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INTRODUCTION 
 

Stomach adenocarcinoma (STAD) is one of the most 

common pathological types of gastric cancer, the sixth 

most normal malignancy worldwide, and the fourth 

major reason for tumor-related deaths [1]. Despite 
obvious development in the diagnosis and treatment for 

STAD, the prognosis for patients with STAD remains 

poor due to postoperative recurrences and advanced 

stages [2, 3]. Thus, identifying novel effective bio-

markers for early detection and therapeutic targets for 

patients with STAD is crucial. 

 

Several studies indicate that N6-methyladenosine (m6A) 

plays an essential role in tumorigenesis and the 

development of various cancers, including STAD [4, 5]. 
As a dynamic process, m6A RNA modification is 

primarily regulated via adenosine methyltransferases 

(“writers”) and demethylases (“erasers”) and performs 

specific functions through interacting with m6A binding 
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ABSTRACT 
 

N6-Methyladenosine (m6A) has attracted growing interest among scholars as an important regulator of mRNA 
expression. Although the significant role of m6A in multiple biological processes (like proliferation and growth 
of cancers) has been comprehensively described, an analysis of its possible role in stomach adenocarcinoma 
(STAD) of tumor immune microenvironment (TIME) remains lacking. The data for RNA expression, single 
nucleotide polymorphism (SNP), and copy number variation (CNV) were downloaded from The Cancer Genome 
Atlas (TCGA). Subsequently, 23 m6A regulators were curated, with patients being clustered into three m6A 
subtypes and m6A-related gene subtypes. Furthermore, they were compared based on overall survival (OS). 
This study also evaluates the association between m6A regulators and immune as well as response to the 
treatment. According to the TCGA-STAD cohort, three m6A clusters conformed to three phenotypes, immune-
inflamed, immune-dessert, and immune-excluded, respectively. Patients who displayed lower m6A scores 
presented better overall survival outcomes. The GEO cohort demonstrated that those with a low m6A score had 
obvious general survival benefits and clinical advantages. Low m6A scores can carry the enhanced neoantigen 
loads, triggering an immune response. Meanwhile, three anti-PD-1 cohorts have confirmed the value of predicting 
survival outcomes. The results of this study indicate that m6A regulators are associated with TIME, and the m6A 
score is an efficient prognostic biomarker and predictive indicator for immunotherapy and chemotherapeutics. 
Moreover, comprehensive evaluations of m6A regulators in tumors will broaden our comprehension of TIME, 
efficiently guiding enhancing explorations on immunotherapy and chemotherapy strategies for STAD. 
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proteins (“readers”). m6A is widely distributed in 

various RNAs, such as messenger RNA (mRNA), pre-

microRNA (pri-miRNA), circular RNA (circRNA), and 

lncRNA. Moreover, m6A is associated with tumori-

genesis and development, including STAD [6–8]. For 

example, the m6A writer METTL3-catalyzed m6A 

modification was found to stimulate the expression of 

NOTCH1 and activate the Notch signaling pathway in 

esophageal squamous cell carcinoma [9]. METTL3 

might stimulate m6A modification of HDGF expression, 

and the m6A reader IGF2BP3 could increase its 

stability, which recognizes and binds to the m6A site to 

promote tumor angiogenesis and glycolysis in STAD 

[10]. Furthermore, previous literature proved that m6A 

plays a critical role in the tumor microenvironment 

(TME), immune recognition, and immune response 

[11–13].  

 

Recently, although increasing evidence indicates a 

correlation between m6A modification and immune cell 

infiltration, the cancer-related pathways of m6A 

methylation in tumor immune microenvironment 

(TIME) are still little understood. According to Han et 

al., lysosomal proteases labeled and identified by 

YTHDF1 can trigger the degradation of tumor 

neoantigens [14]. Moreover, they found higher 

expression levels of NK cells and CD8+ cytotoxic T 

cells in the tumors of YTHDF1 knockout mice than WT 

mice, suggesting a stronger anti-tumor response when 

YTHDF1 is present. Chong et al. pointed out that 

interferon-gamma (IFN-γ)-induced cytotoxicity in 

melanoma cells was capable of degrading through FTO 

in vitro by lowering the levels of cell-intrinsic genes 

PD-1, SOX10, and CXCR4 expression which through 

YTHDF2-mediated decay [15]. However, due to 

technical limitations, almost all research has focused on 

one or two m6A regulators. Therefore, a comprehensive 

investigation of multiple m6A regulators in STAD, 

including the associations between m6A regulators and 

CNVs and TMBs, as well as the prognostic value and 

the risk score in immunotherapy and chemotherapy, will 

provide a more comprehensive understanding of the 

TIME. 

 

In this study, we screened the Cancer Genome Atlas 

(TCGA) database for m6A-related genes associated 

with STAD, thereby assessing the correlation between 

m6A methylation and prognosis, CNVs, TMB, and 

TIME of STAD. Subsequently, we identified three 

clustering subtypes through the “Consensus Cluster 

Plus” method, and the above three subtypes were 

closely related to the following three phenotypes, 

respectively, immune-inflamed, immune excluded, 
and immune-desert [16]. Afterward, a scoring model, 

m6A score, was constructed to quantify STAD  

of individual samples. This study explored the 

correlations between carcinogenic pathways and ICI 

treatment, scoring model, and TIME to discover the 

influence of m6A regulators in STAD. Herein, it is 

demonstrated that m6A regulators play an 

indispensable role in TIME and contribute to making 

therapeutic strategies on STAD. 

 

MATERIALS AND METHODS 
 

The collection and pretreatment of datasets and 

samples  

 

In this study, the genomics data and clinical information 

of STAD patients were obtained from the public TCGA 

database (https://cancergenome.nih.gov/), containing 

350 tumor samples and 32 normal samples. The 

selection criteria were applied as 1) Complete clinical 

and OS information, including gender, age, stage, and 

radiation therapy, were collected for the investigation. 

2) Histologically confirmed STAD. The UCSC Xena 

(https://gdc.xenahubs.net/) obtains mutation data. 

Twenty-three m6A regulators were gained as per 

previous research (Supplementary Table 1). The 

number of nonsynonymous and synonymous mutations 

was stated as the tumor mutation burden. The 

GSE84437 (N = 433) from Gene Expression Omnibus 

(GEO https://www.ncbi.nlm.nih.gov/geo/) datasets were 

used as the validation cohort (Table 1). 

 

The consensus clustering of 23 m6A regulators by 

consensus cluster plus 

 

We employed the Consensus Cluster Plus R package to 

elucidate the biological role of m6A regulators in STAD 

categorize patients into different m6A isoforms [17]. 

“PCA” package was used to analyze gene expression 

among distinct m6A subtypes. 

 

Gene set variation analysis (GSVA) 

 

The biological processes among disparate m6A subtypes 

were studied using the GSVA package [18]. We used 

the MSigDB and IMvigor210 CoreBiologies packages 

to enrich well-defined biological pathways and roles 

[19, 20]. The Gene Ontology (GO) annotation of m6A-

related genes was carried out using the “ClusterProfiler” 

package [21]. 

 

Immune-related function and immune cell 

infiltration estimation via ssGSEA 

 

We estimated the proportions of the 23 tumor-

infiltrating immune cell types from each sample using 

the “CIBERSORT” package based on the STAD gene 

expression matrix. Furthermore, the association 

between immune-related pathways and different m6A 

https://cancergenome.nih.gov/
https://gdc.xenahubs.net/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1. Comparison of clinical-pathological characteristics between TCGA-STAD cohort and GSE84437 cohort. 

 TCGA-STAD cohort n=350 GSE84437 cohort n=433 P 

Age, median [min, max] 67.0 [35.0, 90.0] 62.0 [27.0, 86.0] 0.002 

≤60 117(33.4%) 194(44.8%)  

>60 230(65.7%) 239(55.2%)  

Unknown 3(0.8%) 0(0)  
Gender (n, %)  0.263 

Male 226(64.6%) 296(68.4%)  

Female 124(35.4%) 137(31.6%)  

OS Status (n, %)  0.061 

Alive 204(58.3%) 224(51.7%)  

Dead 145(41.4%) 209(48.2%)  

Unknown 1(0.3%) 0(0)  
OS time (months), median [min, max] 15.8 [0.03, 124] 70.0 [1.00, 161] <0.001 

T (n, %)    
T1 16(4.6%) 11(2.5%)  
T2 74(21.1%) 38(8.8%)  
T3 161(46.0%) 92(21.2%)  
T4 95(27.1%) 292(67.4%)  

Unknown 4(1.1%) 0(0)  
N (n, %)   <0.001 

N0 103(29.4%) 80(18.5%)  
N1 93(26.6%) 188(43.4%)  

N2 72(20.6%) 132(30.5%)  

N3 71(20.3%) 33(7.6%)  
Unknown 11(3.1%) 0(0)  
M (n, %)   - 

M0 312(89.1%) NA  
M1 23(6.6%) NA  
Unknown 15(4.3%) NA  
TNM stage (n, %)  - 

I 46(13.1%) NA  
II 110(31.4%) NA  
III 145(41.4%) NA  
IV 35(10.0%) NA  
Unknown 14(4.0%) NA  
Tumor Grade (n, %)  - 

G1 9(2.6%) NA  
G2 125(35.7%) NA  
G3 207(59.1%) NA  
Unknown 9(2.6%) NA  

 

subtypes was discovered by ssGSEA in TCGA-STAD 

profiles. 

 

Immune response analysis 

 

Based on the immunophenoscore (IPS) of 415 STAD 
patients, we created the Cancer Immunome Database 

(TCIA) (https://www.tcia.at/home), which could provide 

a comprehensive analysis of immunogenomic data. 

Furthermore, this study employed the Tumor Immune 

Dysfunction and Exclusion (TIDE) method to predict 

immune checkpoint blockade (ICB) response and tumor 

immune evasion mechanisms. The ESTIMATE package 

was used to assess tumor purity and tumor cellularity 

based on expression matrixes composed of the TIME. In 

addition, the summation of the immune and stromal 
scores from each sample was defined as the tumor purity. 

According to the tumor sample, which contains lower 

tumor purity and higher immune scores, an abundance of 

immune cells may have infiltrated the tumor. 

https://www.tcia.at/home
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DEGs associated among the m6A phenotypes 

 

According to the consensus clustering algorithm, 

patients were divided into three m6A clusters and 

identified as differentially expressed genes (DEGs). The 

“limma” package was used to verify DEGs among three 

m6A clusters [22]. The screening criteria were well-

defined as p-value <0.01. 

 

Evaluation of the m6A gene signature 

 

The intersected DEGs were derived from the univariate 

Cox regression. The number of gene clusters was then 

determined by adopting the consensus clustering 

algorithm. The prognosis-related genes were discovered 

to construct Principal Component Analysis (PCA) and 

extracted the m6A score [23, 24]. The advantage of this 

algorithm is that it focuses mainly on negatively (or 

positively) correlated genes. The m6A score formula is 

as follows: 
6

i im A score (PC1 ) (PC2 )=  +  

Lastly, the correlation between m6A score and TMB 

was performed via Spearman’s approach according to 

survival curve and synonymous and nonsynonymous 

mutation counts. 

 

Biological pathways with m6A score  

 

There is evidence that a panel of signatures associated 

with distinct biological pathways, including: 1) 

epithelial mesenchymal transition (EMT); 2) immune-

checkpoint; 3) pan-fibroblast TGFb response 

signature; 4) CD8 T-effector signature; 5) 

homologous recombination; 6) Fanconi anemia 

pathway; 7) WNT target; 8) base excision repair; 9) 

mismatch repair; 10) DNA damage repair; 11) DNA 

replication; 12) nucleotide excision repair; 13) cell 

cycle regulation; 14) antigen processing; 15) cell 

cycle and 16) FGFR3-related genes [20, 25].  

 

The immune-checkpoint cohorts analysis 

 

Three independent anti-PD-L1 cohorts that could apply 

to genomic and clinical information were acquired from 

the IMvigor210 cohort [20] and GSE78220 cohort [26] 

to calculate the predictive value of the m6A score for 

immunotherapy. 

 

Evaluation of the sensitivity of chemotherapeutic 

drugs 

 
Genomics of Drug Sensitivity in Cancer (GDSC) is the 

largest public pharmacogenomics database that could 

predict sensitivity between high and low m6A score 

subtypes [27]. The pRRophetic package could process 

the half-maximal inhibitory concentration (IC50) via the 

ridge regression model [28]. 

 

Immunohistochemistry (IHC) 

 

IHC experiment detected IRGs protein levels in STAD 

and corresponding normal tissues. First, each sample 

was subjected to 10% formalin fixation, paraffin 

embedding, and processing up to 4-μm consecutive 

sections. After that, the sections were treated with 

methanol, followed by BSA incubation and primary 

antibody staining. Then, we stained the samples with a 

secondary antibody after washing with PBS. Finally, 

each section was observed and photographed using a 

microscope. The primary antibodies were obtained from 

Abcam. 

 
Statistical analyses 

 

R software (version 3.6.3) was applied for this study. 

Wilcoxon test was computed using the difference 

comparison of the DEGs between high and low m6A 

score groups. Association between tumor-infiltrating 

immune cells and m6A score was applied for 

Spearman’s correlation. Kaplan-Meier methods were 

visualized for the difference in overall survival (OS) 

between the high-risk and low-groups. In addition, the 

screening criterion was p-value <0.01. 

 

Data availability statement 

 

Publicly available datasets were analyzed in this study. 

The datasets generated during the current study are 

available in the Cancer Genome Atlas (TCGA) public 

dataset (https://portal.gdc.cancer.gov/) and the Gene-

Expression Omnibus (GEO) public dataset 

(https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Genetic expression of 23 m6A regulators in STAD 

 

Figure 1 shows the flow chart of this study. The TCGA 

dataset identified 23 m6A regulators (eleven “readers,” 

eight “writers,” and two “erasers”), which were 

summarized the biological functions and processes via 

the Metascape database (Figure 2A). Figure 2B shows 

the prevalent deletions of m6A regulators in copy 

number, while VIRMA, YTHDF1, and FMR1 featured 

an overall frequency of CNV amplification. 

Subsequently, as per Figure 2C, the location of CNV of 

all m6A regulators was listed in the chromosomes. 

Figure 2D shows that ZC3H13 showed the highest 
mutation frequency (8%), followed by RBM15B and 

YTHDC1, whereas VIRMA, METTL16, ALKBH5, 

FTO, and METTL3 did not display any mutations. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Based on our analysis of the most mutated ZC3H13, 

nine of the other 22 m6a regulators are of interest 

(Supplementary Figure 1). Further investigation 

demonstrated that the expression of most m6a genes was 

significantly up-regulated in tumor samples except 

IGFBP2 (Figure 2E). m6A regulators (like VIRMA, 

YTHDF1, FMR1, and ZC3H13) with amplificated CNV 

showed higher expression than normal tissues. (Figure 

2B, 2E). Following the obtained findings, we could 

demonstrate that m6A regulators exhibited significant 

transcriptome-altering landscapes and heterogeneity in 

genomics between STAD and normal samples. 

 

 
 

Figure 1. Research flow chart. 
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Identification of m6A subgroups mediated via 23 

m6A regulators 

 

The TCGA-STAD dataset with available clinical and 

survival information was enrolled into the training 

cohort. By applying the R package “Consensus 

ClusterPlus”, 350 STAD patients were stratified into 

three distinct following the expression of 23 m6A genes 

(Figure 3A, 3B, and Supplementary Figure 2). Variable 

selection was performed by LASSO Cox regression and 

the parameter λ indicated that the most suitable model 

to predict survival included RBM15, IGFBP1, RBMX, 

FTO, and ALKBH5 with coefficients of -0.306, 0.125, 

0.042, 0.543, and -0.293, respectively (Supplementary 

Figure 3). The regulator network comprehensively 

represented the prognostic significance of 23 m6A 

regulators and their whole interactions (Figure 3C, and 

Supplementary Figure 4). FTO was found to be a risk 

factor and a favorable factor for ALKBHS in the eraser 

gene, and all other writers, except for IGFBP2 and 

IGFBP3 genes, were also favorable. In addition, we 

found that the 23 m6A regulators are positively 

correlated except for IGFBP2 and IGFBP3. Based on 

these results, the crosstalk among the 23 m6A regulators 

might play a key role in the pathogenesis and 

progression of individual tumors and in the formation of 

distinct m6A modifications. Thus, unsupervised 

clustering was adopted to classify samples into distinct 

m6A clusters. Furthermore, we could distinguish one 

m6A cluster from others completely in line with PCA 

(Figure 3D). Accordingly, three distinct m6A clusters 

were ultimately detected in the TCGA dataset, 

containing 161 in m6A cluster A, 133 in m6A cluster B, 

and 143 in m6A cluster C (Figure 3E). Among the 

above clusters, m6A cluster A, m6A cluster B, and m6A 

cluster C, m6A cluster A showed poor prognosis in the 

TCGA cohort, whereas patients in the m6A cluster C 

had an advantage in overall survival (p = 0.003). 

Similar results could also be found in the validation 

cohort (GEO cohort (Figure 3F). 

 

The distinct immune landscapes of TIME in m6A 

clusters 

 

We performed the heatmap and visualized the 

expression of 23 m6A regulators (Figure 4A) to 

investigate the correlation of these m6A clusters with 

clinical features. Most of the m6A regulators were up-

expressed in cluster B, while IGFBP1 and IGFBP2 were 

down-regulated in cluster A. To our surprise, most 

people over 65 years significantly increased in cluster 

B. TIME and CIBERSORT package were applied to 

investigate the subsets of immune cells and feature the 
immune cell infiltration according to the expression file. 

Anti-tumor lymphocyte cells, like NK cells and 

activated CD8+ T cells, were primarily engaged in the 

m6A cluster A (Figure 4B). Cluster C was enriched with 

2/17 T helper cells and gamma delta T cells. We 

demonstrated that m6A cluster A represented the highest 

immune scores, followed by m6A cluster C and m6A 

cluster B (Figure 4C). Accordingly, m6A cluster A 

displayed a higher tumor purity than m6A cluster C and 

m6A cluster B, suggesting that more stromal cells and 

immune cells surround tumors in m6A cluster C and B 

(Figure 4D). Previous studies had suggested a tumor 

stroma with multiple immune cells could retain these 

cells rather than the parenchyma of an immune-

excluded phenotype.  

 

The m6A-related DEGs in STAD 
 

1018 DEGs were overlapped via the Venn diagram to 

identify the biological behaviors of these m6A clusters 

(e.g., expression perturbations and genetic alterations), 

and then, we examined transcriptional expression 

changes associated with three m6A clusters in STAD 

(Figure 5A). According to GO functional annotation, 

BPs associated with ribonucleoprotein complex 

biogenesis and RNA localization were significant bio-

functions (Figure 5B). As per Figure 5C, three m6A 

gene clusters displayed distinct clinicopathological 

characteristics. Further, patients of late stages were 

mostly clustered into gene cluster C. Furthermore, all 

those three m6A gene clusters showed significantly 

different prognoses among the STAD samples based on 

survival analysis. Generally, samples of m6A cluster B 

had dismal prognostic outcomes, while those of m6A 

cluster C had superior prognostic outcomes (Figure 5D).  

 

Prognostic signature establishment and clinical 

feature exploration 

 

According to those findings above, m6A regulators have 

essential effects on modulating TIME and prognostic 

outcome. However, the above analysis is based on the 

general population alone, whereas the heterogeneous 

and complicated m6A regulators are not explained 

separately. Based on those discovered m6A genes, this 

work established one scoring system referred to as m6A 

score to quantify scores of different individuals using 

those discovered m6A genes. 
 

The alluvial diagram represents quantitative alterations 

in STAD samples (Figure 6A). These findings indicated 

that m6A clusters A/C showed increased m6A scores, 

while cluster B showed decreased m6A scores. In 

addition, we performed Spearman’s correlation analysis 

to illustrate m6A regulator patterns. Based on the 

heatmap, the m6A score showed immature B cell and 

activated CD4 T cell (Figure 6B). Next, this study 

evaluated the m6A score’s significance as a prognosis 

predictor for patients. We divided patients as low-or 
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Figure 2. Genetic topography of the 23 m6A regulators in STAD. (A) Metascape network of 23 functionally enriched m6A regulators. 
Annotations denoted by different circles varied. (B) CNV map for 23 m6A regulators, where the column stood for the alteration frequency, 
and the green and pink dots, respectively, indicated the deletion and amplification of CNV. (C) CNV alteration sites for the cellular m6A 
regulators. (D) Among 433 patients, varying genetic alterations were noted in 94 patients, such as missense, nonsense, and splice-site 
mutations. (E) The different expression levels of 23 m6A regulators between normal and STAD. 
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Figure 3. Patterns of m6A methylation modification. (A) CDF (cumulative distribution function; k = 2–9) in the right panel. (B) 

Depending on the consensus clustering matrix (k = 3), the patients with STAD were classified into three clusters. (C) Interactions among 22 
m6A regulators in STAD. Circles in varying colors were used to represent differing RNA modifications, where red indicated Erasers, orange 
indicated readers, and gray indicated writers. Besides, green and purple circles, respectively, referred to the favorable and risky factors. (D) 
PCA (principal component analysis)-based map depicting prominent differences among the three m6A clusters. (E) Kaplan–Meier OS (overall 
survival) plots of 3 m6A clusters for the TCGA cohort (p = 0.003). (F) Kaplan–Meier OS plots of three m6A clusters for the GEO cohort (p < 
0.001). OS was worse among those in the m6A cluster C as compared to the other 2 clusters. 
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high m6A score subgroups as per the threshold. As 

expected, high m6A score patients were related to 

significantly poorer outcomes (Figure 6C). In this study, 

we also analyzed the relationship between m6A score 

and PD-L1 expression; as a result, high m6A score 

patients had increased PD-L1 expression compared to 

low m6A score patients (Figure 6D). Increasing 

evidence has illustrated that TMB is related to 

immunotherapeutic response. Thus, this work analyzed 

TMB distribution between high and low m6A score 

patients. According to our results, low m6A score 

patients were related to a decreased TMB frequency 

(Figure 6E). As shown in Figure 6G, the m6A score 

showed a marked positive correlation with TMB (R = 

0.35, p = 6.8e-12). Further, we also examined somatic 

mutation gene distributions between both subgroups. 

According to Figure 6F, patients with high m6A scores 

had more somatic mutations than those with low scores. 

 

 
 

Figure 4. TIME properties in the three m6A clusters. (A) Thermogram depicting the consensus clustering outcome for the TCGA cohort, 
where age, gender, T&N stage, radiation, survival, and stage constituted the clinical traits. (B) CIBERSORT-based immunocyte infiltration in 
the three m6A clusters. *p < 0.05;**p < 0.01; ***p < 0.001. ns stood for no significance. (C–E) Assessment results of the (C) immune scores, 
(D) estimate scores, as well as (E) stromal scores across three m6A clusters.  
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Additionally, cases with increased TMB frequency had 

survival benefits (p<0.001; Figure 6H), whereas those 

with high m6A scores did not exhibit any difference in 

survival advantage between high and low TMB 

frequency (Figure 6I). Therefore, cases with an 

increased TMB frequency possibly gained more 

survival benefits from radiotherapy than those with a 

decreased frequency. 

 

This work also examined the m6A score’s prognostic 

significance under diverse clinical factors. As a result, 

low m6A score cases were associated with superior 

prognosis to low m6A score patients from the T-stage 

subgroup (Supplementary Figure 5). Besides, low m6A 

score cases possibly gained more advantages from 

signatures than high m6A score cases. 

 

m6A score’s effect on estimating immunotherapeutic 

responses 

 

This study examined differential expression of immune 

checkpoints (ICPs) to predict immunotherapeutic 

responses among STAD patients. IPS for the 140 TCIA- 

derived PAAD cases were identified as the favorable 

factor that predicted anti-cytotoxic T lymphocyte 

antigen-4 (CTLA-4) and anti-programmed cell death 

protein 1 (anti-PD-1) antibody responses, and it was 

significantly different between the two groups that they 

 

 
 

Figure 5. The construction of m6A gene clusters and relevant functional annotations. (A) Venn plot depicting 1,028 DEGs 
(differentially expressed genes) among three m6A clusters. (B) GO enrichment findings of 1,028 intersecting genes. (C) Intersect gene-based 
consensus clustering result of patients into three separate gene clusters. (D) Kaplan–Meier plots for the three m6A gene clusters (p < 0.001). 
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were both positive (Figure 7A–7D). Additionally, the 

other two immunotherapy cohorts, IMvigor210 cohort 

and GSE78220, were used to analyze the role of 

m6Acore in predicting anti-PD-L1 therapeutic response 

in patients. As for IMvigor210 and GSE78220 cohorts, 

patient survival did not consistently respond between low 

and high m6A score groups (Supplementary Figure 6). In 

conclusion, the results of this study suggest a close 

relationship between m6A regulators and TIME, which 

is responsible for immunotherapeutic responses.  

 

 
 

Figure 6. The m6A score construction and relevant genetic trait assessment. (A) Alluvial chart of m6A clusters regarding gene cluster 

and score of m6A, as well as patient survival. (B) Spearman correlations of m6A score with immunocytes. (C) Survival findings for the TCGA 
cohort patients marking high and low m6A scores. (D) PD-L1 level comparison between patients marking high and low m6A scores. (E) TMB 
(tumor mutation burden) distribution comparison between patients marking high and low m6A scores. (F) Mutational waterfall plot for the 
TCGA cohort patients marking high (left panel) and low (right panel) m6A scores. All patients were represented by individual columns. (G) 
Diagram illustrating significant positive association of m6A score with TMB (R = 0.35, p = 6.8–12). (H) Kaplan–Meier plots for patients 
exhibiting high (H) and low (L) TMBs. (P< 0.001). (I) Kaplan–Meier plots for the TCGA cohort patients stratified by both m6A score and TMB. H, 
high; L, Low; TMB, tumor mutation load (P = 0.003). 
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External validation of five key prognostic m6A RNA 

modulators 

 

IHC staining of five paired STAD and adjacent non-

tumorous tissues was used to validate the protein 

expression of the five prognosis genes (Figure 8). The 

compared with adjacent non-tumorous tissues, we found 

a higher level of RBM15, IGFBP1, RBMX, FTO, and 

ALKBH5 in all five STAD tissues, RBM15, FTO and 

ALKBH5 were overexpressed in STAD tumor tissues, 

while the expression of IGFBP1, RBMX was not 

changed in STAD tumor tissues. 

 

DISCUSSION 
 

There is growing evidence that m6A methylation, the 

most common post-transcriptional modification, 

regulates inflammation, immunity, and anti-tumor 

interactions with various m6A regulators. Additionally, 

as various articles illustrate only the impact of one  

or two regulators on TIME, it is required to 

comprehensively characterize several m6A regulator-

mediated immune cells to understand how m6A 

methylation occurs within TIME. To date, the effect of 

m6A modulators on the TIME of STAD has not been 

fully understood. Determining the role of m6A 

modulators within TIME can elucidate the anticancer 

responses regulated by m6A methylation and contribute 

to developing effective chemotherapeutic and immuno-

therapeutic treatments.  

 

This study constructed three immunophenotypes by 

adopting a total of 23 m6A regulators associated with 

STAD prognosis and distinct temporal characteristics. 

m6A cluster A had higher adaptive immune cell 

infiltration levels, indicating an immunoinflammatory 

phenotype. m6A cluster B was related to increased 

stromal cell and innate immunocyte infiltration degrees, 

corresponding to an immune-excluded phenotype. 

Similarly, m6A cluster C had the features of temporal 

suppression related to the immune-desert phenotype. 

This study indicates that immune-desert phenotypes 

lack primed and activated T cells, and this is related to 

immune evasion reported previously [20, 29, 30]. 

Moreover, m6A cluster A displayed a close association 

with a higher lymphocyte infiltration degree. 

 

 
 

Figure 7. The m6A score predicts immunotherapeutic benefits. (A–D) TCIA database-based correlations of m6A score with IPS among 

the PAAD patients: (A) CTLA4(−) PD1(−) (B) CTLA4(−) PD1(+) (C) CTLA4(+) PD1(−) (D) CTLA4(+) PD1(+). (E) Distribution of m6A score in 
different MSI groups. (F) The ratio of MSI (microsatellite instability) in STAD samples with MSS and MSI-L and MSI-H.  
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Moreover, m6A cluster A displayed a close association 

with a higher lymphocyte infiltration degree, demons-

trating that it might be used to predict immuno-

therapeutic response. Consequently, the m6A cluster A 

group possibly gained more survival benefits from ICB 

therapy. Overlapping DEGs identified from the three 

m6A phenotypes were closely related to immune 

pathways and RNA modification; consequently, such 

DEGs were the “real” m6A-related genes. Three 

transcriptome isoforms have also been discovered 

according to those identified m6A-related genes 

indicating their crucial role in shaping TIME. After that, 

this work constructed the m6A score scoring system for 

differentiating m6A modification-derived heterogeneity 

in individual cases to precisely guide the therapeutic 

strategies for STAD individuals. Our results showed 

that the immune-desert phenotype-featured m6A 

modification pattern showed increased m6A scores, 

whereas the immune-inflammatory phenotype-featured 

pattern had decreased m6A scores. 

 

Furthermore, m6A scores might be adopted as 

prognostic markers, which were related to TMB and 

mutation-associated signatures. The m6A score served 

as the favorable prognostic biomarker for genomic 

aberrations based on the above findings. 

 

A positive correlation was demonstrated between m6A 

scores and ICB therapeutic predictors, suggesting the 

potential influence of m6A methylation on the 

immunotherapy response among patients. Accuracy 

verification was conducted on the identified 

immunophenotype using the IMvigor210 cohort, which 

demonstrated that the m6A score in concert with 

multiple biomarkers (e.g., TMB, neoantigen load, the 

composition of TIME) was more effective in predicting 

the outcome of immunotherapy in patients [20]. We 

also utilized another two independent immunotherapy 

cohorts to perform prognostic power validation of m6A 

score in the immune response against PD-1/L1, and we 

further found that patients with high m6A anticancer 

drugs work better. Based on the above findings, the 

m6A score can be used to comprehensively identify 

immune-related phenotypes and guide clinical treatment 

decisions for immunotherapy and anticancer drugs. 

 

In addition, the functionality of specific m6A regulators 

has been clarified for the TIME adjustment. In 

agreement with the latest research findings, m6A 

enhances mRNA stability and transports specific 

mRNAs into the cytoplasm mainly via the hnRNP 

A2/B1 binding protein in cells [31]. Additionally, 

hnRNP A2/B1 has been shown to play an oncogenic 
role in certain carcinomas, as evident from its 

facilitation of tumor development and migration [32–

34]. Our analytical work noted up-regulation of hnRNP 

A2/B1 in tumors, exhibiting an association with 

survival reduction. Furthermore, high expression of 

hnRNP A2/B1 showed a lower tendency to infiltrate 

different types of DCs, s indicating that hnRNP A2/B1 

might be involved in the DC initiation. Through 

analyzing the TCGA-STAD cohort, we also evaluated 

the mutant driver genes, key underpinnings of tumor 

diagnosis, and treatment options. Despite the addition of 

23 m6A regulators in this mode, novel regulators still 

need to be picked to optimize the m6A score accuracy. 

Given the lack of an adequate immunotherapy cohort 

based on STAD, we expect various STAD regimens 

(e.g., anti-PD-1/L1 or anti-CTLA-4) will validate our  

 

 
 

Figure 8. IHC analysis of five m6A modulators in stomach 
adenocarcinoma tissues and adjacent normal tissues.  
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conclusions. Besides, since the regulators and scores of 

m6A were identified by means of retrospective datasets, 

a prospective cohort of patients undergoing immuno-

therapy was required. Moreover, not all cohorts 

demonstrated that ICB therapy was conducive to the 

patients marking low m6A scores; thus, the model 

accuracy must be validated and modified based on a 

large sample of multi-center clinical populations in 

conjunction with more clinical traits. 

 

In conclusion, we developed a comprehensive multi-

cohort-based assessment of the m6A regulators’ TIME 

properties. Based on our comprehensive assessment, we 

conclude that m6A modification is key for tumor 

immunomodulation. The development of more 

efficacious and profound protocols of immunotherapy 

will be guided by a comprehensive evaluation of the 

m6A modifications in TIME. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 

Supplementary Figure 1. Expression levels of 22 m6a regulators between ZC3H13 mutant and wild-type in TCGA database. 

 

 
 

Supplementary Figure 2. Consensus clustering of 22 m6A regulators in the TCGA cohort. (A) relative change in area under the CDF 
in left panel; (B) The cumulative distribution function (CDF) for k=2 to 9 in right panel; relative change in area under the CDF in left panel. 
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Supplementary Figure 3. Five selection of genes by LASSO Cox regression. (A) Selection of the optimal parameter (lambda) in the 

LASSO model for STAD. (B) LASSO coefficient profiles of the five genes in STAD. A coefficient profile plot was generated against the log 
(lambda) sequence. 

 

 
 

Supplementary Figure 4. The prognostic subgroup analysis of m6A score based on the TCGA cohort. 
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Supplementary Figure 5. The prognostic clinical status analysis of m6A score based on the TCGA cohort. (A) K-M survival analysis 

in T1-2. (B) K-M survival analysis in T3-4. 
 

 
 

Supplementary Figure 6. The prognostic clinical status analysis of m6A score between IMvigor210 and GSE78220 cohorts.  

(A) K-M survival analysis in high and low m6A cluster of IMvigor210. (B) K-M survival analysis in high and low m6A cluster of GSE78220. 
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Supplementary Table 
 

Supplementary Table 1. 
Methylated genotype. 

Gene Type 

METTL3 writers 

METTL14 writers 

METTL16 writers 

WTAP writers 

VIRMA writers 

ZC3H13 writers 

RBM15 writers 

RBM15B writers 

YTHDC1 readers 

YTHDC2 readers 

YTHDF1 readers 

YTHDF2 readers 

YTHDF3 readers 

HNRNPC readers 

FMR1 readers 

LRPPRC readers 

HNRNPA2B1 readers 

IGFBP1 readers 

IGFBP2 readers 

IGFBP3 readers 

RBMX readers 

FTO erasers 

ALKBH5 erasers 

 


