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ABSTRACT 

As one of the prevalent tumors worldwide, gastric cancer (GC) has obtained sufficient attention in its clinical 
management and prognostic stratification. Senescence-related genes are involved in the tumorigenesis and 
progression of GC. A machine learning algorithm-based prognostic signature was developed from six 
senescence-related genes including SERPINE1, FEN1, PDGFRB, SNCG, TCF3, and APOC3. The TCGA-STAD cohort 
was utilized as a training set while the GSE84437 and GSE13861 cohorts were analyzed for validation. Immune 
cell infiltration and immunotherapy efficacy were investigated in the PRJEB25780 cohort. Data from the 
genomics of drug sensitivity in cancer (GDSC) database revealed pharmacological response. The GSE13861 and 
GSE54129 cohorts, single-cell dataset GSE134520, and The Human Protein Atlas (THPA) database were utilized 
for localization of the key senescence-related genes. Association of a higher risk-score with worse overall 
survival (OS) was identified in the training cohort (TCGA-STAD, P<0.001; HR = 2.03, 95% CI, 1.45–2.84) and the 
validation cohorts (GSE84437, P = 0.005; HR = 1.48, 95% CI, 1.16–1.95; GSE13861, P = 0.03; HR = 2.23, 95% CI, 
1.07–4.62). The risk-score was positively correlated with densities of tumor-infiltrating immunosuppressive 
cells (P < 0.05) and was lower in patients who responded to pembrolizumab monotherapy (P = 0.03). Besides, 
patients with a high risk-score had higher sensitivities to the inhibitors against the PI3K-mTOR and 
angiogenesis (P < 0.05). Expression analysis verified the promoting roles of FEN1, PDGFRB, SERPINE1, and 
TCF3, and the suppressing roles of APOC3 and SNCG in GC, respectively. Immunohistochemistry staining and 
single-cell analysis revealed their location and potential origins. Taken together, the senescence gene-based 
model may potentially change the management of GC by enabling risk stratification and predicting response 
to systemic therapy. 

www.aging-us.com AGING 2023, Vol. 15, No. 8 

mailto:sunhao68@sina.com
https://orcid.org/0000-0003-2805-6826
mailto:menglei@xjtu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 2892 AGING 

INTRODUCTION 

Gastric cancer is one of the most prevalent tumors, with 

the fifth-highest incidence and fourth-highest mortality 

rate all over the world [1]. Exploring prognostic and 

therapeutic biomarkers in GC is of great importance and 

urgency. Cancer is an aging disease and cellular 

senescence plays an essential role in promoting cancer 

development and tumor progression [2], suggesting the 

great potential of senescence-related genes in predicting 

prognosis and pharmacological response. 

In mammalian cells, stimulated oncogenes accompanied 

by inactivated tumor-suppressor genes (TSGs) are 

crucial inducements of proliferative stress and induction 

of cellular senescence, which therefore limit tumor 

growth [3–5]. For instance, expression of HRASG12V is 

usually associated with upregulated senescence-related 

genes including p53, p19ARF, p16INK4a, Pml, and retino-

blastoma, which work as an obstructive factor for tumor 

initiation [6, 7]. However, further stimulation of onco-

genes or deactivation of TSGs elicits bypass of the 

previous senescence, contributing to tumorigenesis [8, 9]. 

Senescence-related secretory phenotype (SASP) refers 

to the ability of senescent tumor cells to actively 

produce a wide variety of proteins, many of which 

are pro-inflammatory cytokines or pro-inflammatory 

substances in themselves [10, 11]. SASP is a double-

edged sword due to its both antitumorigenic and cancer-

promoting impact by propagating senescence to other 

tumor cells and recruiting immune cells to clear 

senescence tumor cells, respectively [12–15]. Given the 

regulatory effect of tumoral senescence on tumor-

infiltrating immune cells, we hypothesized that the 

activation of senescence-related genes may be involved 

in immune cell infiltration and thereby affect 

immunotherapy efficacy in GC. 

Here, based on senescence-related genes, we sought to 

develop a model for the prognostic stratification of GC. 

A favorable prognosis was observed in the low-risk 

group, together with low sensitivities to the inhibitors 

against the PI3K-mTOR and angiogenesis, low 

densities of immunosuppressive tumor-infiltrating 

immune cells, and a high response rate to pembrolizu-

mab monotherapy. 

RESULTS 

Analysis of differentially expressed genes for potential 

prognostic signature 

Baseline characteristics of the patients used in the 

training and validation sets were depicted in 

Supplementary Table 1. We first tried to identify 

senescence-related differentially expressed genes 

(DEGs) in patients with GC. In total, 1,396 DEGs 

between tumor and non-tumorous tissues in the cancer 

genome atlas-stomach adenocarcinoma (TCGA-STAD) 

cohort were identified (Figure 1A). Of these, 36 genes 

were senescence-related genes (Figure 1B). The 

chromosomal locations of these senescence-related 

DEGs are shown in Figure 1C. We also demonstrated 

the mutations in the 36 senescence-related DEGs in GC 

patients and the top 20 most mutated senescence-related 

DEGs in Figure 1D. The mutational frequency of TP53 

was the highest (46%) followed by PIK3CA (16%, 

Figure 1D). 

According to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis, these DEGs were 

mainly enriched in cell cycle regulation, homologous 

recombination, base excision repair, and P53 pathway 

(P < 0.05, Figure 1E). As expected, the 36 senescence-

related DEGs were involved in DNA replication, 

telomere maintenance, negative cell cycle regulation, 

and DNA metabolism (P < 0.05, Figure 1F), which are 

consist in pathways related to cell cycle and cellular 

senescence. These findings collectively suggested the 

potential association between the senescence-related 

DEGs and the tumorigenesis of GC. 

Prognostic model construction and validation 

Of the 36 senescence-related DEGs, six senescence-

related DEGs were identified due to their association 

with overall survival (OS) as continuous variables in the 

TCGA-STAD cohort (P < 0.05, Figure 2A, 

Supplementary Table 2). For instance, poorer OS was 

observed in patients with higher expression of 

SERPINE1 (P < 0.001; hazard ratio (HR) = 1.93; 95% 

confidence interval (95% CI), 1.38–2.71; Figure 2B), 

while patients with high expression of FEN1 exhibited 

improved OS (P = 0.003;HR, 0.61; 95% CI, 0.44–0.85; 

Figure 2C). 

Based on the mRNA levels of these six genes, a 

risk-score was then developed and defined as follows: 

risk-score = (0.196 × SERPINE1) + (0.120 × APOC3) + 

(0.090 × SNCG) + (0.015 × PDGFRB) – (0.128 × 

TCF3) – (0.133 × FEN1). Assigned with a risk-score, 

patients were stratified into high- or low-risk groups by 

the median value in the cohort. Patients in the high-risk 

group had higher expression of SERPINE1, APOC3, 

PDGFRB, and SNCG and lower expression of FEN1 

and TCF3 (P < 0.001, Figure 2D). In the TCGA-STAD 

cohort, the low-risk group exhibited improved OS (P < 

0.001; HR = 2.03; 95% CI, 1.45–2.84; Figure 2E). The 

1-, 3-, and 5-year area under curves (AUCs) of the risk-

score were 0.639, 0.678, and 0.681, respectively (Figure 

2F). These results were further verified in two 
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validation cohorts (GSE84437 and GSE13861). Patients 

with higher risk had higher levels of SERPINE1, 

APOC3, PDGFRB, and SNCG, and lower FEN1 and 

TCF3 expressions (GSE84437: Figure 2G, GSE13861: 

Figure 2J, P < 0.01), together with worse OS 

(GSE84437: P = 0.005; HR = 1.48, 95% CI, 1.13–1.95; 

Figure 2H; GSE13861: P = 0.03; HR = 2.23, 95% CI, 

1.07–4.62; Figure 2K). The signature predicted 1-, 3-, 

and 5-year OS with AUCs of 0.608, 0.590, and 0.606 in 

the GSE84437 cohort, and 0.705, 0.583 (Figure 2I), and 

0.586 in the GSE13861 cohort (Figure 2L), 

respectively. 

Figure 1. Identification of the candidate senescence-related DEGs in the TCGA-STAD. (A) Differentially expressed genes depicted 
by the volcano plot (red, up-regulated; blue, down-regulated in GC). (B) Heatmap depicting the mRNA levels of the 36 senescence-related 
DEGs between GC tissues and adjacent normal tissues. (C) Locations of the 36 senescence-related DEGs in chromosomes (red, up-
regulated; blue, down-regulated in GC). (D) The mutation frequency of top 20 DEGs. (E) Bubble diagram demonstrated the top 6 enriched 
KEGG pathways of the 36 senescence-related DEGs. (F) GO enrichment analysis of the 36 senescence-related DEGs via biological process 
(BP), cellular component (CC) and molecular function (MF). 
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Univariable and multivariable Cox regression analysis 

was conducted to examine the independence of the 

novel prognostic signature. After adjusted for key 

covariates including TNM stage and age, the signature 

remained robust in OS differentiation in the TCGA-

STAD cohort (P < 0.001; HR = 2.23, 95% CI, 1.57–

3.12; Table 1), the GSE84437 cohort (P = 0.02; HR = 

1.40, 95% CI, 1.07–1.85; Table 1), and the GSE13861 

Figure 2. Model construction and validation. (A) Potential prognostic valued of each senescence-related genes in the overall survival 

(OS) of gastric cancer (GC). (B, C) Kaplan-Meier curves comparing the OS between patients with high and low expressions of SERPINE1 (B) 
and FEN1 (C), respectively. (D–L) Heatmap, Kaplan-Meier curves, and ROC curves depicting the gene expression patterns, survival status, 
and prognostic valued of the model in the TCGA-STAD (D–F), the GSE84437 (G–I), and the GSE13861 (J–L), respectively. 
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Table 1. Univariable and multivariable Cox regression in TCGA-STAD and GSE84437 cohorts. 

Parameter 
Univariable analysis Multivariable analysis 

HR (95% CI) P value HR (95% CI) P value 

TCGA-STAD cohort 

Age (≥65 vs. <65) 1.49 (1.06–2.10) 0.02 1.67 (1.17–2.37) 0.01 

Sex (male vs. female) 1.35 (0.95–1.94) 0.10 

Tumor stage (I and II vs. III and IV) 1.65 (1.09–2.49) 0.02 1.78 (1.16–2.74) 0.01 

EBV infection (positive vs. negative) 0.94 (0.48–1.85) 0.86 

MSI (MSI-H vs. MSI-L and MSS) 1.94 (0.53–7.11) 0.19 

TP53 (mutation vs. wildtype) 0.65 (0.32–0.84) 0.06 

Asian (yes vs. no) 0.59 (0.37–0.95) 0.03 0.54 (0.33–0.87) 0.01 

SMARCA4 (mutation vs. wildtype) 0.45 (0.16–1.28) 0.13 

Risk score (high-risk vs. low-risk) 2.03 (1.45–2.84) <0.001 2.23 (1.57–3.12) <0.001 

GSE84437 cohort 

Age (≥65 vs. <65) 1.37 (1.04–1.81) 0.02 0.73 (0.56–0.97) 0.03 

Sex (male vs. female) 1.24 (0.91–1.77) 0.17 

Tumor stage (I and II vs. III and IV) 3.71 (1.90–7.24) <0.001 0.28 (0.14–0.54) <0.001 

Risk score (high-risk vs. low-risk) 1.48 (1.13–1.95) 0.005 1.40 (1.07–1.85) 0.02 

GSE13861 cohort 

Age (≥65 vs. <65) 1.20 (0.58–2.52) 0.62 

Sex (male vs. female) 1.27 (0.59–2.73) 0.55 

Tumor stage (I and II vs. III and IV) 7.70 (2.32–25.54) <0.001 7.12 (2.14–23.70) <0.001 

Risk score (high-risk vs. low-risk) 2.24 (1.04–4.83) 0.04 1.87 (0.87–4.03) 0.1 

Abbreviations: EBV: Epstein-Barr virus; MSI: microsatellite instability; MSS: microsatellite stability. 

cohort (P = 0.10; HR = 1.87, 95% CI, 0.87–4.03; Table 1). 

The results concerning the independence of the six-gene 

signature were consistent between the three cohorts, 

indicating the robustness of our model in predicting 

prognosis. 

Role of the senescence-related risk-score in 

mutational events, immunoinfiltration, and response 

to systemic therapy 

We further explored the underlying difference between 

risk groups based on the senescence-related DEGs. 

Higher-risk patients had fewer mutations in LRP1B, 

SYNE1, and ARID1A (Supplementary Figure 1A, 1B), 

while those with lower risk-scores obtained a increased 

tumor mutational burden (TMB) (P < 0.001, 

Supplementary Figure 1C), suggesting that the low-risk 

group might be immune-sensitive since a high TMB 

might be linked to an inflammatory tumor immune 

microenvironment (TIME) and preferable sensitivity to 

immune checkpoint inhibitors (ICIs) [16]. Thus, we 

further studied the correlations of the absolute densities 

of 22 types of immune cells with the signature. Positive 
correlation was identified between the risk-score and 

the infiltration levels of the immune cells related to an 

immunosuppressive microenvironment (Figure 3A), 

e.g., M2 macrophage (Rho = 0.36, P < 0.001), resting

memory CD4+ T cell (Rho = 0.33, P < 0.001), naïve B

cells (Rho = 0.18, P = 0.003), and resting mast cells

(Rho = 0.16, P = 0.01). Consistent with the risk-score,

expression of SERPINE1, PDGFRB, and SNCG were

also positively associated with M2 macrophage, resting

memory CD4+ T cell, and naïve B cells, while

expression of FEN1 and TCF3 were negatively

associated with M2 macrophage, resting memory CD4+

T cell, and resting mast cells (Figure 3A).

Given this, we further investigated the potential of the 

risk-score in predicting response to ICIs based on a 

cohort of patients with advanced GC treated with 

pembrolizumab monotherapy. Patients who responded to 

pembrolizumab had a lower risk-score than those who 

didn’t (P = 0.03, Figure 3B), and an association between 

a low risk-score and objective response was observed 

(AUC = 0.707, 95% CI, 0.517–0.897; Figure 3C). 

Besides ICIs, we examined the correlations between the 

risk-score and the anti-tumor efficacy of multiple 

treatments in GC cell lines (Figure 3D). As for 
chemotherapeutic drugs, a high risk-score was 

correlated with decreased sensitivities to gemcitabine, 

doxorubicin, and etoposide, etc. As for targeted agents, 
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the correlations were observed between a high risk-

score and increased sensitivities to the inhibitors 

targeting phosphatidylinositol 3-kinase /mammalian 

target of rapamycin (PI3K/mTOR), poly ADP-ribose 

polymerase (PARP), Polo-like kinase (PLK), Src, and 

vascular endothelial growth factor receptor (VEGFR). 

Taken together, these results may indicate the role of 

the risk-score in predicting response to systemic therapy 

in GC. 

Expression of the genes involved in the senescence-

related risk-score 

To further explore the potential roles of the key genes 

involved in the senescence-related risk-score in the 

tumorigenesis and development of GC by comparing 

the expression of SERPINE1, FEN1, PDGFRB, SNCG, 

TCF3, and APOC3 between tumor and normal tissues. 

Based on the mRNA expression profile of GC tumor 

Figure 3. Correlation between the six-gene signature and tumor immune features. (A) Correlation between immune infiltration 

and the risk-score by Spearman analysis. (B) Comparison of the risk-score between responders and non-responders to immunotherapy in 
PRJEB25780 cohort. (C) Time-dependent ROC curve for the risk-score in predicting response to immunotherapy (D) Heatmap showing the 
Spearman analysis results of the risk-score in drug sensitivity. 



www.aging-us.com 2897 AGING 

and adjacent normal tissues from the GSE13861 and 

GSE54129 cohorts, FEN1, PDGFRB, SERPINE1, and 

TCF3 were up-regulated in tumor tissues (Figure 4A), 

which coincide with their risk roles in the senescence-

related signature. In contrast, the lower expression 

levels of APOC3 and SNCG in tumor (Figure 4A), 

together with their protective roles in the prognostic 

signature, have further revealed their potential 

suppressor functions in GC. 

Besides, the data of single-cell sequencing and 

immunohistochemistry (IHC) staining revealed the 

distribution of the 6 senescence-based risk-score-related 

genes in GC. According to the single-cell RNA 

sequencing profile of the GSE134520 dataset, a total of 

9 cell types were identified (Figure 4B). APOC3 was 

mainly expressed in pit mucous cells, while SNCG 

expression was enriched in myofibroblasts and tumor 

cells. The expressions of FEN1 and TCF3 were mainly 

Figure 4. Validation of the key genes expression in GC tissue and single cell localization. (A) Expression of SERPINE1, FEN1, 
PDGFRB, SNCG, TCF3, and APOC3 between GC tumor and normal tissues in the GSE54129 cohort. (B) Seven cell types identified in the 
gastric cancer GSE134520 dataset by single cell RNA sequencing (scRNA-seq) profiles and the calculation of uniform manifold 
approximation and projection (UMAP). (C–H) Immunohistochemistry staining in stomach normal tissues (left, upper) and gastric tumor 
tissues (left, lower), and scRNA-seq expression levels of APOC3 (C), FEN1 (D), PDGFRB (E), SERPINE1 (F), SNCG (G), and TCF3 (H), 
respectively. 
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enriched in pit mucous and grand mucous cells, while 

SERPINE1 was mainly expressed in tumor cells. 

Expression of PDGFRB was comparable in almost all 

cell types except mast cells. (Figure 4C–4H). 

DISCUSSION 

Studies about GC, one of the most prevalent 

gastrointestinal (GI) malignancies, have increasingly 

concentrated on the prognostic implications of several 

signatures [17, 18]. Based on the senescence-related 

DEGs, a novel signature was constructed herein, which 

can realize patient stratification for the prognosis of GC. 

An improved OS was observed in patients with low-risk 

scores. In addition, the high-risk group exhibited a 

higher abundance of immunosuppressive cells, 

suggesting that they might benefit from ICIs. Indeed, 

risk-scores were lower in patients who responded to 

immunotherapy compared with those who did not 

respond in the PRJEB25780 cohort. Altogether, we 

developed a six-senescence-gene prognostic model, 

which can not only differentiate the prognosis but also 

guide potential treatment. 

In earlier research, prognostic models for GC patients 

were developed using sequencing data and 

clinicopathologic indicators [19–22]. Clinicopathologic 

features such as the tumor stage, histologic grade, 

abnormal tumor markers, and lymphovascular space 

invasion are widely used to evaluate the prognosis of 

GC patients [23]. Utilizing gene expression patterns of 

GC patients from the TCGA and GEO databases, we 

were able to find a trustworthy indicator of GC 

prognosis. Our prognostic signature is of great potential 

to be easily applied to clinical practice for 

individualized prediction of GC survival. In addition, 

our research has another advantage. The six DEGs offer 

a promising assay, which is practical in actual clinical 

settings due to a low cost, short turn-around time, and 

no reliance on bioinformatics expertise. Reverse 

transcription-polymerase chain reaction (RT-PCR) can 

be easily implemented in the clinical setting, making it 

attractive for an easier clinical translation. The six 

DEGs observed in our study were of significant 

prognostic value, allowing the risk stratification of GC 

patients. 

The biological features of GC may aid in predicting 

which tumors will benefit from chemotherapy and 

other targeted agents [24]. Compared to the traditional 

prognostic models, our model can provide additional 

biological features, such as TIME. Evidence in recent 

years has repeatedly highlighted that the interactions 

between cancer cells and TIME affect tumorigenesis 

[25, 26]. Prognostic signatures related to the TIME 

possess the considerable prospect to explore 

innovative molecular targets for immunological 

therapy and contribute to personalized patient care. 

Generally, the immune response is one of the most 

important results of cellular senescence [27, 28], which 

induces the enrichment of immune cells and promotes 

tumor growth [29]. The regulation of the key 

senescence-related genes in TIME, however, is largely 

unknown in GC. In this study, the high-risk group 

exhibited more intensive infiltration of M2 

macrophages and worse prognosis, which coincides 

with two earlier studies revealing the role of M2 

macrophages in tumor malignant features including 

migration and invasion [30, 31]. Another previous 

study revealed that the activated and resting T cells 

CD4 memory were enriched in head and neck cancer 

samples with high- and low-TMB, respectively [32], 

which is consistent with our results. Additionally, of 

the 6 genes involved in the signature, most were 

important for the chemotaxis of leukocytes, 

angiogenesis of tumor tissue, and systematic immuno-

logical functions [33–36]. 

Further, the drug sensitivity analyses add evidence for 

our model’s association with cancer and its potential 

clinical application. The PI3K-mTOR signaling 

pathway plays an important role in cancers and its 

inhibitors have shown efficacy in clinical trials [37]. 

The PI3K-mTOR inhibitors enhance nab-paclitaxel 

antitumor response in GC [38]. Our model based on the 

six DEGs can be used for risk stratification in GC. 

Furthermore, it may guide the clinical application of 

PI3K-mTOR inhibitors. Besides, there is not much 

evidence to support the use of pembrolizumab in 

individuals with untreated GC who might not benefit 

from chemotherapy [39]. Given this, our study 

demonstrated the utility of the six-DEG signature as a 

model to identify the GC patients who may benefit from 

pembrolizumab. The associations between the risk-

score and immune landscape highlight the need to 

further understand the mechanisms of these DEGs for 

the development of treatment strategies. 

As for limitations, the retrospective nature of this 

study has determined the limited capacity of the 

model, and prospective validation in well-designed 

cohorts is required to demonstrate its clinical value. 

Despite the consistent results among the survival 

analysis of TCGA and GEO cohorts, gene expression 

levels, IHC staining, and single-cell sequencing 

results, in vitro and in vivo experimental validation 

were highly recommended to examine the significance 

of the risk-score in GC and other cancers. Besides, 

further promising studies are recommended to explore 
the linkage between the 6 senescence-related genes and 

response to chemotherapeutic and targeted chemicals in 

animal models. 
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In summary, a novel and robust prognostic model 

consisting of six senescence-related genes was 

developed and validated in patients with GC. 

Additionally, the score of this model was associated 

with TIME and responses to chemotherapeutic, 

targeted, and immunotherapeutic therapies. The 

senescence gene-based model can potentially change 

the management of GC by enabling risk stratification 

and predicting response to systemic therapy. 

MATERIALS AND METHODS 

Data and study design 

The transcriptomic, genomic, and survival data of 348 

GC and 31 controls were retrieved from the TCGA-

STAD (Data Release 31.0) cohort database. The 

transcriptomic and clinical data of 431 GC samples and 

45 GC patients treated with pembrolizumab mono-

therapy were collected from the GSE84437 and the 

PRJEB25780, respectively. The expression matrix of 

tumor and normal tissues from the GSE54129 cohort 

(111 GC samples and 21 normal controls) and the 

GSE13861 cohort (66 GC samples and 19 normal 

controls), respectively. The single-cell RNA sequencing 

data of 13 fresh human tissue samples from nine GC 

patients were retrieved from the GSE134520 dataset. 

The process and specific cohorts used in the analysis 

were depicted in Figure 5. 

Analysis of senescence-related DEGs and functional 

enrichment 

The gene expression profiles were analyzed in tumorous 

and normal samples of the TCGA-STAD cohort via the 

“limma” R package (Version 3.28.14), and genes with a 

false discovery rate (FDR) <0.05 were selected as 

DEGs. Gene ontology (GO) and KEGG analysis were 

conducted for functional enrichment of the DEGs 

utilizing the “clusterProfiler” R package (Version 

3.0.4). 

Model development and verification 

The prognostic value of every single senescence-related 

gene was examined by univariable cox regression using 

the R package “survival” according to the log2 

(Fragments Per Kilobase Million + 1) value of each 

gene. The LASSO method (the “glmnet” R package, 

Version 4.3) was utilized for model construction in the 

training set (the TCGA-STAD cohort) based on the 

DEGs with a significant association with OS [40]. The 

number of genes input for model construction was 

selected according to the minimum penalty parameter 

Figure 5. Study design. 



www.aging-us.com 2900 AGING 

(λ) by ten-fold cross-validation. The risk-score was 

determined as follows: 
n

i

Risk score expi βi
=

= 
1

“n” depicted the number of genes involved in the 

model, while“expi” and “βi” represents the mRNA level 

and regression coefficient of gene i, respectively. 

Assigned with a risk-score, patients were stratified into 

high- or low-risk groups by the median value in the 

cohort. The R package “survival” (version 3.4.0) was 

applied for survival analysis comparing the OS between 

the high- and low-risk groups. The prognostic value of 

the model was evaluated with the AUC and C-index 

values, and visualized by the receiver operating 

characteristic (ROC) curve by the “timeROC” R 

package (Version 0.4). The GSE84437 and the 

GSE13861 cohorts were utilized for validation. 

Tumor immune infiltration analysis 

Based on the cell types categorized by the 

deconvolution approach in CIBERSORT [41], the 

density of immune cells in tumor was identified. [42]. 

The potential association of the risk-score and TIME 

was analyzed by Spearman correlation. 

Association analysis of the risk-score and drug 

sensitivities  

We analyzed the response to pembrolizumab monotherapy 

in GC patients from the PRJEB25780 cohort. Based on 

the genomics of drug sensitivities in cancer (GDSC) 

database (https://www.cancerrxgene.org), we calculated 

the correlations (Spearman correlation analysis) of the 

half maximal inhibitory concentration (IC50) with the 

mRNA expression and the risk-score. The results are 

obtained by the “pRRophetic” (Version 4.0.2) and the 

“ggplot2” (Version 3.3.6) R packages. P values were 

adjusted by the FDR method. 

Expression verification and localization of the 

senescence-related genes 

The mRNA levels of the 6 genes involved in the 

signature were compared between GC tumors and normal 

tissues from two more cohorts (GSE54129, 111 GC and 

21 controls; GSE13861, 66 GC and 19 controls), together 

with the expression levels compared among different cell 

types in GC tissues from the GSE134520 dataset, with 

annotation from the Tumor Immune Single-cell Hub 

(TISCH) database for cell identification. IHC staining 

figures in GC tissues and normal gastric samples were 

obtained from The Human Protein Atlas database 

(THPA, https://www.proteinatlas.org/). 

Statistical analysis 

Statistical results generated in this study were 

conducted in R (Version 3.6.0), SPSS (Version 23.0), 

and GraphPad Prism (Version 8). Wilcox test was used 

to analyze the association between the senescence-

related gene signature and immune characteristics. 

Survival analyses were conducted by the Log-rank test, 

with visualization by the Kaplan-Meier (KM) curves. 

The independence of the prognostic signature was 

verified by univariable and multivariable Cox 

regression, with the input of significant variables into 

the multivariable analysis by P < 0.05. The accuracy of 

the signature was examined and depicted by the area 

under the curve (AUC). If not stated above, P < 0.05 

illustrated statistical significance. 
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SUPPLEMENTARY MATERIALS 

Supplementary Figure 

Supplementary Figure 1. Somatic variants and TMB in the TCGA cohort. (A) Oncoprint plot displaying the top 20 frequently 

mutated genes in low-risk groups. (B) Oncoprint plot displaying the top 20 frequently mutated genes in high-risk groups. (C) Somatic TMB 
between high- and low-risk groups in the TCGA cohort. Abbreviation: TMB: tumor mutational burden. 
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Supplementary Tables 

Supplementary Table 1. Clinical cohorts analyzed in this study. 

TCGA-STAD GSE84437 GSE13861 

No. of patients 348 431 64 

Sex 

Female 123 (35.34%) 137 (31.79%) 19 (29.69%) 

 Male 225 (64.66%) 294 (68.21%) 45 (70.31%) 

Age 

<65 149 (42.82%) 267 (61.95%) 39 (60.94%) 

≥65 196 (56.32%) 164 (38.05%) 25 (39.06%) 

Stage 

I 46 (13.22%) 31 (16.32%) 12 (18.75%) 

II 110 (31.61%) 29 (15.26%) 11 (17.19%) 

III 144 (41.38%) 71 (37.37%) 25 (39.06%) 

IV 34 (9.77%) 59 (31.05%) 16 (25.00%) 

Molecular classification 

EBV 26 (7.47%) Not available Not available 

CIN 180 (51.72%) Not available Not available 

MSI 57 (16.38%) Not available Not available 

GS 63 (18.1%) Not available Not available 

H. pylori infection

Negative 139 (39.94%) Not available Not available 

Positive 18 (5.17%) Not available Not available 

With radiation therapy 

No 229 (65.8%) Not available Not available 

Yes 45 (12.93%) Not available Not available 

Abbreviations: EBV: Epstein-Barr virus; CIN: chromosomal instability; MSI: microsatellite instability; GS: genomic stability. 

Supplementary Table 2. The six DEGs used in the risk-score model. 

The six DEGs used in the risk-score model 

Signature Description Entrez gene summary 

SERPINE1 
Serpin peptidase inhibitor, clade E 
(nexin, plasminogen activator 
inhibitor type 1), member 1 

SERPINE1 encodes a member of the serine proteinase inhibitor (serpin) superfamily, 
which is the principal inhibitor of tissue plasminogen activator (tPA) and urokinase 
(uPA). 

FEN1 
Flap structure-specific 
endonuclease 1 

FEN1 is a major component of the base excision repair pathway for DNA repair 
systems and plays important roles in maintaining genomic stability through DNA 
replication and repair. 

PDGFRB 
Platelet-derived growth factor 
receptor, beta polypeptide 

PDGFRB binds to platelet-derived growth factor (PDGF)-B and -D, and is highly 
expressed in fibroblasts, pericytes and other cells of mesenchymal origin. 

SNCG 
Synuclein, gamma (breast cancer-
specific protein 1) 

SNCG is a chaperone protein and exists mainly in the cytoplasm. SNCG confers 
chemoresistance, and is a potential unfavorable biomarker for multiple types of cancer. 

TCF3 Transcription factor 3 

TCF3 (also known as Tcf7l1) belongs to the Lef/Tcf family of transcription factors, 
all of which contain a highly conserved HMG domain that binds to a conserved 
recognition sequence, as well as domains that interact with the transcriptional 
activator β-catenin and Groucho/TLE-family corepressors. 

APOC3 Apolipoprotein C-III 

APOC3 is a potential prognostic biomarker for several types of malignant tumors, 
which is reported for having an association with the lipoprotein-associated 
phospholipase A2, catalyzing the hydrolysis of oxidized low-density lipoprotein, 
together with releasing inflammatory products and being found in the ruptured 
plaques of human atherosclerotic lesions. 




