robust changes in gene expression 

and even interruption of vital functions such as 

nuclear-cytoplasmic transport of RNAs and proteins. 

Whether targeting these events may lead to 

identification of novel disease modifying treatments, 

remains unknown. Over the last few years, few labs 

have focused on structural and molecular events that 

occur in neuronal nuclei. In this mini-review I have 

summarized the latest discoveries on the nuclear 

changes related to the field of neurodegeneration. I 

specially have highlighted the pioneering reports from 

Dr. Bess Frost (Barshop Institute for Longevity and 

Aging Studies) with those from my own research 

group. These reports despite being from different 

angles and using different specimens, show a 

mechanistic link between oxidative stress and nuclear 

damage in the context of neurodegeneration. These 

data cumulatively provide a strong rationale for the 

need for more exploratory research into nuclear 

involvement in neurodegeneration. 

 

Neuronal nucleopathy: an overlooked aspect of 

neurodegeneration 

 

Research in the field of neurodegeneration has 

generally ignored the nucleus and instead has focused 

on neuronal cytoplasmic events. Evidence of nuclear 

involvement in AD has been shown by chromatin 

modifications and epigenetic changes that can be 

effectively inhibited by histone modifiers resulting in 

cognitive improvement in animal models [1]. The 

dynamic changes in neuronal nucleus and its response 

to various internal and external stressors in 

pathophysiology of AD have been recently reviewed 

[2]. The authors have detailed physical changes and 

stress-related responses including epigenetic changes 

that occur in neurons and will not be duplicated here. 

Changes in neuronal nucleus in AD also include 

interruption of mitochondrial-nuclear interaction 

through interruption of nuclear coded antioxidant 
proteins. Mitochondrial genome carries the genetic 

materials required for the oxidative phosphorylation 

machinery proteins, which are also the major source of 

ROS. The antioxidant machinery responsible for 

scavenging these ROS is provided by the nucleus. In 

neurons, high levels of ROS and mitochondrial activity 

are more important and must be closely regulated. In 

AD, decreased level of peroxisome proliferator–

activated receptor γ coactivator 1α (PGC-1α) a master 

regulator of antioxidant proteins, impairs the functional 

interaction between mitochondria and nucleus [3]. 

Another implication of nucleus in pathophysiology of 

AD is attributed to changes in neuronal nuclear pore 

components. Nuclear pore complexes have a 

sophisticated structure and are the gatekeepers for 

transport of proteins and RNAs from nucleus to 

cytoplasm and vice versa. Although small proteins 

(<40kDa) can freely cross the pore, larger proteins rely 

on transport using a special group of GTP-binding 

nuclear protein also known as Ran-GTP. This has been 

shown to be interrupted after exposure to oxidative 

stress [4] or following accumulation of hyper-

phosphorylated tau in several neurodegenerative 

diseases including ALS, Huntington’s and AD. For a 

detailed review see Eftekharzadeh et al. [5]. While 

biochemical assays have extensively shown the 

involvement of nuclear envelope in regulation of 

chromatin compaction and gene regulation, a physical 

link between tau and nuclear damage in pathology of 

AD was originally reported by Feany’s group [6], by 

identifying coffee-bean shaped neuronal nuclei when 

stained for lamin-B1 protein. Understanding the 

upstream molecular mechanisms causing the nuclear 

lamina damage, and the downstream events that are 

involved in pathophysiology of AD may lead to 

identifying new treatment strategies. 

 

The nuclear lamina, structure, and function 
 

The Nuclear Lamina (NL) is a protein-rich lattice at the 

interface of nuclear envelope and chromatin. Nuclear 

envelope is a continuation of endoplasmic reticulum on 

the cytoplasmic side, but it also continues inward and 

generates an intricate nucleoplasmic reticulum inside 

the nucleus in some eukaryotic cells including smooth 

muscle cells and cancer cells. It is composed of lamin 

A/C, lamin B1 and B2 (LB1/2) which bind to a vast 

array of lamin-binding proteins located in the inner 

nuclear envelope layer or on the chromatin. This 

strategic localization of NL provides a mechanical 

support for maintaining the nuclear shape and a 

regulatory gene expression for chromatin. Nuclear 

envelope is a highly dynamic structure and changes 

during cell cycle, cell death or in viral infections 

(reviewed here [7, 8]). The nuclear lamins and their 

binding proteins are closely regulated, and a 

combination of Unfolded Protein Response, Ubiquitin 

Protease System and Autophagy ensures their 

homeostasis [7]. 
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Damage to NL, or laminopathy, is commonly caused by 

mutations in Lamin A protein, but due to its low levels 

in neurons, these diseases often spare the brain. 

Although there are some reports indicating the increased 

levels of lamin-A in late stages of Alzheimer’s disease 

[9], lamin-B1 is reportedly more important for neurons 

[10, 11]. The high dependency of adult neurons to 

lamin-B1 is attributed to its regulatory role for 

antioxidant gene expression, which is mediated by its 

direct interaction with Oct-1, a key transcription factor 

for antioxidant response genes [12]. Downregulation of 

LB1 has been reported in aging, which is associated with 

decreased levels of Oct-1, resulting in increased 

oxidative damage [12]. Lamin-B1 depletion has also 

been linked to decreased hippocampal neurogenesis in 

aging [13]. The importance of lamin-B1 is more 

highlighted due to its regulatory role for chromatin 

architecture, as it has been shown to be responsible for 

binding to heterochromatin, the silenced sequences in 

cellular genome. Downregulation of lamin-B1 or its 

receptor results in heterochromatin detachment from 

inner nuclear membrane and induction of cellular 

senescence [14]. Reorganization of neuronal chromatin 

may also be responsible for abnormal cell-cycle re-entry 

in neurons that is reported in AD as another cause of 

neuronal loss [15]. 

 

Cause and consequence of nuclear damage 

 

The pioneering discovery describing a structural link 

between tauopathy and NL damage was reported in a 

model of Drosophila Melanogaster [16]. Pan neuronal 

expression of a mutant form of human Tau in 

Drosophila was associated with chromatin relaxation 

and increased apoptosis. While disruption of hetero-

chromatin formation was detrimental to neuronal health, 

enhancing heterochromatin formation increased 

neuronal survival. Frost and colleagues found that 

oxidative stress was also sufficient to drive loss 

heterochromatin’s decondensation [16], and that tau-

induced over-stabilization of actin-caused nuclear 

envelope invagination, depletion of lamin-B1, and 

heterochromatin relaxation [6]. Using RNA sequencing 

in Drosophila the group showed that tauopathy 

increased nuclear transport of toxic RNA to the 

cytoplasm and within the nuclear invagination but was 

inhibited using pharmacologic or genetic interventions 

that inhibit RNA transport, which alleviated cell death. 

The group also showed the pathophysiological 

relevance of this mechanism in mouse [17] and in AD 

patient-derived brain tissue [18]. Promising results on 

application of anti-viral drugs and calorie restriction in 

Drosophila provided hope for the possibility of 
reversing the harmful effects of Tau through changing 

lifestyle or potential pharmacological interventions. The 

underlying mechanism for this abnormal gene 

expression pattern was shown to be due to 

downregulation of inherent repressive systems such as 

heterochromatin-mediated retrotransposon silencing and 

piwi-interacting RNA that are responsible for clearance 

of transposable elements [18]. 

 

Further studies from Frost’s group have expanded 

our current knowledge on the downstream nuclear 

signaling mechanisms linking tau to neuro-

degeneration. A toxic decrease in nuclear Ca2+ and 

downregulation of cAMP-response element binding 

protein and its downstream dependent genes, was 

observed in the Drosophila tauopathy model and 

induced pluripotent stem cells from patients with 

sporadic AD. Pharmacological activation of big 

potassium channels effectively elevated nuclear 

calcium levels and suppressed tau toxicity [19]. 

 

The contribution of NL invagination in Tauopathy in 

Frost’s lab, has also been expanded to include the 

interruption of normal cellular activities that are 

especially important for maintaining neuronal health. 

Nuclear envelope invagination affects RNA export into 

the cytoplasm, as shown by accumulation of 

polyadenylated RNA within the nuclei and in proximity 

to the invaginated envelope. This is shown to be 

associated with neurodegeneration [20]. A question 

remains as to whether accumulation of these RNA is 

due to downregulation of RNA housekeeping systems 

such as nonsense-mediated RNA decay (NMD) in 

nuclei, or changes in nuclear pore transport. Although it 

was originally postulated that NMD is a regulatory 

mechanism aimed at degradation of mutated or pre-

mature RNA, recent advances show its involvement in 

regulation of gene expression in normal conditions. 

Frost’s research showed that pharmacological 

approaches to increase NMD activity effectively 

suppressed tau toxicity [21]. Further research into 

tauopathy mechanisms in Frost’s lab showed a potential 

impact of Tau toxicity on decreased synaptic activity in 

Drosophila. They have recently reported that activity 

regulated cytoskeleton associated protein (ARC), which 

is upregulated in the brain of AD patients, is not 

effectively transported into the synaptic vesicles and 

presynaptic membrane and instead is accumulated in the 

nucleus and neuropil. Genetic reduction of Drosophila 

ARC protein was shown to be neuroprotective against 

tauopathy [22]. A summary of nuclear events is shown 

in Figure 1. 

 

Although the reports from Frost’s lab provide a deep 

understanding into the cause and consequences of NL 

invagination and showed the potential interventions that 
can alleviate neurodegeneration, the underlying 

molecular mechanisms mediating NL invagination have 

not been adequately examined. My lab has focused on 
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identification of protease systems that can cause lamin 

B1 degradation and NL invagination. We have shown 

that NL invagination is not unique to Tauopathy and 

reported that exposure of human neuroblastoma cells to 

serum deprivation may also result in mild NL damage 

[23]. Inhibition of Thioredoxin1 (Trx1) system in these 

conditions exacerbated NL damage and was associated 

with degradation of lamin B1. Trx1 is a major cellular 

redox protein responsible for maintaining many cellular 

proteins in their optimal physiologic activities. Trx1 has 

been best known for its anti-apoptosis activity that is 

mediated through its inhibitory effect for Apoptosis 

Signal Kinase-1 (Ask1) and Caspase-3 activation [24]. 

Of particular interest, Trx1 levels have decreased in the 

brains of AD patients [25]. Our group showed that Trx1 

downregulation was associated with caspase-6 

activation and its inhibition was prevented by caspase-6 

inhibitor. Further examination of this system confirmed 

that only inhibition of Trx1, but not glutathione was 

able to mediate caspase-6 activation and NL damage. 

These results were also confirmed in the widely used 

3xTg mouse model of AD [23]. Caspase-6 is also 

considered an early marker of AD that might contribute 

to neurodegeneration and memory deficit as shown in a 

transgenic mouse model overexpressing caspase-6 with 

memory impairment. Inhibition of caspase-6 in this 

model effectively inhibited the memory loss [26]. The 

depletion of Trx1 system was also sufficient to interrupt 

autophagy lysosomal in neural cells [27], which is also 

a prominent finding in AD pathophysiology. 

 

A second protease enzyme was subsequently identified 

by my team [28]. Using the amyloid beta 42 toxicity 

(Aβ42) model in primary hippocampal and cortical 

neurons, as well as human neuroblastoma cells, we 

showed that cathepsin L is also capable of lamin 

B1 digestion, and this cleavage pattern is distinct from 

that of caspase-6. NL invagination was also evident 

in this model, indicating that NL invagination is not 

limited to tauopathy model. Aβ42 toxicity model also 

showed similar histone modifications to human post- 

mortem tissue (Islam et al., 2022). Interestingly, while 

in 3xTg mice, both unique patterns of NL cleavage by 

caspase-6 and cathepsin L were observed, the Aβ42 

toxicity model and human brain tissue from AD 

patients only showed the cathepsin L mediated 

fragment. We hypothesized that the lack of caspase-6 

mediated cleavage of lamin B1 in post-mortem AD 

tissues might be due to cathepsin L proteolytic 

degradation of caspase-6. Using a cell-free enzymatic 

assay the group showed that caspase-6 is in fact a 

substrate of cathepsin L [28]. 

 

 
 

Figure 1. Schematic Diagram summarizing the events in neuronal nuclear invagination in AD: Causes and consequences. 
Oxidative stress and Tau-hyperphosphorylation have been shown to be responsible for nuclear envelope invagination in neurons. Abnormal 
actin bundling due to tau-hyperphosphorylation and increased oxidative stress result in changes in nuclear lamin and degradation of 
nuclear lamina proteins by caspase-6 and cathepsin L that are upregulated in AD. The molecular events downstream of nuclear invagination 
are mediated by changes in chromatin compaction and abnormal gene transcription, including activation of transposons and emergence of 
ancient retroviruses. Experimental evidence indicate that attenuation of these events may represent new therapeutical approaches. 
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The functional importance of two different proteolytic 

degradation for lamin by caspase-6 and cathepsin L is not 

clear; however, we proposed that caspase-6 might be an 

early player in induction of NL invagination following 

Trx1 depletion, while cathepsin L activation occurs in 

later stages of cell death in AD after induction of 

lysosomal permeability. Alternatively, the two different 

mechanisms may occur concurrently in different cell 

types, although this remains to be examined. 

 

Overall, since the need for identification of new 

treatments for treatment of neurodegenerative diseases 

remains a high priority in biomedical research, the 

growing literature on nuclear involvement in 

pathophysiology of these diseases provides a strong 

rationale for including the nucleus as a therapeutic 

target. The long-lasting events associated with neuro-

degenerative diseases are indicative of disruption of 

ongoing homeostatic programs that are ultimately 

regulated by gene expression in the nucleus, and 

therefore understanding the upstream events leading to 

and following the nuclear events may hold the key to 

new therapies that can modify the disease’s course. It is 

now well documented that neurodegeneration starts 

many years before its definitive clinical diagnosis, and 

therefore until identification of biomarkers associated 

with the disease, non-pharmacological preventive 

approaches must be highly considered. Evidence of 

physical activity to induce neurogenesis in humans and 

calorie restrictions to limit nuclear laminopathy effects 

in Drosophila are good examples on how changing our 

lifestyle is needed and may be effective for decreasing 

the chance of developing diseases such as AD. 
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