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INTRODUCTION 
 

Gastric cancer (GC) is the fifth most common malignancy, 

with 1,089,103 new cases and 768,793 new deaths being 

reported globally in 2020 alone [1]. Due to the insidious 

onset of GC and lack of overt early symptoms, most 

patients are already in the advanced stage at the time of 

diagnosis, resulting in missed opportunities for surgical 

resection. Despite the fact that development of treatment 

approaches for advanced GC has seen much improvement 

in recent years, the 5-year survival rate of <20% is still 

clearly unsatisfactory [2]. In addition, the high degree of 

heterogeneity of GC leads to vastly different prognoses 

and therapeutic responses. Thus, there is an urgent need to 

develop prognostic signatures to predict outcomes and 

guide individualized treatments. 

 

The tumor microenvironment (TME) comprises tumor 

cells, resident and recruited host cells (cancer-related 

stromal cells and immune cells), and secreted products 
of these cells (such as cytokines), which is closely 

related to the occurrence and progression of tumors [3]. 

Accumulating evidence suggests that, among the various 

cell types in the TME, the abundance and type of  
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ABSTRACT 
 

Immune-related genes (IRGs) have attracted attention in recent years as therapeutic targets in various tumors. 
However, the role of IRGs in gastric cancer (GC) has not been clearly elucidated. This study presents a 
comprehensive analysis exploring the clinical, molecular, immune, and drug response features characterizing 
the IRGs in GC. Data were acquired from the TCGA and GEO databases. The Cox regression analyses were 
performed to develop a prognostic risk signature. The genetic variants, immune infiltration, and drug responses 
associated with the risk signature were explored using bioinformatics methods. Lastly, the expression of the IRS 
was verified by qRT-PCR in cell lines. In this manner, an immune-related signature (IRS) was established based 
on 8 IRGs. According to the IRS, patients were divided into the low-risk group (LRG) and high-risk group (HRG). 
Compared with the HRG, the LRG was characterized by a better prognosis, high genomic instability, more CD8+ 
T cell infiltration, greater sensitivity to chemotherapeutic drugs, and greater likelihood of benefiting from the 
immunotherapy. Moreover, the expression result showed good consistency between the qRT-PCR and TCGA 
cohort. Our findings provide insights into the specific clinical and immune features underlying the IRS, which 
may be important for patient treatment. 
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tumor-infiltrating immune cells significantly influences 

the outcome of immunotherapy and tumor progression. 

For instance, high infiltration of T cells is associated 

with better immune checkpoint inhibitor (ICI) efficacy 

[4]. The CD8+ Foxp3+ T lymphocyte infiltration is 

increased with tumor progression as reflected by TNM 

stage, indicating their important role in GC progression 

[5]. Thus, the systematic investigation of immune 

phenotypes within the GC microenvironment represents 

a promising approach for better understanding the 

complex antitumor response and to guide effective 

immunotherapies. Several studies have reported 

immune-related signatures (IRS) in GC, some of them 

have explored the prognosis of GC patients by 

establishing immune-related prognostic models, others 

have further explored the tumor microenvironment, and 

still others have performed similar analyses on restricted 

populations only [6–9]. It is well known that 

immunotherapy is one of the mainstream modalities in 

oncology treatment today, but it remains a challenge to 

differentiate patients with potential immunotherapy 

response before treatment initiation. The studies on the 

immunotherapy response and chemotherapy sensitivity 

in GC have largely not been reported. 

 

In the present study, we aimed to identify and validate a 

novel immune-related signature and a matching 

nomogram that can be utilized for predicting prognosis. 

This prognostic signature was conducive to the 

identification of immune infiltrating cells in the TME 

and assessment of immunotherapeutic response. 

Moreover, this immune-related signature was used for 

computing the IC50 of chemotherapeutic agents to 

predict the drug sensitivity. 
 

MATERIALS AND METHODS 
 

A flowchart of this study presented in Figure 1. 

 

 
 

Figure 1. The flowchart of the current study. 
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Data acquisition 

 

The transcriptional expression data, somatic mutation 

patterns, and matching clinical information (including 

survival time, vital status, age, gender, tumor grade, and 

pathological stage) of GC patients were obtained from the 

Cancer Genome Atlas (TCGA, https://portal.gdc. 

cancer.gov) database (Supplementary Table 1). An 

independent external GC cohort GSE84437 containing 

microarray data and corresponding clinical information 

was downloaded from the Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/) database as 

well (Supplementary Table 1). The gene expression profile 

and the detailed clinical annotations of an immunotherapy 

cohort (IMvigor210) were acquired online (http://research-

pub.gene.com/IMvigor210CoreBiologies) and utilized to 

further validate the efficiency of the immune-related 

signature (Supplementary Table 2). The immune-related 

gene list was obtained from the ImmPort (https://www. 

immport.org) and InnateDB (https://www.innatedb.ca) 

databases (Supplementary Tables 3, 4). As all data were 

obtained from public databases, ethical approval was not 

necessary. 

 

Data processing 

 

For transcriptional expression data from the TCGA 

database, FPKM data were transformed into TPM 

(transcripts per kilobase of exon model per million 

mapped reads) values which is more similar to 

microarray data, to make them more comparable between 

different samples [10]. The mRNA Ensembl IDs in the 

TCGA dataset were switched to gene symbols according 

to GENCODE (https://www.gencodegenes.org/). For 

microarray data in GEO, the probe ID in the gene 

expression dataset was annotated to a gene symbol by 

platform files (GPL6947 Illumina HumanHT-12 V3.0 

expression beadchip). Next, the above datasets were 

normalized by log2 transformation, and the batch effects 

were adjusted using the ComBat function in the R3.7.0 

software “sva” package [11]. mRNAs with gene 

expression values of 0 in >90% samples both in TCGA 

and GEO datasets were excluded, as they were regarded 

as transcriptional noise. Averaging was performed for 

mRNAs with more than one-row expression values. 

 

Differentially expressed gene analysis (DEGA), 

differentially expressed IRG (DE-IRG) screening 

and functional enrichment analysis 

 

The R “limma” package was used for identifying 

differentially expressed genes (DEGs) between the 

adjacent normal and GC samples. Those with |logFC| > 
1 and FDR < 0.05 were regarded as DEGs. Next, the 

DEGs and IRGs were intersected to obtain DE-IRGs, 

and a heatmap was used to visualize the gene 

expression profiles of DEGs and DE-IRGs respectively 

by R “pheatmap” package. 

 

GO and KEGG enrichment analysis of DE-IRGs 

 

Gene ontology (GO) and Kyoto Genome Encyclopedia 

(KEGG) enrichment analyses were conducted for the 

DE-IRGs via the R “ClusterProfiler” package to detect 

their underlying biological function. The GO terms and 

KEGG pathways with P < 0.05 were regarded as 

significant. The above results were visualized by R 

“ggplot2” and “enrichplot” packages eventually. 

 

Weighted gene co-expression network analysis 

(WGCNA) of DE-IRGs 

 

WGCNA is a method for exploring gene expression 

patterns of multiple samples [12]. Genes with similar 

expression patterns can be clustered, and the relationship 

between modules and specific traits or phenotypes can be 

analyzed. Firstly, Pearson’s correlation matrix was 

defined based on the interaction coefficients among 

genes. An adjacency matrix was defined with the 

threshold of Pearson coefficient exceeding 0.8, which 

was further used to construct a topological overlap matrix 

(TOM). Finally, the TOM matrix was applied for 

determining the co-expression gene modules, in this 

process modules with statistical significance (P < 0.05) 

were regarded as cancer-related modules, and genes 

involved in the modules were considered more important 

and used for subsequent analysis. 

 

Identification of the immune-related signature (IRS) 

 

In the discovery (TCGA) cohort, univariate Cox 

regression analysis was first conducted to detect the 

relationship between IRGs and GC prognosis. IRGs with 

P < 0.05 were regarded as having the potential to build 

the final prognostic signature. Next, to enhance the 

robustness of this final prognostic signature, the TCGA 

cohort was randomly divided into training and test 

subsets at a ratio of 5 to 5. In train subsets, IRGs with P < 

0.05 in univariate Cox regression analysis were selected 

for inclusion in multivariate Cox regression analysis to 

establish the optimal prognostic signature. Particularly, 

the robustness of the prognostic signature was validated 

in the internal cohort (test cohort) and external cohort 

(validation cohort, GSE84437). 

 

According to the prognostic signature, each patient was 

given a risk score by the following formula: 

 
n

k k

k

Risk Score Coef B
=

= 
1

 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
https://www.immport.org/
https://www.immport.org/
https://www.innatedb.ca/
https://www.gencodegenes.org/
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Where Coefk is the coefficient and BK is the normalized 

expression value of the IRGs included in the prognostic 

signature. GC patients were assigned to a low-risk 

group (LRG) or a high-risk group (HRG) according to 

the cohort-specific median risk score taken as the cut-

off value. The performance of risk groups as determined 

by the risk score of the prognostic signature was 

evaluated by the Kaplan-Meier method with log-rank 

testing. Moreover, The ROC curves at 1, 3, and 5 years 

were plotted and AUC values were computed to 

estimate the predictive performance of the signature. 

 

In addition, we divided patients into subgroups 

according to clinical characteristics such as age, 

pathological stage, etc. We then performed stratified 

survival analysis to study whether the IRS maintained 

predictive power in different cohorts. 

 

Development and validation of a combined IRG-

clinical nomogram 

 

A nomogram is a statistical predictive tool that 

combines multiple prognostic factors to assess the 

survival probability for individual patients. To 

investigate whether the IRG prognostic signature 

possesses independent predictive capacity. First, risk 

scores together with clinical parameters including age, 

gender, tumor grade, and pathological stage were 

investigated by univariate Cox regression analysis to 

filter prognostic factors in the TCGA cohort. The above 

variables with P < 0.05 were then selected for inclusion 

in multivariate Cox regression analysis to determine 

independent prognostic ability. A combined prognostic 

model consisting of factors with P < 0.05 in 

multivariate Cox regression analysis was compared with 

the clinical model or IRS model respectively with 

regard to time-dependent AUC value and calibration 

curve. Finally, the model was visualized by nomogram 

and assessed by DCA to detect whether using this 

nomogram could yield closer associations with clinical 

net-benefit than other models. 

 

Gene functions, tumor mutation burden, and 

somatic mutation profiling in the different risk 

subgroups 

 

Gene set enrichment analysis (GSEA) is used to 

evaluate the distribution trend of genes in a predefined 

gene set in a gene table ranked by their relevance to 

phenotype, thereby judging their contribution to the 

phenotype [13]. The functional enrichment of genes in 

different risk subgroups was investigated in GSEA via 

the R “clusterProfiler” package. The somatic mutation 
characteristics of GC in the LRG and HRG were 

analyzed and visualized using the R “maftool” 

package. Moreover, the tumor mutation burden (TMB) 

for each patient was computed as mutations per 

million bases. 

 

Correlations between different risk subgroups, TME 

and immune cell infiltration pattern 

 

The ESTIMATE algorithm is a tool using expression 

data for the estimation of stromal cells and infiltrating 

immune cells in malignant tumors to predict tumor 

purity [14]. Therefore, utilizing ESTIMATE generates 

three scores: a stromal score (that captures the presence 

of stroma in tumor tissue), an immune score (that 

represents the infiltration of immune cells in tumor 

tissue), and the estimate score (that infers tumor purity) 

to evaluate the main cell types in the TME. Additionally, 

CIBERSORT, a deconvolution algorithm supported by 

R package with default parameters utilizing gene 

expression profiles to quantify immune infiltration, was 

used for evaluating the proportions of 22 immune cell 

types in each GC tumor tissue [15]. As CIBERSORT 

computes an empirical P-value for the deconvolution to 

denote the accuracy of results, we only retained those 

samples with a CIBERSORT P-value < 0.05 for 

subsequent analysis. Furthermore, to verify the results 

of CIBERSORT, other algorithms such as XCELL, 

TIMER, EPIC, and QUANTISEQ were used for 

analyzing the tumor infiltration immune cells as well 

[16–19]. 

 

Also, based on the single sample gene set enrichment 

analysis (ssGSEA) method supported by the R “GSVA” 

package, the 29 common immune-associated pathways 

for each sample were given an enrichment score to 

quantify this. Furthermore, immune cell abundance and 

their corresponding functional pathways were compared 

in different risk groups. Finally, survival analysis was 

performed for immune cells and immune functions 

respectively to comprehensively explore the relationship 

between immune infiltration and GC prognosis. The 

macrophages could play diverse roles in tumorigenesis 

and progression, such as M1 macrophages (prone to 

anti-tumor) and M2 macrophages (pro-tumor). Thus, the 

expression of markers for M0, M1, and M2 

macrophages were analyzed in different risk groups. 

Besides, expression of immune checkpoint molecules 

PD-1, PD-L1, and CTLA4 in different risk groups were 

also analyzed. Moreover, due to the cytokine and 

chemokine are key factors for immune cell recruitment 

and functions, the expression of them in the risk model 

was analyzed as well. 

 

The immunotherapy response and chemotherapeutic 

drug sensitivity in distinct risk subgroups 

 

The tumor immune dysfunction and exclusion (TIDE) 

score calculated online (http://tide.dfci.harvard.edu/) 

http://tide.dfci.harvard.edu/
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was used to predict the immunotherapy response, the 

higher the TIDE score, the lower immunotherapy 

response [20]. Moreover, the IMvigor210 cohort was 

utilized to further verify the efficiency of the IRS in 

appraising immunotherapy responsiveness. 

 

Based on the three public drug sensitivity databases, 

CGP (Cancer Genome Project), GDSC (Genomics of 

Drug Sensitivity in Cancer), and CTRP (Cancer 

Therapeutics Response Portal), the ridge regression 

models were built by the pRRophetic algorithm to 

predict chemotherapeutic responses. Gene expression 

profiling and risk grouping information were used in 

the model to estimate the half-maximal inhibitory 

concentrations (IC50) for each sample [21]. The 

prediction accuracy was evaluated by 10-fold cross-

validation based on each training set. The smaller the 

IC50 value of the drug, the stronger its ability to 

inhibit cell growth and the better the effect of cancer 

treatment. Here, common GC therapeutic drugs, such 

as cisplatin, oxaliplatin, docetaxel, paclitaxel, 5-

fluorouracil (5-Fu), capecitabine, and irinotecan were 

selected for analysis. 

 

Immunohistochemical analysis 

 

The protein expression data were acquired from the 

Human Protein Atlas (HPA) database, a largest and 

most comprehensive database for evaluating protein 

distribution in human tissues [22]. The protein 

expression of the IRGs signature in normal and GC 

tissues was determined using the immunohistochemical 

staining images, and then Image J was used to perform 

the quantitative analysis. 

 

Validation of the immune-related signature by 

relative quantitative real-time PCR (qRT-PCR) 

 

The expression levels of genes comprising the immune-

relative signature were measured in a GC cell line 

(HGC-27, human gastric cancer cells) and a control cell 

line (GES-1, human gastric mucosal epithelial cells). 

All the cell lines were obtained from the National 

Infrastructure of Cell Line Resources (Beijing, China) 

and were in RPMI-1640 (FBS, Gibco, USA), 10% fetal 

bovine serum (FBS, Gibco, USA), and 1% 

penicillin/streptomycin (Gibco, Canada). All the cells 

were cultured at 37°C with 5% CO2. Total RNA was 

extracted from cells using the RNeasy Mini Kit 

(Qiagen, USA, Cat. 74104), and reverse transcription 

was subsequently performed using the 5∗All-in-one RT 

MasterMix (ABM, USA, Cat. No. G492). qRT-PCR 

was performed with a SYBR Green Real-time PCR Kit 
(Keygen Biotech, Nanjing, China, Cat. KGA1339-1) on 

a QuantStudio 5 Real-Time PCR System (Thermo 

Fisher Scientific, USA). All experiments were repeated 

at least three times. The RNA primer sequences are 

listed in Supplementary Table 5. Relative expression 

was calculated using the comparative threshold cycle 

(Ct) method. Simultaneously, the gene expression 

consisting of the signature was analyzed in the TCGA 

cohort. 

 

Statistical analysis 

 

All statistical analyses were conducted via R software 

(version 3.7.0). Continuous and categorical data were 

analyzed by Wilcoxon and Chi-square methods 

respectively. Survival was estimated by the Kaplan-

Meier method and the statistical significance was 

determined by log-rank testing. Correlations between 

two continuous characteristics were analyzed by the 

Spearman method. Univariate and multivariate Cox 

regression analyses were performed using the R 

“survival” package. The time-dependent AUC value 

was calculated by the R “timeROC” package, and ROC 

curves were plotted by R “survivalROC” package.  

P < 0.05 was regarded as statistically significant. 

 

Data availability statement 

 

The data that support this study are openly available in 

online repositories and the raw data was uploaded 

(https://www.jianguoyun.com/c/sd/155e27d/6d60f576ac

e1d1cc). 

 

RESULTS 
 

Identification of DE-IRGs and functional 

enrichment analysis 

 

With the cut-off set as logFC > 1, FDR < 0.05, there 

were 8833 DEGs identified totally, of which 1335 

were down-regulated and 7498 were up-regulated 

(Supplementary Table 6). By searching ImmPort and 

InnateDB, 2483 and 1226 IRGs (Supplementary 

Tables 7, 8) were determined separately as well as 

2660 IRGs were obtained by integrating IRGs from the 

two databases (Supplementary Table 9). Next, 

overlaps of DEGs and IRGs identified 493 DE-IRGs, 

comprising 184 that were down-regulated and 309 up-

regulated (Supplementary Table 10). As shown in 

Figure 2A, 2B, there was a clear distinction of DEGs 

and DE-IRGs between normal and tumor samples. 

 

These 493 DE-IRGs were further analyzed via GO and 

KEGG to explore their function. In GO enrichment 

analysis, the biological process (BP) term showed that 

these DE-IRGs were enriched in leukocyte migration, 

regulation of the inflammatory response, cell 

chemotaxis, regulation of immune effector processes, 

and regulation of responses to external stimuli. 

https://www.jianguoyun.com/c/sd/155e27d/6d60f576ace1d1cc
https://www.jianguoyun.com/c/sd/155e27d/6d60f576ace1d1cc
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The cellular component (CC) terms showed that these 

DE-IRGs were mainly enriched for the immunoglobulin 

complex, external side of plasma membrane, and 

collagen-containing extracellular matrix. Concerning 

molecular function (MF), these DE-IRGs were enriched 

in terms of receptor-ligand activity, cytokine activity, 

cytokine receptor binding, and growth factor activity 

(Figure 2C). Moreover, KEGG pathway analysis 

documented that these DE-IRGs were principally 

enriched in cytokine-cytokine receptor interaction, 

neuroactive ligand-receptor interaction, chemokine 

signaling pathway, viral protein interaction with 

cytokine and cytokine receptor, cAMP signaling 

pathway, and MAPK signaling pathways (Figure 2D). 

 

Detecting hub DE-IRGs via WGCNA analysis 

 

DE-IRGs were further selected for WGCNA analysis to 

distinguish different gene modules and then to identify 

the hub DE-IRGs. A soft threshold (power value) of 5 

was selected to make sure that both the scale-free 

topology model fit index (R2) and mean connectivity 

 

 

 
Figure 2. Identification, functional enrichment, and WGCNA analysis of DE-IRGs. (A, B) Heatmap of DEGs and DE-IRGs, 

respectively. (C, D) GO enrichment and KEGG analysis for DE-IRGs. (E) The scale-free fit index for soft-thresholding powers. Left: the 
relationship between the soft-threshold and scale-free R2. Right: the relationship between the soft-threshold and mean connectivity. (F) 
Dendrogram and module colors for DE-IRGs. (G) The correlations heatmap between modules and sample types. 
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were optimal (Figure 2E). A total of 5 modules was 

obtained by average linkage hierarchical clustering. 

Each module is shown in a different color in Figure 2F. 

Among these modules, MEturquoise possessed the 

highest correlation with GC traits (Figure 2G). There 

were 255 DE-IRGs included in the filtered MEturquoise 

module, which were chosen for further analysis 

(Supplementary Table 11). 

 

Construction and verification of the immune-related 

prognostic signature 

 

Utilizing univariate Cox regression analysis, a total of 

36 genes was identified as being associated with GC 

prognosis (Figure 3A). We then constructed an 8-gene 

signature by multivariate Cox regression analysis in 

the training subset (Supplementary Table 12). The 

risk scores for each GC patients were calculated as 

follows: 

 

Risk Score = (0.277) × RNASE2 + (0.255) × CGB5 + 

(0.501) × INGBE + (−0.348) × PTGER3 + (−0.341) × 

CTLA4 + (0.260) × DUSP1 + (0.071) × APOA1 + 

(0.234) × CD36. 

Next, all GC patients were assigned to either a lower 

or higher risk group: LRG (n = 93) and HRG (n = 93). 

The results of Kaplan-Meier analysis and log-rank 

testing showed that patients in the LRG had a better 

overall survival rate (OS) than the HRG (Figure 3B). 

The AUC values of ROC curves for predicting 

survival outcomes at 1, 3, 5 years were 0.69, 0.86, and 

0.87, respectively, demonstrating that the signature 

possesses good predictive capacity for GC prognosis 

(Figure 3C). In addition, the results of IRS validation 

showed that this signature maintain its prognosis 

predictive power in test subsets and validation cohorts 

as well (Figure 3D–3G). 
 

Furthermore, we conducted stratified analysis for the 

IRS based on clinical characteristics such as age, 

gender, tumor grade, and pathological stage to 

explore the signature’s robustness. The results 

showed that patients in the HRG generally have a 

poor prognosis in different sub-cohorts compared 

with the LRG, which is consistent with the result 

from the integrated cohort. This confirms the 

robustness of this IRS in cohorts with different 

clinical features (Table 1). 

 

 
 

Figure 3. Identification of the immune-related prognostic signature. (A) The forest plot of univariate Cox regression analysis for 

IRGs. (B–D) The Kaplan-Meier survival curves for high- and low-risk groups in train, test, and validation cohorts. (E–G) The ROC curve for the 
IRS in train, test, and validation cohorts. 
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Table 1. Cox survival analysis of the IRS in stratified GC cohort. 

Variables 

TCGA-STAD 
GSE84437 

Training cohort Test cohort 

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value 

Age (years) 

≤65 6.46 (2.16–19.31) <0.001 2.52 (1.13–5.65) 0.025 1.60 (1.01–2.56) 0.047 

>65 2.22 (1.19–4.13) 0.012 1.88 (1.03–3.45) 0.040 1.36 (0.88–2.11) 0.170 

Gender 

Male 3.19 (1.69–6.02) <0.001 1.55 (0.85–2.82) 0.150 1.30 (0.94–1.80) 0.107 

Female 2.76 (1.05–7.34) 0.040 3.13 (1.38–7.09) 0.006 1.71 (1.07–2.98) 0.036 

Tumor grade 

G1/2 2.50 (0.98–6.37) 0.054 1.37 (0.61–3.06) 0.448 － － 

G3/4 2.61 (1.33–5.12) 0.005 2.41 (1.32–4.43) 0.004 － － 

Pathological stage 

Stage I/II 3.20 (1.22–8.36) 0.018 2.03 (1.78–4.63) 0.018 1.65 (1.31–2.65) 0.025 

Stage III/IV 2.93 (1.55–5.55) <0.001 2.02 (1.11–3.69) 0.021 1.83 (1.07–2.69) 0.015 

T stage 

T1/2 2.94 (0.73–11.86) 0.130 2.87 (0.91–9.12) 0.073 0.49 (0.12–2.00) 0.326 

T3/4 3.27 (1.82–5.87) <0.001 1.99 (1.17–3.39) 0.011 1.40 (1.06–1.86) 0.019 

N stage 

N0 4.32 (1.32–14.18) 0.016 2.39 (1.35–6.69) 0.027 1.98 (1.45–2.14) 0.017 

N1–3 2.86 (1.53–5.34) <0.001 1.86 (1.08–3.20) 0.025 1.37 (1.01–1.84) 0.040 

M stage 

M0 3.14 (1.79–5.53) <0.001 1.79 (1.07–2.99) 0.027 1.48 (1.04–2.11) 0.029 

M1 2.45 (0.23–25.77) 0.455 2.76 (0.55–13.90) 0.218 1.21 (0.77–1.86) 0.408 

The “－” indicates that the value is not available; Abbreviations: HR: hazard ratio; CI: confidence interval. 

 

 

Establishment and validation of an immune-clinical 

nomogram 

 

The Cox regression analysis of the discovery cohort 

showed that age, pathological stage, and risk score were 

independent prognostic factors for GC patients 

(Table 2). Therefore, these factors were combined to 

construct a nomogram for predicting GC patients’ short- 

and long-term survival rates (Figure 4A). The time-

dependent AUC value of the nomogram remained 

higher than for other models over time, suggesting that 

combining the IRS with age and pathological stage 

improved accuracy for predicting survival outcomes 
(Figure 4B). The calibration curve of the nomogram 

showed a good performance in consistency between 

prediction and actual observation, especially for 3-year 

OS. Also, the DCA curve suggested that the nomogram 

possessed better value for clinical applications than the 

other models (Figure 4C, 4D). 

 

In the validation cohort, the time-independent AUC value 

and calibration curve of the nonogram model maintained 

its good performance for predicting patients’ OS as well 

(Figure 4E, 4F). DCA revealed that utilizing the 

nomogram could bring more clinical net benefit (Figure 

4G). Thus, the nomogram comprising IRS and clinical 

characteristics (pathological stage and age) appeared 

highly accurate in predicting the short- and long-term OS 

of GC patients in both the discovery and validation 
cohorts. The above results demonstrated that using this 

immune-clinical nomogram for prognosis prediction 

assistance might result in significant clinical benefit. 
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Table 2. Univariate and multivariate Cox regression analysis for clinical variables. 

Variables 
Univariate analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value 

Age 

≤65 Reference  Reference  

>65 1.03 (1.01–1.04) 0.005 1.04 (1.02–1.05) <0.001 

Gender 

Female Reference  － － 

Male 1.23 (0.85–1.76) 0.274 － － 

Tumor grade 

G1–2 Reference  － － 

G3–4 1.33 (0.93–1.91) 0.123 － － 

Pathological stage 

Stage I/II Reference    

Stage III/IV 1.80 (1.26–2.57) 0.001 1.76 (1.21–2.55) 0.003 

T 

T1–2 Reference    

T3–4 1.63 (1.05–2.52) 0.030 1.38 (0.84–2.29) 0.207 

N 

N0 Reference  Reference  

N1–3 1.74 (1.15–2.62) 0.008 1.26 (0.72–2.20) 0.415 

M 

M0 Reference  Reference  

M1 1.79 (1.09–2.95) 0.022 1.45 (0.85–2.48) 0.178 

Risk Score 

Low Reference  Reference  

High 1.57 (1.37–1.80) <0.001 1.58 (1.37–1.84) <0.001 

The ‘－’ indicates that the value is not available; Abbreviations: HR: hazard ratio; CI: confidence interval. 

 

GSEA analysis, TMB, and a gene mutation atlas in 

different risk subgroups 

 

As shown in Figure 5A, 5B, GSEA analysis indicated 

that tumors in the HRG were enriched in complement 

and coagulation cascades, ECM receptor interaction, 

focal adhesion, neuroactive ligand-receptor interaction, 

and PPAR signaling pathway. In contrast, the LRG was 

enriched in aminoacyl tRNA biosynthesis, cell cycle, 

DNA replication, pyrimidine metabolism, and 

spliceosome terms. 

 

Summaries of gene mutation profiles for the different 

risk groups are shown in the Supplementary Figures 1 

and 2, suggesting that the LRG has a higher overall 
mutation frequency than the HRG. Nonetheless, the 

top six genes with the highest mutation rates in the 

LRG were TTN (54%), TP53 (44%), MUC16 (35%), 

LRP1B (28%), ARID1A (28%), and SYNE1 (27%), 

which is similar to the HRG with TTN (40%), TP53 

(39%), MUC16 (25%), LRP1B (20%), ARID1A (19%), 

and SYNE1 (16%). The most common mutation type 

was missense mutation in both LRG and HRG 

(Figure 5C, 5D). 

 

TMB analysis in the HRG and LRG is shown in Figure 

5E, 5F, suggesting that the latter has a higher TMB. In 

addition, survival analysis of patients stratified for TMB 

indicated that a high TMB resulted in a better prognosis 

than a low TMB. 

 

Analysis of the tumor microenvironment, immune 

cell infiltration, and expression of markers for 

macrophages, immune checkpoint, cytokine, and 

chemokine in different risk groups 

 

First, the difference between the TME and immune cell 

infiltration was analyzed for LRG and HRG. As shown 
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in Figure 6A–6C, the stromal score and ESTIMATE 

score were both higher in HRG than LRG, whereas the 

immune score was not significantly different, indicating 

that the HRG had a higher proportion of stromal cells 

than LRG while tumor purity was lower. 

Second, by using the CIBERSORT, the abundance of 

immune cells in each GC sample was estimated and can 

be seen intuitively in the histogram (Supplementary 

Figure 3). The number of samples with significant 

levels of immune cell infiltration in the HRG was 

 

 
 

Figure 4. Construction of the immune-clinical nomogram. (A) The nomogram for predicting 1-year, 3-year, and 5-year OS for GC 

patients. (B, C) Time-dependent ROC curves for the nomogram, immune signature, age, and stage models at different time points in the 
TCGA and GEO datasets. (D, E) Calibration curves of observed and predicted probabilities for the nomogram in the TCGA and GEO datasets. 
(F, G) DCA curves for the nomogram in the TCGA and GEO datasets. 
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greater than in the LRG. Score difference analysis for 

immune cells’ abundance in different risk groups 

showed that compared with the HRG, the LRG had 

higher abundances of CD8+ T cells (P < 0.01**), CD4+ 

activated memory T cells (P < 0.001***), follicular T 

helper cells (P < 0.001***), and M1 macrophages (P < 

0.01**). On the other hand, there was a lower abundance 

of monocytes (P < 0.001***), M2 macrophages (P < 

0.001***), eosinophils (P < 0.05*), and neutrophils (P < 

0.001***) (Figure 6D). Notably, the results of XCELL, 

TIMER, EPIC, and QUANTISEQ showed good 

consistency with the CIBERSORT (Supplementary 

Figure 4). Score differences for immune-related 

functional pathways suggested that the scores for 

cytolytic activity (P < 0.05*), inflammation promoting 

(P < 0.01**), MHC class I (P < 0.001***), T cell co-

inhibition (P < 0.05*), Th1 cells (P < 0.05*), and Th2 

cells (P < 0.001***) were higher in LRG than in HRG. 

In contrast, the scores for CCR (P < 0.01**), DCs (P < 

0.01**), iDCs (P < 0.01**), macrophages (P < 0.001***), 

mast cells (P < 0.001***), neutrophils (P < 0.001***), T 

helper cells (P < 0.05*), and type II IFN responses (P < 

0.001***) were lower in the LRG than in the HRG 

(Figure 6E). Moreover, survival analysis based on 

immune cells’ abundance in all samples implied that 

high infiltration of CD8+ T cells was connected with a 

favorable prognosis and that high abundance of M2 

macrophage was related to an adverse prognosis (Figure 

7A, 7B). This confirms that specific immune infiltration 

patterns have impact on patient prognosis. Survival 

analysis for immune-associated pathways suggested that 

high enrichment scores for cytolytic activity, 

inflammation promoting, T cell co-inhibition, and Th2 

cell presence were associated with a favorable 

prognosis, whereas IDCs, mast cells, neutrophils, and 

type II IFN responses were associated with adverse 

prognosis (Figure 7C–7J). 

 

The expression analysis for markers of macrophages 

indicated that the marker gene of M0 macrophages like 

CD68 was highly expressed in the high-risk group 

(Supplementary Figure 5A), CD86 for M1 macrophages 

was lowly expressed in the high-risk group 

(Supplementary Figure 5B), similarly, NOS2 tended to 

be down-regulated in the high-risk group 

(Supplementary Figure 5C). Moreover, the markers for 

M2 macrophages like CD163 and CD206 were highly 

expressed in the high-risk group (Supplementary 

 

 
 

Figure 5. GSEA, mutational landscape, and TMB in high- and low-risk groups stratified by the IRS. (A, B) The enriched pathways 

for different risk groups based on GSEA analysis (C, D) Waterfall plot of the top 20 mutant genes in the high- and low-risk groups. (E) Box 
plot for the TMB between the high- and low-risk groups. (F) Kaplan-Meier survival curve of high versus low TMB. 
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Figure 5D, 5E). The aforesaid results were consistent 

with the analysis of tumor infiltration immune cells for 

macrophages. 

 

Analysis of immune checkpoints showed that PD-1, 

PD-L1, and CTLA4 were more highly expressed in 

LRG than in HRG, with decreasing expression as the 

risk score increased (Figure 8A–8F). The results of 

cytokine suggested that IFN-γ, IL-21, and OSM had 

higher expression in LRG than in HRG while IL-1α, IL-

1β, IL-10, IL-24, TGF-β, EGF, and VEGF had lower 

expression in LRG than in HRG (Supplementary Figure 

6A–6J). The analysis of chemokine showed that CCL2, 

CCL7, and CXCL8 were highly expressed in the HRG 

than in the LRG whereas the CXCL9, CXCL10, and 

CXCL11 were highly expressed in the LRG than in the 

HRG (Supplementary Figure 6K–6P). 

 

Immunotherapy response and chemotherapeutic 

drug sensitivity prediction based on the IRS to 

improve the GC patients’ survival 

 

Compared with the HRG, the LRG presented with 

lower TIDE scores, indicating that the latter may have a 

greater response to ICI than the former (Figure 8G–8I). 

In the immunotherapy cohort, patients in the LRG had a 

 

 
 

Figure 6. TME and immune cell infiltration in different risk groups. (A–C) TME analysis based on ESTIMATE algorithm. From top to 

bottom: The stromal score, ESTIMATE score, and immune score. (D) Immune cell infiltration in high- and low-risk groups based on the 
CIBERSORT algorithm. (E) Immune-related pathways based on ssGSEA. 
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Figure 7. Kaplan-Meier survival analysis for immune infiltration cell and immune-related pathway. (A, B) Kaplan-Meier survival 
curves for immune infiltrating CD8+ T cells and M2 macrophages. (C–J) Kaplan-Meier survival curves for immune-related pathway. 

 

 

Figure 8. The analysis of TIDE score and expression of immune checkpoints in high- and low-risk groups. (A–C) The expression 

of PD1, PD-L1, and CTLA4 in different risk groups. (D–F) The co-expression patterns between immune checkpoints and risk scores. (G–I) The 
scores of immune dysfunction, immune exclusion, and TIDE in different risk groups. 
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markedly longer survival time (Figure 9A). Compared 

with HRG, the LRG had a better therapeutic advantage 

and immunotherapy response (Figure 9B). Moreover, 

the TMB was significantly elevated in LRG, which is 

closely linked to immunotherapeutic efficacy (Figure 

9C). Also, the association between the IRS and survival 

on immunotherapy remained statistically significant 

after taking into account gender, smoking, ECOG score, 

immune phenotype, and TMB status (Figure 9D). 

 

Three drug response-related databases (CGP, GDSC, 

and CTRP) were utilized to investigate the association 

between the chemotherapeutic drug sensitivity and the 

IRS. Results suggested that patients in the LRG are 

generally more sensitive to chemotherapeutic drugs than 

those in the HRG (Figure 10). 

 

Expression of the genes in the immune-related 

signature 

 

The quantitative analysis of the immunohistochemical 

images determined that CD36, DUSP1, and PTGER3 

showed lower protein expression levels in GC samples 

than in the adjacent normal tissues while CGB5 showed 

 

 
 

Figure 9. The IRS in the role of immune checkpoint blocker treatment. (A) Kaplan-Meier survival curve of the high- versus low-risk 

group in the immunotherapy cohort (IMvigor210 cohort). (B) The proportion of immune response to immunotherapy in high versus low-risk 
group. (C) The tumor mutation burden in the immunotherapy cohort was compared among distinct risk groups. (D) Multivariate Cox 
regression analysis of the IRS with features in the immunotherapy cohort. 
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high levels in GC samples than in the normal tissues. 

The expression of APOA1, INHBE, and RNASE2 did not 

differ significantly in gastric cancer and normal samples, 

and the CTLA4 was not reported in the database 

(Supplementary Figures 7, 8). 

 

Validation of the immune-related signature by qRT-

PCR 

 

The expression profiles of the eight genes comprising 

the prognostic signature were verified in GC and 

stomach cell lines by qRT-PCR. The result suggested 

that RNASE2, INHBE, CGB5, and CTLA4 were 

upregulated in GC cell lines, while PTGER2, DUSP1, 
CD36, and APOA1 were downregulated (Figure 11A), 

which showed good consistency with the expression 

analysis results in TCGA cohort (Figure 11B). 

 

DISCUSSION 
 

In the current study, we identified the IRGs that were 

significantly correlated with the prognosis of GC 

patients. We then constructed an IRS to predict the 

prognosis of patients assigned to the different risk 

groups. This signature was combined with clinical 

characteristics to build a composite nomogram, which 

exhibited an accurate prediction capacity for GC 

patients’ prognosis. Finally, we investigated the 

relationship between the IRS and the somatic mutation, 

pathway activation, immune cell infiltration, immuno-

therapy responsiveness, and chemotherapeutic drug 

sensitivity. 

 

GC is a highly heterogeneous malignant tumor with a 

poor prognosis. The traditional TNM classification is a

 
 

Figure 10. Chemotherapy drugs’ sensitivity of the high- versus low-risk group. Differential analysis of IC50 for chemotherapy 
drugs in CGP (A–E), CTRP (F–I), and GDSC (J–P) databases. 
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common strategy on which to base clinical management 

but inevitably has limitations. With the development of 

genomics and precision medicine, molecular signatures 

based on gene expression levels have been developed to 

predict clinical outcomes. Several approaches have been 

applied for distinguishing the risk-stratified subgroups 

of GC and helping to formulate individual treatment 

strategies. Nevertheless, probably due to the high 

heterogeneity of GC, genes comprising published 

signatures did not overlap, and more novel signatures 

are still needed. Immune features have been reported to 

significantly affect the treatment responses and survival 

 

 
 

Figure 11. The expression of the immune-related signature in cell lines and TCGA cohort. (A) qRT-PCR results of the immune-

related signature in GC cell lines (HGC-27) and control cell lines (GES-1). *P < 0.05, **P < 0.01, ***P < 0.001. (B) The expression of the immune-
related signature in TCGA cohort. 
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of GC patients; thus, several molecular signatures 

consisting of immune-related genes have been adopted 

for GC prognosis, and these signatures are usually used 

to stratify risk groups in patients. However, whether 

these signatures predict clinical therapeutic responses is 

still unknown. Moreover, ICIs targeting PD-1, PD-L1, 

and CTLA4 have been widely utilized and found to 

significantly prolong survival time in GC patients. 

Navulizumab in combination with fluorouracil-based 

and oxaliplatin-based chemotherapy can be a first-line 

treatment option for patients with advanced HER-2 

negative gastric cancer with PD-L1 CPS ≥ 5. The study 

CheckMmate-649 showed that Navulizumab combined 

with chemotherapy can significantly improve OS and 

PFS of GC patients. Pabrolizumab can be used as 

second-line or follow-up treatment for patients with 

MSI-H/ dMMR or advanced gastric cancer with high 

tumor load. The clinical trial revealed that the ORR for 

these patients was 39.6%, with a 9.9% complete 

response rate. Besides, dostarlimab-gxly may be used to 

treat patients with MSI-H/dMMR gastric tumors that 

have progressed on or after prior treatment, who have 

no satisfactory alternative treatment options, and who 

had not previously received a PD-1 or PD-L1 inhibitor. 

The GARNET trial demonstrated that the ORR was 

42%, with a 9% complete response rate. It can be seen 

that the response rate of GC patients to ICIs treatment is 

relatively low. There are only a limited group of 

patients are benefited from the ICIs treatment, thus it 

remains a challenge to discriminate patients likely to 

respond well to ICI. Given that, biomarkers predicting 

patient subpopulations appropriate for ICI treatment 

warrant intensive investigation.  

 

Previously immune-related gene signatures were mostly 

established based on the differentially expressed gene 

sets. Here, we applied the WGCNA analysis to further 

filter candidate gene markers, which increases the 

reliability of the final result. After conducting the Cox 

regression analysis, a final prognostic signature 

consisting of 8 genes (RNASE2, CGB5, INHBE, 

PTGER3, CTLA4, DUSP1, APOA1, and CD36) was 

constructed. Of these genes, some had previously been 

reported to play vital roles in cancer. CD36, a multi-

ligand scavenger receptor expressed on the surface of 

platelets, adipocytes, hepatocytes, and epithelial cells, 

was reported to be associated with adverse prognosis 

and treatment resistance of patients with GC and other 

solid tumors [23–27]. Additionally, evidence indicated 

that CD36 can promote GC cell migration and invasion 

by inducing c-Myc-dependent DEK transcription, GSK-

3β/β-catenin pathway activation, and EMT, suggesting 

that CD36 may serve as a novel target in GC [23]. 
CTLA4 is one of the most studied immune checkpoints 

in malignancies, blockade of which has yielded 

considerable clinical benefits for patients with 

malignant tumors [28]. Studies showed that CTLA4 

mRNA levels are upregulated in tumor tissues and 

correlate with a favorable prognosis [29]. DUSP1 

participates in several cellular processes including 

proliferation, differentiation, and apoptosis. 

Interestingly, strong expression of DUSP1 is a favorable 

prognostic factor in glioma and hepatocellular 

carcinoma [30, 31]. However, it was also reported to be 

upregulated in several solid tumors where it facilitated 

carcinogenesis [32–34], suggesting that the role of 

DUSP1 in carcinogenesis could be controversial in 

different tumors. CGB5 was reported to be associated 

with poor prognosis in GC in several bioinformatics 

studies [35, 36]. Another study suggested that it may 

promote tumor growth and vascular formation in 

ovarian cancer via activation of the LHR signal 

transduction pathway [37]. Previous studies have 

reported that PTGER3 is mainly involved in the 

carcinogenesis of gynecological malignancies [38]. It 

was found to act as an independent prognostic factor 

and was associated with poor overall survival in 

cervical and ovarian cancers [39, 40]. PTGER3 

promotes the tumor cell migration by regulating uPAR 

expression to affect cervical cancer progression [41]. 

APOA1, a major protein moiety in high-density 

lipoprotein (HDL) particles, may suppress colorectal 

tumor progression via regulating the metabolism of 

intracellular cholesterol [42]. It was found in high 

amounts in urine from patients with bladder cancer, and 

utilizing exfoliative urinary cytology in combination 

with APOA1 detection increased the sensitivity of 

diagnosis [43, 44]. Also, studies suggested that APOA1 

might act as an innovative marker in predicting 

recurrence, development, prognosis, and chemotherapy 

resistance of some solid tumors [45–47]. There is less 

data on INHBE and RNASE2 in malignancies, except 

for some bioinformatics studies reporting their 

predictive value in cancer prognosis, indicating that 

more in-depth studies on their biological functions are 

necessary in the future. 

 

We developed an immune-clinical nomogram 

consisting of IRS and clinical characteristics 

(pathological stage and age), which performed well for 

predicting the prognosis of patients with GC. The DCA 

curves suggested that combining with the nomogram 

could yield the most clinical benefit for patients with 

GC. 

 

The Go enrichment analysis revealed that the activity of 

cytokines and chemokines, migration of various 

inflammatory cells, and immune inflammatory 

responses were significantly enriched in gastric cancer. 
Previous study revealed that inflammation is a critical 

component of tumor progression. The inflammatory 

cells could orchestrate the tumor microenvironment  
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and participant in the neoplastic process, fostering 

proliferation, survival and migration [48]. Furthermore, 

the KEGG analysis showed that the DE-IRGs were 

enriched in multiple cytokine-related signaling path-

ways such as cytokine-cytokine receptor interaction, 

chemokine signaling pathway, viral protein interaction 

with cytokine and cytokine receptor. Previous studies 

have shown that cytokines can promote or inhibit tumor 

growth and invasiveness through multiple pathways, 

thereby affecting gastric cancer progression [49, 50]. 

Besides, the inflammation-related pathway such as NF-

κB also had significant enrichment. Study demonstrated 

that the activation of NF-κB signaling has been 

identified as regulating several sporadic and inflam-

mation-associated gastrointestinal tract malignancies 

[51]. Summarily, the above results suggest that cytokine 

activation and immune inflammation have an important 

role in the development of gastric cancer. 

 

The results suggested that the TMB was generally 

higher in the LRG. The higher the TMB, the more DNA 

mutations exist and more candidate peptides generated, 

leading to a greater likelihood of neoantigens being 

identified by the immune system [52]. Accumulating 

studies indicate that the TMB is a potential biomarker 

for immunotherapy response and prognosis in solid 

tumors [52, 53]. Interestingly, a high TMB did 

suggested a favorable prognosis for GC patients 

according to our results. In keeping with the TMB level 

in distinct risk subgroups, the LRG presented with a 

greater genetic mutation frequency, suggesting higher 

levels of tumor heterogeneity. In particular, it was 

observed that the LRG had a significantly higher 

frequency of TTN mutation. Some studies reported that 

TTN mutation was associated with increased TMB and 

related to high immunogenicity. Consequently, the 

patients with mutated TTN exhibited a favorable 

objective response to ICI treatment and longer 

progression-free survival or overall survival than those 

with wild-type status [54, 55]. 

 

In addition to tumor cells, nontumor cells such as 

stromal cells and immune cells are present in the GC 

TME, which decrease tumor purity. The present study 

revealed a higher proportion of stromal cells as well as 

lower tumor purity in the HRG. It has been reported that 

TME-related stromal cells can positively regulate tumor 

growth and impair host immune responses, and that low 

tumor purity is associated with an unfavorable 

prognosis and an immune-evasion phenotype. This 

suggests that stromal changes in the development of GC 

might be deleterious [56, 57]. As a critical component 

of the TME, the distribution of immune cells also varies 
across risk groups. As the main effector cells, CD8+ T 

cells play an important role in host defense against 

cancer. The current study showed that tumors from the 

LRG had a higher CD8+ T cells content, and that more 

infiltration of CD8+ T cells correlated with a better 

prognosis for patients with GC. This is consistent with a 

high infiltration of CD8+ T cells enhancing the host’s 

antitumor defense, thereby improving the survival 

outcomes of GC patients. Activated CD4+ memory T 

cells and follicular T-helper cells were also copious in 

the LRG. These cells are likely to bolster the 

maintenance of a protective immune response against 

tumor-related antigens, associated with a more 

favorable prognosis for GC patients in the LRG. 

Macrophages are an essential component of innate 

immunity, playing an important role in cancer 

development and metastasis. Proinflammatory M1 

macrophages can phagocytose tumor cells, while anti-

inflammatory M2 macrophages promote tumor growth 

and invasion [58]. This may explain why M1 

macrophages were enriched in the LRG while M2 

macrophages were clustered in the HRG. Accumulating 

studies are showing that eosinophils, neutrophils, and 

monocytes all have disparate effects on cancer 

progression, encompassing both pro- and anti-

tumorigenic roles [59–61]. In the present study, these 

three immune cell types were more bountiful in the 

LRG, indicating that they might contribute to the tumor 

invasion and angiogenesis thereby playing a role in 

promoting cancer. 

 

Moreover, CCRs can influence the proliferation, 

invasion, and metastasis of cancer cells and have 

potential for future immunotherapeutic exploitation 

[62]. DCs can aid cancer growth and development by 

facilitating immune tolerance [63]. Mast cells are 

increased in GC and have been correlated with 

angiogenesis, and lymph metastasis [64]. The aforesaid 

immune-related pathways were centered in the HRG, 

associated with the poor prognosis of GC. Inflammation 

assists in the proliferation and survival of malignant 

cells, and stimulates angiogenesis and metastasis, 

thereby driving tumor initiation, growth, and 

progression [65]. Inflammation-promoting terms were 

enriched in the LRG, which might weaken the 

protective effect. One study pointed out that the primary 

response to anti-CTLA-4 requires MHC class I 

expression [66]. In the current study, MHC class I was 

enriched in the LRG, reflecting a better immuno-

therapeutic response for the LRG. 

 

Furthermore, we explored the association between IRS 

and therapeutic responses. ICI treatment has been 

widely applied for GC, but so far the response rate is 

relatively low (10–26%) [67]. The present study 

suggested that TIDE score was lower but the TMB and 
expression of PD-L1 were higher in LRG. Also, the IRS 

effectively distinguish patients in the IMvigor210 

cohort who benefit from immunotherapy. The 
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aforementioned results implied that patients with GC in 

LRG might benefit from immunotherapy, so the IRS 

may have great potential for predicting immunotherapy 

responsiveness. 

 

Currently, patients with GC still need to receive 

systematic chemotherapy [68]. Our results suggest that 

LRG were more susceptive to conventional chemo-

therapy drugs such as cisplatin, oxaliplatin, docetaxel, 

paclitaxel, 5-FU, capecitabine, and irinotecan. On the 

one hand, docetaxel, paclitaxel, irinotecan, and 5-FU 

are cell cycle-specific drugs. Paclitaxel or docetaxel can 

stabilize microtubules and impede the mitosis of cancer 

cells, thereby effectively preventing their proliferation 

and mediating anti-cancer effects. Irinotecan inhibits 

topoisomerase 1 and induces DNA single-strand 

damage, thus blocking DNA replication and affect the 

cell cycle. 5-FU is an antimetabolite chemotherapeutic 

drug that inhibits tumor cell proliferation by affecting 

nucleic acid synthesis. On the other hand, cisplatin and 

oxaliplatin, cell-cycle-nonspecific drugs, are not 

affected by the cell cycle phase and kill rapidly dividing 

cancer cells via disrupting DNA structure. As 

mentioned above, the LRG shows a considerable 

enrichment of the proliferation- and metabolism-related 

pathways such as cell cycle, DNA replication, and 

pyrimidine metabolism, which might account for their 

higher sensitivity to chemotherapeutic drugs. 

 

In brief, we established an IRS which had good 

predictive performance for prognosis of patients with 

GC. Patients in the HRG had poor prognosis, more 

enrichment of oncogenic pathways, low TMB and 

mutation frequency, more basic immune cells, low 

expression of immune checkpoints, poor response to 

immunotherapy, and low sensitivity to common 

chemotherapeutic drugs. Reciprocally, patients in the 

LRG had a more favorable prognosis, more enrichment 

of proliferation pathways, high TMB and mutation 

frequency, more CD8+ T cells, high expression of 

immune checkpoints, positive responses to immuno-

therapy, and high sensitivity to the chemo-therapeutic 

agents. A nomogram was constructed which appeared to 

possess great capability for predicting GC patients’ 

survival, the application of which might yield more 

clinical benefit. 

 

The concept of the IRS has been reported before. The 

strength of the present study is that we developed a 

robust IRS using TCGA database and further validated 

it on an external dataset to ensure the confirmability of 

the analysis results. Simultaneously, we validated the 

expression differences of prognostic signatures using 

PCR, and the results were in good agreement with the 

bioinformatic analysis, indicating that the results of this 

study have good verifiability. Furthermore, we 

investigated the TMB, TME, and immune cell 

infiltration, and analyzed the response to ICIs as well as 

sensitivity to chemotherapeutic drugs, which offers a 

perspective for understanding the specific immune 

characteristics underlying the IRS and may be vital for 

GC patients. Regardless of the strengths, our study 

inevitably has several limitations as well. First, data on 

clinical characteristics such as Her-2 expression, 

microsatellite instability, chemotherapy and immuno-

therapy are insufficient in the TCGA database, yet this 

information might be necessary for perfecting the 

nomogram. Second, further functional experiments on 

the IRS are required to validate our silico results. 

Finally, clinical responses to ICIs and sensitivity to 

chemotherapeutic drugs should be further verified in 

clinical cohorts. In summary, the subsequent validation 

in a large clinical cohort and the use of experiments to 

validate the molecular function of the prognostic 

signature will also be the focus of our future research. 
 

In conclusion, this study underlines the importance of 

IRGs in GC prognosis and establishes an immune-

related prognostic signature, which is expected to 

improve the prediction of GC patient survival together 

with well-defined TNM staging. Additionally, the 

clinical outcome, genetic mutations, immune cell 

infiltration, immunotherapy response, and chemo-

therapeutic drug sensitivity underlying the signature 

were also identified. These results lay the foundation 

for comprehending the role of IRGs and illustrate the 

underlying clinical implications of IRGs in GC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Summaries of gene mutation profiles for low-risk group. 
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Supplementary Figure 2. Summaries of gene mutation profiles for high-risk group. 

 

 

 
 

Supplementary Figure 3. The histogram of immune cells’ abundance in GC samples. 
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Supplementary Figure 4. The immune cell infiltration in different risk groups analyzed by XCELL (A), EPIC (B), QUANTISEQ (C), and TIMER (D). 

 

 

 
 

Supplementary Figure 5. The expression of markers for M0 macrophages (A), M1 macrophages (B, C), M2 macrophages (D, E). 
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Supplementary Figure 6. The expression of cytokine (A–J) and chemokine (K–P). 
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Supplementary Figure 7. The immunohistochemical analysis of the protein expression of the genes in the IRS in the HPA 
database. 
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Supplementary Figure 8. The quantitative analysis of immunohistochemical images. The quantitative analysis plots of APOA1 (A), CD36 

(B), CGB5 (C), DUSP1 (D), INHBE (E), PTGER3 (F), RNASE2 (G). Data are presented as mean ± SD, **P < 0.01, ***P < 0.001, and ‘ns’ represents 
no statistical significance. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3, 4, 6–11. 

 

Supplementary Table 1. The baseline features of GC patients in TCGA and GEO datasets. 

Features  TCGA (n = 371)  GSE84437 (n = 433)  

Age, years (mean ± SD)  65.54 ± 10.55  60.06 ± 11.58  

Gender  

Male  230  296  

Female  141  137  

Tumor grade  

G1  25 – 

G2  129 – 

G3  209 – 

G4  8 – 

Pathologic stage  

I–II  173  157  

III–IV  198  276  

Tumor size  

T1  16  11  

T2  70  38  

T3  161  92  

T4  124  292  

Lymph node metastasis  

N0  109  80  

N1  115  188  

N2  72  132  

N3  75  33  

Metastasis status  

M0  319  347  

M1  52  86  

The “–” indicates that the value is not available. Abbreviations: HR: hazard ratio; CI: confidence interval. 
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Supplementary Table 2. The baseline features of patients in IMvigor210 cohort. 

Features n = 348 

OS, months (mean ± SD)  10.25 ± 7.65 

Survival status  

Alive  232 

Dead  116 

Gender  

Female  76 

Male  272 

Tobacco. Use. History  209 

Current  35 

Never  116 

Previous  197 

Baseline. ECOG. Score  198 

0  134 

1  196 

2  18 

Immune. Phenotype  161 

Desert  76 

Exclude  134 

Inflamed  74 

Unknown  64 

Binary Response  72 

CR/PR  68 

SD/PD  230 

Unknown  50 

Mutation burden per MB (mean ± SD)  10.86 ± 9.57 

Abbreviations: OS: overall survival; ECOG: eastern cooperative oncology group; CR: complete remission; PR: partial remission; 
SD: stable disease; PD: progressive disease. 
 

Supplementary Table 3. Detailed information of the immune-related genes in ImmPort database. 

 

Supplementary Table 4. Detailed information of the immune-related genes in InnateDB database. 

 

Supplementary Table 5. The primers sequences for mRNAs of the immune-related signature.  

Gene name  Forward sequence (5′–3′)  Reverse sequence (5′–3′)  

GAPDH  TGCACCACCAACTGCTTAGC  ATCGAGTGAAGGACCTGGC  

DUSP1  GTACATCAAGTCCATCTGAC  GGTTCTTCTAGGAGTAGACA  

APOA1  AGCTTGCTGAAGGTGGAGGT  ATCGAGTGAAGGACCTGGC  

CTLA4  CACAAGGCTCAGCTGAACCT  AGGTGCCCGTGCAGATGGAA  

PTGER3  AAGGCCACGGCATCTCAGT  TGATCCCCATAAGCTGAATGG  

RNASE2  TGATCCCCATAAGCTGAATGG  ACCATGTTTCCCAGTCTCCG  

CD36  ACGGGCTGAGCAAGGTTGA  TTCGTTGGGTGGGTAGATGG  
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CGB5  GCTACTGCCCCACCATGACC  ATGGACTCGAAGCGCACATC  

INHBE  AGCCCTTCCTAGAGCTTAAG  GCTGCAGCCACAGGCC  

 

Supplementary Table 6. Differentially expressed genes. 

 

Supplementary Table 7. The immune-related gene list in the ImmPort database.  

 

Supplementary Table 8. The immune-related gene list in the InnateDB database.  

 

Supplementary Table 9. The immune-related genes integrated by two databases. 

 

Supplementary Table 10. Differentially expressed immune-related genes. 

 

Supplementary Table 11. Gene list in turquoise module after WGCNA analysis.  

 

Supplementary Table 12. The prognostic signature identified by multivariate Cox regression analysis. 

Gene  HR (CI 95%)  P-value  Coefficient  

RNASE2  1.32 (1.03–1.68)  0.026  0.28  

CGB5  1.29 (1.10–1.52)  0.002  0.26  

INHBE  1.65 (0.98–2.79)  0.061  0.50  

PTGER3  0.71 (0.44–1.13)  0.145  −0.35  

CTLA4  0.71 (0.55–0.93)  0.012  –.034  

DUSP1  1.30 (1.07–1.57)  0.008  0.26  

APOA1  1.07 (0.99–1.17)  0.092  0.07  

CD36  1.26 (1.00–1.60)  0.055  0.23  

 

 


