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Epigraph 
 

“Growth stimulation leads to cellular senescence when 

the cell cycle is blocked” [1]. 

 

Arrest is not yet senescence 
 

Not anything that causes arrest causes senescence. For 

example, serum withdrawal, contact inhibition, nutrient 

starvation and rapamycin cause reversible arrest 

(quiescence) instead of senescence. What these 

conditions have in common is that they inhibit cellular 

mass or volume growth and specifically inhibit the 

mTOR pathway. (Of note: in the cell culture, quiescent 

cells will eventually succumb to senescence, because 

even rapamycin does not suppress geroconversion 

completely). 

 

To induce senescence, DNA-damaging agents p21 and 

p16 cause cell-cycle arrest. Freshly arrested cells do not 

have senescent phenotype. During several days, the 

arrested cells acquire a large, flat morphology, beta-Gal 

positivity and Senescence-Associated Secretory 

Phenotype (SASP) [2–4]. The acquisition of senescent 

phenotype in arrested cells is known as gerogenic 

conversion or geroconversion [4–8]. 
 

Geroconversion is a continuation of cellular growth, 

when the cell cycle is blocked [1]. It may also partially 

occur in proliferating cells and is overstimulated in cell 

culture conditions. Cellular mass (volume) growth is 

driven in part by growth-promoting pathways such as 

mTOR [6]. And this is how the anti-aging activity of 

rapamycin was predicted, before life-extension was 

shown in animals [9]. 

 

Despite the obvious (acquisition of senescent phenotype 

takes time via active process), the existence of 

geroconversion is largely ignored by scientific 

community. One of the reasons is that in cell culture, 

geroconversion occurs automatically, unless actively 

prevented by rapamycin, serum and nutrient 

withdrawal, contact inhibition, severe hypoxia and some 

other factors (discussed later). In 2011, it was pointed 

out that “In cell culture, cell cycle arrest typically leads 

to senescence, because the cell is overstimulated by 

serum, nutrients, oncogenes and so on. Therefore, cell 

cycle arrest is sufficient to cause senescence, especially 

in cancer cells. This is why arrest of cell cycle is 

confused with senescence” [10]. 

 

Growth stimulation drives senescence during 

cell cycle arrest 
 

Nutrients, mitogens or growth factors (GF), hormones 

(e.g., insulin and testosterone), cytoplasmic 
oncoproteins, oxygen and other factors stimulate 

growth-promoting pathways such as mTOR and 

MAPK, which stimulate both cellular mass growth, 

cyclin D induction and cell cycle progression. In the 

www.aging-us.com AGING 2023, Vol. 15, No. 4 

Review 

Cellular senescence: when growth stimulation meets cell cycle 
arrest 
 

Mikhail V. Blagosklonny1 
 
1Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA 
 
Correspondence to: Mikhail V. Blagosklonny; email: Blagosklonny@oncotarget.com, Blagosklonny@rapalogs.com 
Keywords: rapamycin, mTOR, hyperfunction theory of aging, cell volume and enlargement, gerogenic conversion 
Received: December 1, 2022 Accepted: February 16, 2023 Published: February 19, 2023 

 
Copyright: © 2023 Blagosklonny. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 

 

ABSTRACT 
 

At the very moment of cell-cycle arrest, the cell is not senescent yet. For several days in cell culture, the arrested 
cell is acquiring a senescent phenotype. What is happening during this geroconversion? Cellular enlargement 
(hypertrophy) and hyperfunctions (lysosomal and hyper-secretory) are hallmarks of geroconversion. 

mailto:Blagosklonny@oncotarget.com
mailto:Blagosklonny@rapalogs.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 906 AGING 

absence of growth stimulation (e.g., GF or serum 

withdrawal), MAPK and mTOR are deactivated. This 

slows down both cellular mass growth and cell cycle 

progression, and the cell becomes quiescent.  

Re-addition of growth factors allows quiescent cells to 

re-start proliferation [5, 6]. 

 

In proliferating cells, mTOR drives cellular mass growth, 

and this growth in cell size is balanced by cell division 

(Figure 1A). In quiescent cells, mTOR is deactivated, and 

the cell cycle is arrested. What would happen if the cell 

cycle were arrested, but mTOR is still active? 

 

This condition can be caused by induction of CDK 

inhibitors (p21 and p16), which block the cell cycle, 

without affecting growth-promoting pathways such as 

mTOR and MAPK [6]. 

 

When the cell cycle is arrested by p21/p16, then mTOR 

drives growth in the absence of cell division, causing 

cellular hypertrophy (a large, flat cell morphology), 

lysosomal hyperfunction (beta-Gal-staining) and other 

hyperfunctions such as SASP (Figure 1B). It also 

increases tissue-specific hyperfunctions [6, 11]. 

 

Overactivated mTOR causes compensatory resistance to 

growth factors and insulin, via the pS6K1/IRS feedback 

loop [12, 13]. 

 

In cell culture, p21 and p16 cause cell-cycle arrest fast, 

but, at the moment of the arrest, the cells are not yet 

senescent. During the next 3–5 days, the arrested cells 

acquire the senescent phenotype [2–4]. This process is 

called geroconversion. 

 

In a typical cell culture, cells are overstimulated by 

nutrients, serum and oxygen and grow in low cell 

density, making mTOR maximally active. For 

example, DMEM contains 5-fold higher than normal 

blood levels of glucose, higher than even in diabetic 

patients [13]. This is why it is sufficient to induce cell 

cycle arrest to induce senescence, unless mTOR-driven 

geroconversion is actively suppressed by serum 

withdrawal and contact inhibition, which deactivate 

mTOR [5, 14]. 
 

Pseudo-DNA-damage response in senescent cells 
 

Molecular damage is not required for geroconversion 

(like it is not required for growth). For example, p21 

and p16 (CDK inhibitors) and cause cell-cycle arrest 

without causing DNA damage: p21 and p16 directly 

bind to CDKs to arrest cell cycle. Then still active 

mTOR, MAPK and other growth-promoting pathways 

convert this arrest to senescence (geroconversion). 
 

During geroconversion, overactivated kinases such as 

ATM phosphorylate H2AX, even in the absence of 

DNA damage [15]. As suggested by Rybak et al. [16] 

although DNA double-strand breaks always induce 

γH2AX, the reverse is not true: γH2AX is not an 

unequivocal marker of these breaks [16–18]. 

 

 
 

Figure 1. Geroconversion as a form of growth. (A) Proliferating cells. Cellular enlargement (growth) is followed by cell division. mTOR 

is shown as one of the drivers of growth. (B) Arrested cells. In the arrest cell (p21 and p16) cellular enlargement is followed by cell division. 
mTOR is shown as one of the drivers of geroconversion. 



www.aging-us.com 907 AGING 

So, detection of γH2AX indicates that the cell may be 

senescent but does not indicate that it is necessarily 

caused by DNA damage. Unfortunately, it is not known 

to most scientists. 

 

Acute DNA damage can cause arrest, but it’s 

not yet senescence 
 

Acute DNA damage by radiation and DNA-damaging 

drugs activates DNA damage response (DDR). While 

DNA damage response (DDR) causes cell-cycle arrest, 

it is growth-promoting pathways such as mTOR that 

convert this arrest to senescent phenotype. (Figure 1B). 

 

[Note: Life-long, gradual accumulation of DNA damage 

(accumulation of mutations) does not lead to cell-cycle 

arrest, but, in contrast, contributes to unlimited 

proliferation, robustness and immortality in cancer 

cells]. 

 

Once again, acute DNA damage or DDR in 

proliferating cells can lead to cellular senescence, 

because proliferating is associated with high activity  

of growth-promoting pathways necessary for gero-

conversion. When DDR causes arrest, these growth-

promoting pathways drive geroconversion [19]. In 

serum-starved quiescent cells, mTOR is inactive and 

DNA damage cannot cause senescence. Growth 

stimulation with serum then drives geroconversion [19]. 

 

In the organism, acute DNA damage, or DDR, can lead 

to cell senescence by arresting proliferating cells. This 

is an age-independent cellular senescence that may 

occur at any age. This is also called non-adaptive cell 

senescence [20]. 

 

In contrast, age-dependent cellular senescence may be 

driven by life-long hyperfunction of growth-promoting 

pathways, especially in arrested (post-mitotic) cells. 

 

Proliferative potential 
 

At first, the freshly arrested cells retain proliferative 

potential (PP) and can re-start proliferation, if cell-cycle 

arrest is lifted. Following geroconversion, senescent 

cells cannot proliferate, even when cell-cycle arrest is 

lifted. The senescent cell may re-enter the cell cycle but 

cannot progress further or die in mitosis [2–4]. Loss of 

PP is a marker of the senescent phenotype, and 

rapamycin partially prevents loss of PP, as it partially 

prevents other markers of senescent phenotype such as 

cell hypertrophy, beta-Gal and SASP. Proliferative 

potential should not be confused with proliferation. For 

example, rapamycin inhibits proliferation but preserves 

PP. When p16 and p21 were induced for one day and 

then switched off, the cells resumed proliferation. If p16 

was switched off after six days, cells remained 

phenotypically senescent and could not restart 

proliferation [2, 3]. Serum starvation [1, 19, 21] and 

mTOR inhibitors [1, 4, 22], prevent loss of PP during 

arrest, caused by switchable p21/p16 and the synthetic 

CDK4/6 inhibitor Palbociclib (PD0332991). 

 

The irreversibility of cell cycle arrest should not be 

confused with Loss of PP. For example, Doxorubicin, a 

DNA-damaging drug, can render cell-cycle arrest 

irreversible, because doxorubicin cannot be easily 

washed out from the cell. If arrest is irreversible, it is 

impossible to know whether the cell retained (or not) 

the proliferative potential. 

 

Cell hypertrophy (enlargement) as a marker of 

senescence 
 

The large senescent morphology is the most noticeable 

feature of senescence in cell culture [23] and in the 

organism [24]. And it is not coincidental. 

Geroconversion is a continuation (quasi-program) of 

cellular growth [25]. At the beginning of gero-

conversion in p21-arrested cells, cellular mass (protein 

per well) is increased exponentially, and then growth 

becomes linear in p21-arrested cells [26]. In agreement, 

Neurohr et al. showed that within 9 days after 

doxorubicin-induced arrest, cell size increased linearly 

8-fold [21]. Similarly, linear increase in cell volume 

was observed during arrest caused by the CDKi 

Palbociclib, and this increase was completely prevented 

by serum starvation [21]. Rapamycin partially decreases 

hypertrophy during cell-cycle arrest caused by either 

p21 or synthetic CDK inhibitors [4, 26]. Pan-mTOR 

inhibitors more potently suppressed hypertrophy than 

rapamycin [27, 28]. 

 

Thus, hypertrophy is only partially rapamycin-sensitive 

[26, 27]. 

 

Excessive cell growth as a marker of 

geroconversion 
 

Geroconversion can occur not only in arrested but also 

in proliferating cells, if growth stimulation is excessive. 

For example, stem cells are small, and their size is 

increased with aging [29], and excessive growth 

stimulation drives stem cell geroconversion [7, 8]. 

 

It was even suggested that an increase in cell size by 

itself can cause senescence [21, 29, 30]. According to 

the geroconversion concept, excessive activation of 

growth-promoting pathways (MAPK, mTOR, etc.,) 

drives both excessive growth and other hyperfunctions 

(SASP, lysosomal hyperfunction (beta-Gal), hyper-

differentiation). Furthermore, overactivated MAPK and 
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mTOR pathways may induce p53/p21 and cycle arrest 

[31]. Following cell-cycle arrest, growth becomes even 

more excessive. Excessive growth and other 

manifestations of geroconversion are difficult to 

dissociate, because the manipulations that decrease 

growth (serum/nutrient starvation, rapamycin) also 

block MAPK/mTOR network that drives ALL 

manifestations together. This may suggest that cell size 

drives senescence rather than hyperfunctional growth-

signaling drives senescence-associated hyprertrophy. As 

suggested, excessive mitogen/growth-stimulation may 

lead to hypermitogenic arrest [32] and then full-blown 

cell senescence [9, 31]. 

 

Geroconversion as terminal differentiation 
 

Geroconversion can also be viewed as hypertrophic 

differentiation. For example, chondrocytes, responsible 

for bone growth in length, become hypertrophic and 

undergo senescence [33–36]. Like geroconvesrsion, 

terminal differentiation is an active process associated 

with decrease of proliferative potential [37], possible 

beta-Gal-positivity [38] as well as hypertrophy [39, 40] 

and increase of cellular functions, mainly tissue-specific 

functions. Geroconversion can be called gerogenic 

differentiation. This topic links the organismal/body 

growth program, hypertrophic differentiation, and 

geroconversion as a quasi-program of cellular growth and 

developmentally programmed cellular senescence [20]. 

 

Developmentally programmed cell senescence 
 

While cell senescence is a quasi-programmed in aging, 

it may be programed in development [20, 41–45]. 

During mammalian embryonic development, senescent 

cells are cleared by macrophages, resulting in tissue 

remodeling [41]. 

 

Oncogene-induced senescence 
 

Hyper-mitogenic stimulation may trigger cell-cycle 

arrest and simultaneously promote size growth [32,  

46–49]. 

 

How should we define cellular senescence? 
 

Cellular senescence is neither functional decline nor 

caused by chronic accumulation of molecular damage. 

In contrast, cellular senescence is characterized by 

universal hyperfunctions such as SASP plus tissue-

specific hyperfunctions (senescent beta-cells as an 

example). Second, whether accumulation of molecular 

damages (mutations) lead to cancer, cancer cells tend to 

be immortal. A common definition of cellular 

senescence as permanent loss of proliferative potential 

does not recapitulate the most important features of  

the senescent phenotype, such as hypertrophy and 

hyperfunctions (e.g., SASP). 

 

Cell senescence is a proliferation-like state in non-

proliferating cells. Growth-promoting pathways, 

including mTOR and MEK/MAPK, drive both growth 

and geroconversion. When actual growth is completed, 

growth-promoting pathways drive cellular senescence 

(Figure 1). Thus, a program of growth becomes a quasi-

program of senescence. (Quasi- means pseudo- or 

“resembling but not real”). Senescent cells resemble 

proliferating cells but do not proliferate [5]. As “Growth 

stimulation leads to cellular senescence when the cell 

cycle is blocked” the molecular hallmark of senescent 

cells is presented: high levels of p21/p16, phospho-S6 

and cyclin D1 [50]. Cell senescence is associated with 

constitutive, proliferative-like activity of nutrient-

sensing and growth-promoting pathways such as mTOR 

in non-proliferative (arrested) cells. 

 

David Gems and Carina Kern suggested replacing the 

term cellular senescence with remodeling activation, 

and SASP with RASP [20]. The key word is activation. 

According to hyperfunction theory, cellular senescence 

(or remodeling activation) can be viewed as 

hyperactivation, hyperfunction, hypertrophy, hyper-

differentiation. 

 

In 2003, I proposed “that simultaneous stimulation of 

mitogen-activated pathways and downstream inhibition 

of cyclin-dependent kinases leads, ultimately, to cell 

senescence” [32]. In other words, senescence occurs 

when growth stimulation meets cell cycle arrest. In 

agreement, Rapamycin and other rapalogs (Everolimus 

and Ridaforolimus), pan-mTOR inhibitors [27, 28] and, 

to a lesser extent, MEK, PI3K, mdm-2 and S6K 

inhibitors all slow down geroconversion in mammalian 

cells [1, 22, 26, 51–55]. 

 

Numerous studies further confirmed that mTOR is 

involved in the senescence phenotype [56–69]. 

 

Regardless of whether cellular senescence contributes to 

organismal aging or not, the geroconversion cell culture 

model is a prototype of the hyperfunction theory of 

quasi-programmed aging. The geroconversion model 

introduces the notion of a quasi-program of growth and 

hyperfunction. Regardless of mechanistic link (or its 

absence) between cellular senescence and organismal 

aging, they are analogies. The same pathways that drive 

geroconversion are involved in organismal aging and 

age-related diseases. The same drugs that slow down 

geroconversion also extend lifespan, as tested in 

animals so far. Targets of gerostatics (e.g., mTOR, 

PI3K) are involved in aging of animals from worm to 

mammals. Therefore, gerostatics are anti-aging drugs. 
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The model of geroconversion is useful to discover  

anti-aging drugs. 

 

Organismal aging as quasi-program of 

developmental growth 
 

Like geroconversion is a continuation of cellular 

growth, the organismal aging is a continuation of 

developmental growth (see Figure 1 in reference [70]). 

Aging is not programmed, it is quasi-programmed. A 

quasi-program is a purposeless continuation of 

programs that were not turned off upon their 

completion. This has been discussed in detail [9, 50, 

71–75]. 

 

Growth and aging are driven by overlapping signaling 

pathways. As suggested in 2007, “mTOR stands out 

because (a) it is a hub in the signaling network, (b) it is 

conserved from plants to animals (c) its inhibitors, 

rapamycin (Sirolimus) and everolimus, are clinically 

available drugs” [76]. To be clinically useful, the 

hyperfunction theory is mTOR-centric. 
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