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INTRODUCTION 
 

In recent years, molecular targeted therapy and 

immunotherapy have been extensively used in cancer 

treatment. However, the prognosis of hepatocellular 

carcinoma (HCC) patients has not been significantly 

improved [1, 2]. Recent data suggested that 5 years 

overall survival (OS) rate of all stages of HCC patients 

was only 20%, while 17% in 2016 [3, 4]. The poor 

prognosis of HCC patients was owing to the high 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) remains imposing an enormous economic and healthcare burden worldwide. In 
this present study, we constructed and validated a novel autophagy-related gene signature to predict the 
recurrence of HCC patients. A total of 29 autophagy-related differentially expressed genes were identified. A 
five-gene signature (CLN3, HGF, TRIM22, SNRPD1, and SNRPE) was constructed for HCC recurrence prediction. 
Patients in high-risk groups exhibited a significantly poor prognosis compared with low-risk patients both in the 
training set (GSE14520 dataset) and the validation set (TCGA and GSE76427 dataset). Multivariate cox 
regression analysis demonstrated that the 5-gene signature was an independent risk factor for recurrence-free 
survival (RFS) in HCC patients. The nomograms incorporating 5-gene signature and clinical prognostic risk 
factors were able to effectively predict RFS. KEGG and GSEA analysis revealed that the high-risk group was 
enriched with multiple oncology characteristics and invasive-related pathways. Besides, the high-risk group had 
a higher level of immune cells and higher levels of immune checkpoint-related gene expression in the tumor 
microenvironment, suggesting that they might be more likely to benefit from immunotherapy. Finally, the 
immunohistochemistry and cell experiments confirmed the role of SNRPE, the most significant gene in the gene 
signature. SNRPE was significantly overexpressed in HCC. After SNRPE knockdown, the proliferation, migration 
and invasion ability of the HepG2 cell line were significantly inhibited. Our study established a novel five-gene 
signature and nomogram to predict RFS of HCC, which may help in clinical decision-making for individual 
treatment. 
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recurrence. Previous studies suggested that more than 

70% recurrence occurred within five years in patients 

who have undergone radical resection [5–7]. Hence, the 

identification of an effective biomarker for recurrence 

prediction of HCC patients was essential for prognosis 

improvement. IL-11, STAT3, AFP, C14orf166, 

HNRNPA2B1, GP73, and CTSA have been suggested 

as candidate recurrence prediction biomarkers in 

previous studies [8–12]. But even the gold standard 

biomarker, alpha-fetoprotein, was only elevated in 70% 

of HCC patients [13]. The sensitivity of multi-gene 

recurrence predicting markers that was higher than a 

single biomarker has been broadly accepted, especially 

combined with the clinical characteristics. 

 

Autophagy, another process of programmed death that 

is different from apoptosis, plays a dual role in many 

types of cancer [14]. In the stage of tumorigenesis, 

autophagy inhibited tumor progression by eliminating 

damaged proteins and organelles. However, once the 

tumor formed, autophagy promoted tumor cell 

proliferation and metastasis by stimulating cell 

metabolism [15, 16]. The abnormal expression of 

autophagy-related genes (ARGs) plays a key role in 

regulating the process of autophagy. Wei Q et al. 

reported that E2-induced activation of the NLRP3 

inflammasome inhibited HCC progression by 

promoting autophagy [17]. Quidville and colleagues 

reported that after siRNA depleted the components of 

the core spliceosome (such as SNRPE or SNRPD1), 

autophagy was triggered in breast and lung cancer cell 

lines, and cell viability was significantly reduced [18]. 

In addition, inhibition of the autophagy regulated by 

autophagy gene autophagy-related 7 (ATG7) can cause 

the accumulation of damaged mitochondria and reactive 

oxygen species (ROS), resulting in inhibition of cancer 

recurrence [19]. Hence, ARGs have become the 

potential effective biomarker for therapy and recurrence 

prediction. However, there is still a lack of studies on 

the establishment of multi-ARGs signatures to predict 

recurrence. 

 

We constructed a five ARGs signature using the RNA 

expression data and clinical data from the GSE14520 

dataset in the GEO database. We validated the 

availability of genes signature using the independent 

HCC cohort in the TCGA and GSE76427 dataset. Then, 

we constructed a nomogram integrating genes signature 

and all independent risk factors of (recurrence-free 

survival) RFS to further explore the recurrence 

predicting model to acquire the clinical net benefit that 

effectively guides the clinical decision. In addition, we 

performed the function analysis by GO, KEGG, and 

GSEA to explore the potential mechanism of these 

ARGs. We assessed the affection of five genes 

signature on immune infiltration in the CIBERSORT 

algorithm and TIMER database. Finally, the 

immunohistochemistry and cell experiments confirmed 

the role of SNRPE, the most significant gene in the 

gene signature. 

 

RESULTS 
 

Identification of differential expressed ARGs in 

HCC 

 

A flow chart was established to exhibit a concise 

scheme of our study (Figure 1). We identified 1014 

differential expressed genes (575 up-regulated and 539 

down-regulated genes) in 242 HCC tissues compared 

with 246 non-HCC tissues from the GSE14520 dataset. 

Then, 232 ARGs were identified from the HADb and 

PubMed. Next, we screened out 29 overlapping genes 

from 1014 differential expressed genes and 232 ARGs 

for subsequent analysis. 

 

Generation of the prognostic five-gene signature 

 

We performed the Univariate and Multivariate Cox 

proportional hazards regression analysis sequentially on 

29 differentially expressed ARGs to obtain genes that 

independently predict the RFS of HCC patients. Finally, 

five genes were identified to construct a predictive gene 

signature. The five genes were ceroid-lipofuscinosis, 

neuronal 3 (CLN3), hepatocyte growth factor (HGF), 

tripartite motif-containing 22 (TRIM22), small nuclear 

ribonucleoprotein Sm D1 (SNRPD1), and small nuclear 

ribonucleoprotein polypeptide E (SNRPE). The risk 

score was accordingly calculated following: Risk score 

= (−0.346) × expressionCLN3 + 0.459 × expressionHGF + 

(−0.233) × expressionTRIM22 + 0.258 × expressionSNRPD1 

+ 0.139 × expressionSNRPE (Table 1). 

 

Validation of the prognostic five-gene signature in 

training set 

 

We calculated the risk score for each HCC patient in the 

GSE14520 dataset and then classified the 242 HCC 

patients into high-risk score group and low-risk score 

group taking the cutoff value of the median risk score 

(Figure 2A). AUCs of ROC curves for 1-, 3-, and 5-year 

RFS were 0.72, 0.68, and 0.70, respectively 

(Figure 2B). In addition, the K-M curve revealed that 

patients in high-risk score subgroups have shorter RFS 

(Figure 2C). We also illuminated the association 

between risk score and clinicopathological para-

meters and demonstrated that high-risk score correlated 

to increased TNM stage (P = 0.020), serum AFP level 

(P = 0.049), multinodular (P = 0.012), CLIP score (P = 

0.037), BCLC stage (P = 0.005), recurrence rate (P < 

0.001), and lower alive rate (P = 0.002) (Table 2). 

Furthermore, as shown in Figure 2D, the multivariate 
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Table 1. Multivariate Cox regression analysis of the 5-gene signature in the GSE14520 dataset. 

Gene Coef aHR Lower 95% CI Upper 95% CI *P-Value 

CLN3 −0.346 0.708 0.503 0.996 0.047 

HGF 0.459 1.582 1.244 2.013 <0.001 

TRIM22 −0.233 0.792 0.668 0.939 0.007 

SNRPD1 0.258 1.294 1.023 1.639 0.032 

SNRPE 0.139 1.719 1.102 1.986 0.029 

Abbreviations: aHR: adjusted hazard ratio; CI: confidence interval. 

 

Cox regression analyses revealed that gender (aHR 

(95% CI): 2.006 (1.076−3.965); P = 0.029), TNM stage 

(aHR (95% CI): 1.949 (1.313–2.891); P = 0.001), and 

high-risk score (aHR (95% CI): 1.857 (1.296–2.663);  

P = 0.005) were independent predictors for RFS (Figure 

2D). 

 

Validation of the prognostic five-gene signature in 

two validation sets 

 

We validated the prediction performance of five ARGs 

signatures in two independent validation sets (TCGA 

LIHC cohort and GSE76427 dataset). The HCC patients 

of two cohorts were classified into two groups based on 

the risk score, respectively (Figure 3A, 3B). In the 

TCGA HCC cohort, the AUCs of the time-dependent 

ROC curve for 1-, 3-, and 5-year RFS were 0.71, 0.69, 

and 0.77, respectively (Figure 3C). Afterward, the 

Kaplan–Meier survival analysis exhibited a significantly 

worse RFS in high-risk patients (P = 0.006, Figure 3D). 

The correlation analysis revealed that high-risk score was 

associated with increased tumor grade (P = 0.002), TNM 

stage (P = 0.002), Serum AFP level (P = 0.021), higher 

recurrence rate (P < 0.001), and lower alive rate 

 

 
 

Figure 1. The flow chart exhibited the concise scheme of our study on autophagy-related gene signatures and combined 
nomogram model for predicting recurrence-free survival of hepatocellular carcinoma patients. 
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(P < 0.001, Table 3). In the GSE76427 dataset, the 

AUCs of 1-, 3-, and 5-year RFS were 0.81, 0.91, and 

0.93, respectively (Figure 3E). Consistent with the 

TCGA HCC cohort, the patients in high-risk score 

groups had shorter RFS than patients in low-risk score 

groups (P = 0.011, Figure 3F). The high-risk score 

correlated to poor clinicopathological parameters was 

also observed in the GSE76427 dataset (Table 4). 

Besides, the high-risk score was also an independent 

risk predictor of RFS both in the TCGA HCC 

 

 
 

Figure 2. Prognostic analysis of the five-autophagy-related gene signature model in the training set (GSE14520 dataset). (A) 

Risk score and mRNA expressed heatmap of the five-gene signature. (B) Time-dependent ROC curves of the five-gene signature in the 
training set. (C) High-risk score correlated with poor RFS probability in the training set. (D) Results of the univariate and multivariate Cox 
regression analyses regarding of RFS in the training set. 
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Table 2. Correlation between risk score and clinicopathological features of HCC patients for RFS in the GSE14520 
dataset. 

Characteristics N 
Risk score level 

X2 *P-Value 
Low High 

Age 
≥55 76 34 42 

1.329 0.249 
<55 166 87 79 

Gender 
Male 211 105 106 

0.037 0.847 
Female 31 16 15 

Main tumor size 
≥5 cm 88 40 48 

1.143 0.285 
<5 cm 154 81 73 

TNM stage 
I–II 174 97 77 

5.400 0.020 
III–IV 51 19 32 

Serum AFP level 
≥300 ng/ml 110 47 63 

3.842 0.049 
<300 ng/ml 128 71 57 

ALT 
≥50 U/L 100 44 56 

2.454 0.117 
<50 U/L 142 77 65 

Multinodular 
Yes 52 18 34 

6.270 0.012 
No 190 103 87 

Cirrhosis 
Yes 223 109 114 

1.428 0.232 
No 19 12 7 

CLIP score 
≥2 52 20 32 

4.331 0.037 
<2 173 95 78 

BCLC stage 
B–C 53 18 35 

7.934 0.005 
0–A 173 97 76 

Recurrence 
Yes 136 54 82 

13.161 <0.001 
No 106 67 39 

Survival status 
Dead 96 36 60 

9.945 0.002 
Alive 146 85 61 

Abbreviations: TNM: tumor, node, metastasis; AFP: alpha fetoprotein; ALT: alanine aminotransferase; CLIP: Cancer of the 
Liver Italian Program score; BCLC: Cancer of the Liver Italian Program score. *P-Value < 0.05 were considered statistically 
significant. 

 

(Figure 4A) cohort and GSE76427 dataset (Figure 4B). 

We next compared the predictive capacity of risk scores 

and other clinical parameters for postoperative 

recurrence in the follow-up period in three datasets. 

Results showed that the risk score exhibited the largest 

AUC for RFS in GSE14520 (Figure 4C), TCGA (Figure 

4D) and GSE76427 datasets (Figure 4E). 

 

Building and validating a nomogram for RFS 

clinical prediction 

 

We next integrated all the independent predictive 

factors including gender, TNM stage, and risk score 

selected by multivariate Cox regression analysis to 

establish a nomogram (Figure 5A). The C-index of the 

combined nomogram model was 0.797. The calibration 

curve at 1-, 3-, and 5-year RFS prediction exhibited the 

excellent prediction effects of the nomogram 

(Figure 5B–5D). Furthermore, the time-dependent ROC 

curve showed that the AUCs of the nomogram model in 

1-, 3-, and 5-years RFS prediction were 0.68, 0.63, and 

0.73, respectively (Figure 5E). In addition, the DCA 

curve showed that the combined model exhibited the 

highest net benefit for 1-, 3-, and 5-year RFS prediction 

compared with the three single predictive factors 

(Figure 5F–5H). In summary, all results exhibited the 

excellent prediction performance of the combined 

nomogram model for 1-, 3-, and 5-year RFS of HCC 

patients. 

 

Genetic alteration was associated with poor RFS 

probability in HCC patients 

 

We investigated the genetic alteration of the five-ARGs 

in the cBioPortal database and found that 64 (9.4%) 

among 673 HCC patients had genetic alterations, most 



www.aging-us.com 2615 AGING 

of which were gene amplification (Figure 6A). In 

addition, patients with genetic alteration had shorter OS 

(P = 0.014) and RFS (P = 0.036) than patients without 

genetic alterations (Figure 6B, 6C). We next 

investigated the dissimilarity of protein expression of 

five genes between the HCC tissues and the non-HCC 

 

 
 

Figure 3. Prognostic analysis of the five-autophagy-related gene signature model in two validation sets (TCGA HCC cohort 
and GSE76427 dataset). (A, B) Risk score and mRNA expressed heatmap of the five-gene signature in the TCGA HCC cohort (A) and 

GSE76427 dataset (B). (C) Time-dependent ROC curves of the five-gene signature in the TCGA HCC cohort. (D) High-risk score correlated 
with poor RFS probability in the TCGA HCC cohort. (E) Time-dependent ROC curves of the five-gene signature in the GSE76427 cohort. (F) 
High-risk score correlated with poor RFS probability in the GSE76427 cohort. 
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Table 3. Correlation between risk score and clinicopathological features of HCC patients for RFS in the TCGA 
HCC cohort. 

Characteristics N 
Risk score level 

X2 *P-Value 
Low High 

Age 
≥60 119 60 59 

0.025 0.875 
<60 206 102 104 

Gender 
Male 216 105 111 

0.393 0.531 
Female 109 57 52 

Race 
White 157 87 70 

3.766 0.052 
Other 168 75 93 

Tumor grade 
G1–G2 204 115 89 

9.336 0.002 
G3–G4 121 47 74 

Radiation 
Yes 9 4 5 

0.108 0.742 
No 316 158 158 

Pharmaceutical 
Yes 17 7 10 

0.539 0.453 
No 308 155 153 

TNM stage 
I–II 238 131 107 

9.601 0.002 
III–IV 87 31 56 

Adjacent inflammation 
NO 111 58 53 

0.130 0.719 
Yes 119 65 54 

Serum AFP level 
≥300 ng/ml 48 15 33 

5.326 0.021 
<300 ng/ml 224 111 113 

Fibrosis 
Yes 106 59 47 

1.329 0.249 
No 166 82 84 

Cancer history 
No 186 88 98 

1.329 0.242 
Yes 97 53 44 

Vascular invasion 
NO 181 104 77 

2.823 0.093 
Yes 94 44 50 

Recurrence 
Yes 153 59 94 

14.725 <0.001 
No 172 103 69 

Survival status 
Dead 113 40 73 

14.464 <0.001 
Alive 212 122 90 

 

Table 4. Correlation between risk score and clinicopathological features of HCC patients for RFS in the GSE76427 
dataset. 

Characteristics N 
Risk score level 

X2 *P-Value 
Low High 

Age 
≥60 67 35 32 

0.807 0.369 
<60 49 21 27 

Gender 
Male 93 47 46 

0.660 0.416 
Female 22 9 13 

BCLC stage 
0–A 78 38 40 

0.001 0.994 
B–C 37 18 19 

TNM stage 
I–II 82 45 37 

4.372 0.037 
III–IV 33 11 22 

Recurrence 
Yes 51 16 35 

11.008 0.001 
No 64 40 24 

Survival status 
Dead 23 7 16 

3.837 0.050 
Alive 92 49 43 
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Figure 4. Results of the univariate and multivariate Cox regression analyses regarding RFS in the TCGA (A) and GSE76427 (B) HCC cohort. 

ROC curve of GSE14520 (C), TCGA (D) and GSE76427 datasets (E). It was found that the risk score exhibited the largest AUC for RFS in three 
datasets. 
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tissues in the Human Protein Atlas database. We found 

that CLN3 and SNRPD1 were highly expressed, while 

HGF and TRIM22 were lowly expressed in HCC tissues 

(Figure 6D). However, SNRPE was not found on the 

website. Then, we compared the risk score between 

different stage HCC patients in the GSE14520 dataset to 

 

 
 

Figure 5. Nomogram, calibration plot, and DCA curves. (A) Nomogram assembled from the training set to predict 1-, 3-, and 5-year 

recurrence-free survival probability. (B–D) The calibration plot of the nomogram for predicting the recurrence-free survival probability at 1- 

(B), 3- (C), and 5-year (D). (E) The time‑dependent ROC curves of the nomogram for predicting the recurrence-free survival at 1‑, 3‑, and 

5‑year. (F–H) DCA curve shows that the combined model exhibited the highest net benefit for 1- (F), 3- (G), and 5-year (H) RFS prediction. 
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investigate the differentially predictive performance of 

the gene signature. The risk score was incrementally 

increased with increasing TNM stage, BCLC stage, and 

CLIP score, but doesn’t associate with genders (Figure 

6E–6H). 

 

Functional enrichment analysis via GO, KEGG, and 

GSEA 

 

The 29 ARGs were used to perform the GO and KEGG 

enrichment analysis to elucidate the biological functions 

and pathways. These ARGs were significantly enriched 

in the autophagy-related biological process, such as 

autophagy, response to oxidative stress, and regulation 

of autophagy (Figure 7A). In the cellular component, 

the ARGs were related to vacuolar membrane, neuron 

projection cytoplasm, and caveola, etc., (Figure 7B). In 

the molecular function, the ARGs were mainly related 

to kinase regulator activity, unfolded protein binding, 

and histone deacetylase binding, etc., (Figure 7C). The 

KEGG analysis indicated that ARGs were mainly 

enriched in pathways in cancer, FoxO signaling 

pathway, autophagy, and other cancer-related pathways 

(Figure 7D). Next, GSEA analysis was implemented to 

explore the significant signaling pathway that high- and 

low-risk score patients enriched. Results showed that 

high-risk score patients were associated with cancer 

regulating related pathways, such as mTOR signaling 

pathway, WNT signaling pathway, and VEGF 

signaling pathway, etc., (Figure 7E). Meanwhile, the 

low-risk score patients were negatively related to 

Lysing degradation, Peroxisome, Fatty acid metabolism, 

and Primary bile acid biosynthesis, etc., (Figure 7F). 

 

Differential abundance analysis of tumor-infiltrating 

immune cells in two risk score groups 

 

We calculated the estimated fractions of 22 immune 

cells in each HCC tissue using the CIBERSORT 

algorithm and we excluded the samples with the 

 

 
 

Figure 6. Genetic alteration and protein expression analysis of five-gene signature in HCC. (A) The summary of genetic 

alterations of the five-gene signature in the cBioPortal database. (B, C) The genetic alteration of five-gene signature correlated with poor 
overall survival probability (B) and recurrence-free probability (C). (D) The representative protein expression of the CLN3, HGF, TRIM22, and 
SNRPD1 in HCC and non-HCC tissues. (E–H) Association of the risk score with gender (E), TNM stage (F), BCLC stage (G), and CLIP score (H). 
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P value > 0.05 to guarantee the accuracy of the analysis. 

The sum of the estimated fraction of 22 immune cells in 

each HCC tissue was one. Then, we visualized the 

fractions of each tissue in a box plot, and different 

colors represented different immune cells (Figure 8A). 

Next, we analyzed the associations between gene 

signature and estimated fractions of 22 immune cells. 

The heatmap showed the infiltration difference of 

immune cells between the high-risk and low-risk score 

groups (Figure 8B). In addition, the Wilcoxon rank-sum 

test demonstrated that high-risk score groups have a 

higher level of immune cells in the tumor 

microenvironment, such as B cells memory, T cells 

CD4 memory resting and mast cells activated (Figure 

8C). Furthermore, the correlations analysis revealed that 

five ARGs were associated with tumor purity or seven 

important immune cells, especially HGF, TRIM22, and 

SNRPD1 (Figure 8D). Next, we investigated the 

 

 

 
Figure 7. Functional analysis of GO, KEGG, and GSEA. (A–D) The 29 autophagy-related differentially expressed genes were mainly 

enriched in the biological process (A), cellular component (B), molecular function (C), and KEGG pathway (D). (E, F) Identification of 
significant signaling pathway enriched in the high-risk group (E) and low-risk group (F) by GSEA. 
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expression of immune checkpoints related genes and 

found that most of these genes, such as BTLA, PDCD1 

and CTLA4 were highly expressed in the high-risk 

score group (Figure 8E). So, it was a reasonable 

hypothesis that the high-risk score group correlated with 

a higher degree of immune infiltration, whereas the high 

expression of immune checkpoint genes causes a low 

response in the immune state, suggesting that HCC 

patients in the high-risk score group may get more 

benefit from immune checkpoint blockers. 

SNRPE regulates the proliferation and migration of 

HCC cells 

 

In multivariate Cox regression analysis, the aHR value 

of SNRPE was the highest, its role in HCC has not yet 

been elucidated, so we conducted cellular and molecular 

biology assays to investigate the role of SNRPE in the 

progression of HCC. As shown in the representative 

figures, SNRPE protein expression was significantly 

higher in HCC tissues than in adjacent normal liver 

 

 

 
 

Figure 8. Immune infiltration analysis. (A) Estimation of fractions of immune cells of each tissue, where different colors represented 

different immune cells. (B) The heatmap showed the infiltration difference of immune cells between the high-risk and low-risk score 
groups. (C) The comparison of estimated fractions of 22 immune cells between the high-risk and low-risk score groups. (D) Five ARGs were 
associated with tumor purity or seven important immune cells. (E) Most of immune checkpoint related genes were highly expressed in the 
high-risk score group. 
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tissues (Figure 9A). We next investigated the SNRPE 

mRNA expression in normal hepatocyte cell line LO2 

and three HCC cell lines (Huh7, HepG2, Hep3B) and 

found that SNRPE was significantly overexpressed in 

three HCC cell lines (Figure 9B). Then, the shSNRPE 

with lentiviral transfection was transfected into HepG2 

cells and qRT-PCR affirmed that SNRPE mRNA 

expression was remarkably inhibited (Figure 9C). The 

shSNRPE-3 was selected for subsequent experiments 

due to its maximum inhibitory effect. CCK8 assay 

revealed that after SNRPE knockdown, the HepG2 cells 

showed a remarkable reduction in proliferation 

(Figure 9D). In addition, transwell assay further showed 

that the migration and invasion capacity of HepG2 cells 

also significantly decreased after SNRPE knockdown 

(Figure 9E, 9F). 

 

 
 

Figure 9. Immunohistochemistry and cell experiments of gene SNRPE to validate our results. (A) Compared with adjacent 

normal liver tissues (a), SNRPE protein expression was significantly overexpressed in HCC tissues (b) (×200 magnification). (B) SNRPE mRNA 
expression was greater in HCC cells than in the normal liver cells. (C) The shSNRPE with lentiviral transfection was transfected into HepG2 
cells. (D) CCK8 assay. After SNRPE knockdown, the HepG2 cells exhibited a significant inhibition in viability. (E, F) Transwell assay. After 
SNRPE knockdown, the HepG2 cells exhibited a significant inhibition in migration and invasion. 
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DISCUSSION 
 

Although the increase in the number of HCC patients is 

slowing in recent years, the morbidity and mortality are 

still high in high HBV or HCV incidence countries, 

especially sub-Saharan and East Asia [20, 21]. Studies 

reported that more than 70% of patients undergoing 

radical resection will recur within 5 years [7, 22]. 

Therefore, building an effective model to predict 

postoperative recurrence and identify HCC patients with 

short RFS was essential for clinical decision and 

prognostic improvement. The increasing number of 

research validated that autophagy plays a prominent 

role in the tumorigenesis and progression of HCC  

[23–25]. Abnormal expression of ARGs has also been 

confirmed to be related to the overall survival of HCC 

[26, 27], but there has been rare research focus on the 

role of multiple ARGs in RFS. 

 

In this present study, we built a novel autophagy-related 

five-gene signature according to the relative 

transcription level (including CLN3, HGF, TRIM22, 

SNRPD1, and SNRPE) in the GSE14520 dataset 

(training set) for RFS prediction in patients with HCC. 

The Kaplan–Meier survival analysis and time-

dependent ROC curve both exhibited the excellent 

prediction performance of the five-ARG signature. In 

addition, the correlation analysis illuminated that the 

high-risk score based on five-ARG signature 

transcription levels was associated with worse clinico-

pathological parameters, such as TNM stage, serum 

AFP level, CLIP score, BCLC stage, and survival 

status. Moreover, the multivariate Cox regression 

analyses affirmed that high-risk score was an 

independent predictor of RFS. We then validated the 

reliability and prediction performance of gene signature 

in two independent HCC cohorts (TCGA HCC cohort 

and GSE76427 dataset). Compared with existing 

signatures, our prognostic model exhibited better 

performance to predict the RFS of HCC patients 

[28, 29]. 

 

To accurately and easily predict the 1-, 3-, and 5-year 

RFS of HCC patients, a nomogram integrating the 

multigene signature and all independent predictors 

identified by multivariate Cox regression analyses was 

constructed. The C-index of the combined nomogram 

model was 0.797. The calibration curve suggested that 

there was an excellent consistence between the 

nomogram prediction and actual observation. In 

addition, the DCA curve shows the highest net benefit 

of the combined model for 1-, 3-, and 5-year RFS 

prediction. In this study, we also investigated the 

genetic alteration of the five-ARG signature and found 

that genes alteration related to worse OS and RFS. So, 

we speculated that the genetic alteration may be a driver 

for the abnormal expression and tumor progression. 

Moreover, the function analysis by GO and KEGG 

revealed that the ARGs were significantly enriched in 

the autophagy-related pathways and other HCC 

progression-related pathways, such as Hepatitis B, 

FoxO signaling pathway, and Pathways in cancer [30]. 

Furthermore, the GSEA analysis suggested that high-risk 

score patients were associated with the mTOR signaling 

pathway, which plays a crucial role in regulating 

autophagy [31, 32]. GSEA identifies functions that are 

not related to autophagy but to cancer-promoted 

pathways due to a small number of autophagy-related 

genes, which might explain the underlying molecular 

mechanisms of these ARGs. 

 

Besides, we further investigated the relationship 

between the risk score and the immune infiltrate in the 

TCGA HCC cohort and found that the high-risk group 

has a higher level of immune cells in the tumor 

microenvironment, such as B cells memory, T cells 

CD4 memory resting and mast cells activated. In 

addition, most of immune checkpoints related genes 

were highly expressed in the high-risk score group. So, 

it was a reasonable hypothesis that the high-risk score 

group correlated with a higher degree of immune 

infiltration, whereas the high expression of 

immune checkpoint genes causes a low response in the 

immune state, suggesting that HCC patients in the high-

risk score group may get more benefit from immune 

checkpoint blockers. 

 

According to our results, five autophagy-related genes 

(CLN3, HGF, TRIM22, SNRPD1, and SNRPE) were 

independent risk factors of RFS. CLN3 has been found 

frequently upregulated in HCC tissues and cell lines and 

was significantly correlated with worse clinico-

pathological parameters and poor prognosis [33]. In 

addition, Zhong et al. reported that deletions of CLN3 

increased autophagic flux, suppressed mTORC1 and 

Akt activities, suggesting autophagy induction [34]. 

Hepatocyte growth factor (HGF), produced by stromal 

cells, plays an essential role in stimulating epithelial cell 

proliferation, motility, morphogenesis, and angiogenesis 

in various organs [35]. Bell and colleagues uncovered 

that autophagy regulates degradation of Met/HGF and 

HGF-dependent cell migration and invasion [36]. In 

addition, previous studies demonstrated that HGF/Met 

signaling pathway was strongly linked with the 

tumorigenesis and progression of HCC [37, 38]. 

Moreover, HGF in peritumoral liver tissue has been 

reported as a major risk factor of HCC recurrence, 

which was consistent with our result [39]. TRIM22, a 

member of tripartite motif family protein which is 
involved in autophagy and innate immunity process, 

was downregulated in various types of tumors and 

associated with a poor prognosis [40, 41]. For the first 
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time, we reported that TRIM22 was an independent 

predictor for RFS of patients with HCC. SNRPD1 and 

SNRPE, the crucial genes encoding core spliceosome 

components, were abnormally highly expressed in HCC 

tissues [42, 43]. Quidville et al. indicated that SNRPE 

or SNRPD1 targeting mediates the death of SKBr-3 cell 

lines through autophagy [18]. Cellular and molecular 

biology assays demonstrated that SNRPE overexpressed 

in HCC cells and regulated the proliferation and 

migration of HepG2 cells. The multivariate Cox 

regression analysis demonstrated that the aHR value of 

SNRPE was the highest among of 5 ARGs. So, SNRPE 

plays the main role in the 5-gene signature for the 

clinical RFS prediction. The clinical prognostic value of 

individual SNRPE genes have not been investigated and 

we speculated that SNRPE has the clinical prognostic 

role for HCC, which was the main direction of our 

research in the near future. 

 

To our knowledge, the five-ARG signature and 

nomogram for RFS prediction have not been reported 

previously and could be a practical and accurate 

prognostic classification tool of HCC. However, basic 

experimental was required to address the detailed 

mechanism of each ARG involved in the tumorigenesis 

and progression of HCC. Nonetheless, our study also 

has some limitations. First, although the 5-gene 

signature and the predictive nomogram were built and 

validated by different databases and validated by the 

IHC and cell experimental, the specific functions and 

molecular mechanisms should be investigated by 

various in vitro and in vitro approaches. Second, some 

factors that cannot be ignored in HCC development 

such as hepatitis B and C were not included in our 

research, and need further clinical trials. 

 

Collectively, this study defined a novel gene signature 

and generated a combined nomogram model to predict 

RFS after hepatectomy, and provided a tool to help the 

clinical decision-making for personalized treatment in 

HCC patients. There were correlations existed for 

autophagy-related genes and tumor immune infiltration, 

but warrant further investigation. 

 

METHODS 
 

Acquisition of mRNA expression data and clinical 

characteristics 
 

Transcription profiling mRNA data and corresponding 

clinical data were downloaded from the GEO database 

(GSE14520 and GSE76427 dataset) and the TCGA 

database. The raw data downloaded in TCGA were 

normalized RNA-sequencing data as transcripts per 

million (TPM). For GSE14520 and GSE76427 datasets, 

the microarray data sets were transformed into TPM 

values and underwent a log2 transformation and the 

batch effect in different datasets was removed. The 

autophagy-related genes (ARGs) were obtained from 

the Human Autophagy Database (HADb) and searched 

in PubMed. The multi-genes signature was constructed 

using the data of the GSE14520 dataset (training set) 

and validated using the data of the TCGA HCC cohort 

and GSE76427 dataset (validation set). The samples in 

TCGA, GSE14520 and GSE76427 datasets that met the 

following inclusion criteria were included in this study: 

(1) All samples had mRNA sequencing data; (2) 

Included patients had been pathologically confirmed 

with HCC; (3) The clinicopathological parameters of 

included patients were relatively complete, including 

TNM stage, recurrence-free survival time, etc.; (4) 

Follow-up period > 30 days. It was not needed for 

additional ethical approval in this research, because of 

the acquisition of all transcription profiling mRNA data 

and corresponding clinical data from the publicly 

available database. 

 

Differentially expressed analysis of ARGs 

 

We used the limma R package to perform the 

differentially expressed gene analysis using 

transcription profiling mRNA data in the training set 

(GSE14520). Differentially expressed genes 

with absolute log2 fold change (FC) > 1 and an adjusted 

P-value < 0.05 were considered for next step analysis. 

Then, the overlapping gene between the ARGs obtained 

from the HADb and differentially expressed genes 

identified from the training set were screened out as 

differential expressed ARGs and used for subsequent 

analysis. 

 

Construction and validation of the autophagy-

related gene signature 

 

We conducted the Univariate and Multivariate Cox 

proportional hazards regression mode on differential 

expressed ARGs to identify the gene that independently 

predict the RFS of HCC patients. Next, these genes 

were used to construct the prognostic gene signature. 

We then calculated the risk score of each patient of the 

GSE14520 dataset. The risk score was calculated based 

on the following formula: Risk score = (βmRNA1 × 

expression level of mRNA1) + (βmRNA2 × expression 

level of mRNA2) + (βmRNA3 × expression level  

of mRNA3) + … + (βmRNAn × expression level of 

mRNAn). The patients were stratified into low-risk 

score group and high-risk score group based on the 

cutoff value of the median score. In addition, we 

performed the time-dependent receiver operating 
characteristic (ROC) curves and Kaplan–Meier survival 

analysis to assess the prediction capacity of a prognostic 

gene signature for RFS. Furthermore, the gene signature 
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and some clinical characteristics such as age, gender, 

TNM stage, tumor grade and serum AFP level were 

integrated to perform the Cox regression analysis for 

identification of the independent predictors of RFS. The 

characteristics with P < 0.05 from the univariate 

analysis were subsequently used for the further analysis 

in the multivariate Cox’s proportional hazard model 

with forward LR model. Finally, we validated the 

prediction performance of gene signature in the 

independent HCC cohort of TCGA and GSE76427 

dataset. We calculated the risk scores with the same 

formula for each patient in two datasets. 

 

Establishing and validating a predictive nomogram 

 

All independent risk factors of RFS in the training set, 

including the risk score model and clinical 

characteristics identified by the multivariate Cox 

regression analysis, were integrated to establish a 

nomogram that has the better prediction performance of 

1-, 3-, and 5-year RFS. We used the “survival” R 

package to calculate Harrell’s concordance index (C-

index) to evaluate the discrimination of the nomogram. 

Next, calibration curves of RFS probability at 1-, 3-, 

and 5-year were plotted to discriminate the probabilities 

predicted by the nomogram and actually. Then, the 

“timeROC” R package was utilized to plot the time 

ROC to evaluate the prediction accuracy of the 

nomogram. The “ggDCA” R package was used to plot 

the decision curve analysis (DCA) curve to help make the 

clinical decision for the acquisition of the best net benefit. 

 

Genetic alteration, protein differential expression 

analysis 

 

The accumulation of genetic alterations can drive cancer 

progression by inducing abnormal genes expression 

[44]. We selected two liver Hepatocellular Carcinoma 

datasets (TCGA-Firehose Legacy and AMC-

Hepatology 2014) for a total of 673 HCC patients in 

the cBioPortal database to investigate the affection of 

genetic alteration of gene signature on survival 

probability [45]. We next investigated the dissimilarity 

of protein expression of gene signature between the 

HCC tissues and the non-HCC tissues in the Human 

Protein Atlas database to further analyze the affection of 

abnormal protein expression of gene signature on 

survival probability. 

 

Functional enrichment analysis 

 

The differential expressed ARGs were uploaded to the 

DAVID database to perform the GO and KEGG 
enrichment analysis to explore the potential mechanism 

that these ARGs regulate the tumorigenesis and 

progression of HCC [46]. mRNA expression data in the 

GSE14520 dataset were uploaded to the GSEA software 

(version 4.1.0) to perform GSEA enrichment analysis. 

We stratified the 242 HCC patients into low-risk score 

group and high-risk score group taking the cutoff value 

of the median risk score. The enriched pathway items 

with adjusted p-value < 0.05 and false discovery rate 

(FDR) q-value < 0.25 were selected. 

 

Immune infiltration analysis of gene signature 

 

CIBERSORT, using gene expression data to provide an 

estimation of the abundances of member cell types in a 

mixed cell population, was used to investigate the 

relationship between the gene signature and the immune 

infiltrate [47]. After calculation and filtration with P < 

0.05, the bar plot was plotted to exhibit the proportions 

of different immune cells in each HCC sample. Then, 

we plotted the heatmap of 22 types of infiltrating 

immune cells of each HCC sample. In addition, we 

compared the differential abundance of immune 

infiltrate between high-risk score groups and low-risk 

score groups. Furthermore, we investigated the 

correlations between gene signature with several 

important immune cells (B cells, CD4+ T cells, CD8+ T 

cells, Neutrophils, Macrophages, and Dendritic cells) in 

the TIMER web server [48]. We then investigated the 

expression of immune checkpoint genes between the 

high and low-risk groups and visualized in a boxplot. 

The list of immune checkpoint genes was determined 

from previous relevant articles [49, 50]. 

 

Immunohistochemistry (IHC) assay 

 

Three fresh HCC specimens and paired adjacent tissues 

were obtained from the Department of Hepatobiliary 

Surgery, 900 Hospital of the Joint Logistic Team. The 

patients must meet the following criterions: only one 

tumor node and no metastasis, Child-Pugh class A, no 

cancer radiotherapy or chemotherapy history before the 

operation, postoperative pathology confirmed as HCC. 

These samples were made into formalin-fixed paraffin-

embedded blocks and then were cut into 4-μm sections. 

Immunohistochemistry staining was accomplished as 

described earlier [51]. The specific antibodies were used 

as follows: SNRPE (PA5-96342; 1:300; Thermo Fisher 

Scientific, USA); secondary antibody (1:50,000; KIT-

5010; anti-rabbit/mouse IgG; China Fuzhou Maixin 

Biotechnology Development Co., Ltd.). The sections 

were stained with 3,3′-diaminobenzidine and substrate 

chromogen (Dako) and then counterstained with 

hematoxylin. The study was approved by the Human 

Subjects Protection Committee of the 900 Hospital of 

the Joint Logistic Team. Furthermore, we obtained 
written informed consent from all participants prior to 

surgery. All experiments were performed in accordance 

with relevant guidelines and regulations. 
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Cell culture and transfection 

 

The normal hepatocyte cell line LO2 and HCC cell lines 

Huh7, HepG2, Hep3B were obtained from the Chinese 

Type Culture Collection of the Chinese Academy of 

Sciences (Shanghai, China). We cultured these cell lines 

in DMEM (Gibco) supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Gibco, 10099141). 

All these cells were maintained in an incubator under a 

moist atmosphere of 5% CO2 at 37°C. The HepG2 cells 

were transfected with shSNRPE or sh-NC using 

Lipofectamine™ 3000 Transfection Kit (L3000015, 

Invitrogen, USA), according to the manufacturer’s 

protocol. The shRNA sequences for SNRPE were as 

follows: sense strand sequence for shSNRPE: 5′-

GCTCTATGAGCAAGTGAAT-3′. 

 

Quantitative polymerase chain reaction (qRT-PCR) 

 

According to the manufacturer’s instruction, we 

extracted the total RNA using RNAiso Plus (TaKaRa, 

9109, China) and then reverse-transcribed it into cDNA 

for subsequent PCR assay using gDNA Purge 

(Novoprotein, E047-01A, China). The reverse 

transcription and qRT-PCR methods were accomplished 

as described earlier. Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used as the internal 

control for SNRPE. The 2−ΔΔCt method was used to 

determine the relative quantification of SNRPE. The 

sequence of primer pairs was designed as following: 

SNRPE (forward: 5′-ACCATGGCGTACCGTGGC-3′, 

reverse: 5′-CTAGTTGGAGACACTTTGTAGCAGA-

3′); GAPDH (forward: 5′-TTGGCTTGACTCAGGA 

TTTA-3′, reverse: 5′-ATGCTATCACCTCCCCT 

GTG-3′). 

 

CCK-8 assay 

 

The HepG2 cell viability was detected by the cell 

counting Kit-8 (CCK-8) method. After siRNA 

transfected 48 h, HCC cells were added to each well of 

the plate. Then, the CCK-8 (MA0218, Meilune, Dalian, 

China) reagent was added to each well and the plate was 

subsequently incubated in the incubator in dark 

conditions. Finally, the absorbance at a 450-nm 

wavelength was employed to determine the viable cells. 

 

Transwell migration and invasion assays 

 

We performed the transwell assays using 24-well 

transwell plates (Corning Inc., Corning, NY, USA) to 

assess the migration and invasion capacity of HepG2 

cells. For migration assays, transfected cells were 
resuspended in a serum-free medium and seeded in the 

upper chamber, and 700 µl of 15% FBS medium was 

also added to the bottom of the chamber. For invasion 

assays, DMEM-diluted Matrigel (BD Biosciences, 

USA) was precoated on the 24-well transwell plates 

before transfected cells were seeded. Subsequently, the 

migrating and invading cells under the surface of the 

membrane were fixed with 95 % methanol and stained 

with crystal violet (MA0150, Meilune, Dalian, China) 

for 30 min. 

 

Statistical analysis 
 

The R software (version 4.1.0) and related packages 

were employed to perform the statistical analysis and 

plotted. Chi-squared test was used to compare the 

clinicopathological characters between the high and 

low-risk score group. The predictive factors of RFS 

were identified by the Univariate and Multivariate Cox 

regression analyses. K-M method and the log-rank test 

were used to compare the survival probability between 

the two groups. The prediction performance of the gene 

signature and nomogram was assessed by the area 

under the curve (AUC) of time-dependent ROC. 

Student’s t-test and the Wilcoxon rank-sum test were 

utilized for subgroups differential analyses. P < 0.05 

was considered to be statistically significant. 
 

Data availability 
 

The datasets generated for this study can be found in the 

GEO database (https://www.ncbi.nlm.nih.gov/geo/) and 

TCGA database (https://portal.gdc.cancer.gov). 
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