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INTRODUCTION 
 

Derived from embryonic mesoderm, soft tissue sarcoma 

(STS) is a group of rare and heterogeneous tumors [1]. 

STS encompasses more than 100 histological  

and molecular subtypes, and of these many kinds  

of tumors, undifferentiated polymorphic sarcoma, 

leiomyosarcoma, dedifferentiated liposarcoma and 

liposarcoma are the most common [2]. Prognoses of 

patients with STS (especially those with advanced STS) 

remain not so favorable due to the relatively inefficient 

treatment methods. Specially, five-year overall survival 

(OS) of patients with progressive STS is less than 20% 

[3]. Additionally, unlike in other tumors, little progress 

improving survival of patients with advanced STS has 
been made despite the fact that radiotherapy, chemo-

therapy, immunotherapy and targeted therapy have been 

tried to treat patients with advanced STS [4, 5].    
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ABSTRACT 
 

As the most common transcriptional regulators, zinc finer proteins (ZNFs) play vital roles in occurrence and 
progression of malignant tumors. Whereas, information regarding the roles of ZNFs in soft tissue sarcomas 
(STS) remains scarce. In this study, a comprehensive bioinformatics analysis investigating roles of ZNFs in STS 
was performed. Initially, we extracted raw datasets of differentially expressed ZNFs from GSE2719. Using a 
sequence of bioinformatics methods, we then investigated the prognostic significance, function, and molecular 
subtype of these differentially expressed ZNFs. In addition, CCK8 and plate clone formation assays were used to 
explore the effect of ZNF141 on STS cells. A total of 110 differentially expressed ZNFs were identified. Nine ZNFs 
(HLTF, ZNF292, ZNF141, LDB3, PHF14, ZNF322, PDLIM1, NR3C2, and LIMS2) were selected to establish an overall 
survival (OS) prediction model, and seven ZNFs (ZIC1, ZNF141, ZHX2, ZNF281, ZNHIT2, NR3C2, and LIMS2) were 
used to develop a progression-free survival (PFS) prediction model. Compared with patients with low-risk in the 
TCGA training and testing cohorts, as well as the GEO validation cohorts, patients with high-risk had poorer OS 
and PFS. Using nomograms constructed with the identified ZNFs predicting OS and PFS, we established a 
clinically useful model. Four distinct molecular subtypes with different prognostic and immune infiltration 
characteristics were identified. In vitro experiments showed that ZNF141 promoted the proliferation and 
viability of STS cells. In conclusion, ZNF-related models are useful as prognostic biomarkers, suggesting their 
potentials as therapeutic targets in STS. These findings will enable us to develop novel strategies treating STS, 
which will potentially improve outcomes of patients with STS. 
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According to previously published studies, a good deal 

of molecular biomarkers (such as PD1 and PDL1) play 

key roles in predicting prognosis and determining 

optimal treatment choices for various tumors [6]. 

Therefore, identifying novel molecular biomarkers and 

subsequent elucidation of the specific mechanisms 

through which these biomarkers affect STS may help us 

develop novel therapeutic strategies and improve 

prognosis.  

 

Belonging to a large and diverse family of proteins that 

own at least one zinc finger domain, zinc finger proteins 

(ZNFs) have been identified as one of the most 

abundant proteins in eukaryotic cells [7]. Biological 

functions of ZNFs have been proven extraordinary and 

functions of ZNFs include the following: RNA 

packaging, DNA recognition, regulation of apoptosis, 

transcriptional activation, lipid binding and protein 

folding and assembly [8]. According to recent studies, 

apart from the aforementioned functions, ZNFs also 

play vital roles in occurrence and progression of 

malignant tumors [9]. For example, ZFX [10], ZEB1 

[11], and ZNF24 [12] have been shown to promote 

malignant behavior in various cancers. In addition, 

several ZNFs, such as ZNF545 [13], ZNF331 [14], and 

ZNF668 [15] have been demonstrated to be able to 

suppress tumor progression. However, by far, studies on 

roles played by ZNFs in STS are still scarce. Therefore, 

a comprehensive study investigating ZNFs and their 

roles in STS is necessary since it will enable us to better 

understand the specific mechanisms which promote 

progression of STS.  

 

Raw data of STS were initially retrieved from TCGA 

and GEO databases, based on which differentially 

expressed ZNFs were identified and simultaneous 

investigation of potential functions and mechanisms of 

ZNFs was accomplished. Given the finding that some 

ZNFs could be used as prognostic biomarkers, we then 

established and validated a prognostic model based on 

ZNFs. Ultimately, we also used non-negative matrix 

factorization-based consensus clustering to define the 

STS subtype based on ZNFs and explored the immune 

characteristics of the subtypes. 

 

MATERIALS AND METHODS 
 

Data processing 

 

Raw data of 1555 zinc finger genes (Supplementary 

Table 1) were initially obtained from the HUGO  

Gene Nomenclature Committee database 

(https://www.genenames.org/). Differentially expressed 

genes (DEGs) were identified from expression 

profilings of STS and normal tissue samples obtained 

from GSE2719 using the “limma” package [16] of R 

4.0.0 software. The following two criteria were adopted 

to select DEGs: adjusted p-values <0.05 and log2|fold 

change| values >1. The “ggplot2” package was utilized 

to create volcano plots while heatmaps of this study 

were constructed using the “pheatmap” package.  

 

RNA-seq data and clinical information of patients 

diagnosed with STS were retrieved from TCGA 

(https://portal.gdc.cancer.gov/), GSE21050 [17], and 

GSE30929 [18]. And we subsequently downloaded data 

of genomic mutation in STS including both and copy 

number variation from TCGA database. Then these data 

regarding genomic mutation were analyzed using the R 

package ‘Rcircos’ to plot the copy number variation 

landscape that will enable us to better and more directly 

observe changes of ZNFs on human chromosomes. 

 

Construction and validation of prognostic models 

 

After excluding patients without sufficient follow-up 

time, we then randomly divided patients into training 

cohort or testing cohort. We adopted the survival R 

package to perform univariate Cox regression analysis 

to determine factors that were significantly associated 

with prognosis.  

 

Then factors confirmed by the univariate Cox 

regression analysis to be significantly associated with 

prognosis were subsequently incorporated into the 

LASSO-penalized Cox regression analysis to establish 

prognostic models. The LASSO algorithm was adopted 

to select variables and for shrinkage using the “glmnet” 

R package. Additionally risk score of each individual 

patient in this study was calculated according to the 

following formula: Risk score = coef gene1 × Exp 

gene1 + coef gene2 × Exp gene2 + coef genei × Exp 

genei. Then each patient was assessed based on his or 

her median risk score calculated according to the 

aforementioned formula and divided into the high-risk 

group or low-risk group. Overall survival (OS) of 

patients in the high-risk group was compared with that 

of patients in the low-risk group by performing the log-

rank test. And predictive capability of the prognostic 

model was evaluated by performing receiver operating 

characteristics (ROC) analysis using the “survivalROC” 

package. Testing cohort obtained from TCGA database 

and external cohort retrieved from GEO database 

(GSE21050) were used as the validation group. In a 

similar way, we established a predictive model for 

progression-free survival (PFS) as well. In this case, 

testing cohort obtained from TCGA database and 

external cohort retrieved from GEO database 

(GSE30929) were used as the validation group. Then 
prognostic significance of risk score and the afore-

mentioned clinical variables was evaluated among 

patients in the TCGA training cohort and testing cohort 

https://www.genenames.org/
https://portal.gdc.cancer.gov/
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by performing univariate and multivariate Cox 

regression analyses. Ultimately, we established 

nomograms using the “rms” package to help us more 

efficiently predict OS and PFS of patients with STS.  

 

GO enrichment and gene set variation analysis 

(GSVA) 

 

We conducted GO enrichment analysis utilizing  

the “clusterProfiler” package of R software. Through  

a hypergeometric distribution using P<0.05 as the 

significance threshold, we then performed functional 

enrichment analyses, results of which were  

made visualized using the “ggplot2” packages of R 

software.  

 

Variations of key gene sets were estimated using the 

GSVA package of R software as an unsupervised, non-

parametric method [19]. A gene expression matrix was 

used as the input for GSVA algorithm. GSVA scores 

were calculated in a non-parametrical way using the 

Kolmogorov-Smirnov (KS)-like random walk statistic 

and a negative value for a particular sample and  

gene set. 

 

Consensus clustering 

 

Consensus clustering was used to classify CAD cased 

into different subgroups [20]. Consensus clustering was 

accomplished using the K-means algorithm with the 

Spearman distance. Maximum number of clusters was 

set at 10. Final cluster number was identified by cluster 

consensus score and the consensus matrix.  

 

Immune scores and tumor infiltrating immune cell 

(TIIC) analysis 

 

The ESTIMATE algorithm was adopted to calculate 

immune and stromal scores of the samples from TCGA 

datasets. Based on the median immune score, patients 

were assigned into the high-score group or low-score 

group. OS of high-score group was compared with that 

of low-score group via log-rank test. TIICs in TCGA 

datasets were assessed using the CIBERSORT 

analytical tool (https://cibersort.stanford.edu/) [21]. 22 

immune cells, abundance ratio matrix was identified at 

p values less than 0.05. 

 

Cell culture and transfection 

 

A673 and SW982 cell lines were purchased from the 

Cell Bank of the Chinese Academy of Sciences 

(Shanghai, China). A673 and SW982 cells were 
cultured in DMEM (Biological Industries, Shanghai, 

China) or L-15 (Sigma) containing 10% fetal bovine 

serum (Biological Industries). ZNF141 siRNA and 

negative control siRNA oligonucleotides were designed 

and synthesized by Biosyntech (Suzhou, China). The 

sequences of si-1 and si-2 are shown in Supplementary 

Table 2. The siRNA transfections were performed using 

Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, 

USA). Then we transfected ZNF141-overexpression-

promoting plasmid (GV-ZNF141) and negative control 

plasmid (GV-Vector) that were designed and 

synthesized by GeneChem (Shanghai, China) into 

SW982 cells with Lipofectamine 3000 (Invitrogen, 

Carlsbad, CA, USA). 

 

Real-time PCR and Western blotting 

 

Following the manufacturer’s instructions, total RNA 

was retrieved with AG RNAex Pro Reagent (Accurate 

Biology, Changsha, China) and was reverse-transcribed 

into cDNA using the Evo M-MLV RT Premix Kit 

(Accurate Biology). Real-time PCR (RT-PCR) assays 

were performed using the SYBR Green Premix Pro Taq 

HS qPCR Kit (Accurate Biology) according to the 

manufacturer’s protocols. The primer sequences are 

listed in Supplementary Table 2. 

 

Total protein of STS cells were extracted with RIPA 

lysis buffer (Beyotime Biotechnology, Shanghai, 

China), which were then separated with the method of 

SDS-PAGE. Then the proteins separated by SDS-

PAGE were transferred onto PVDF membranes 

(Merck Millipore, Billerica, MA, USA). After being 

loaded with transferred proteins, these PVDF 

membranes were soaked in 5% BSA solution for at 

least one hour at room temperature, which was 

immediately followed by incubation with different 

primary antibodies at 4° C overnight. On the second 

day, the PVDF membranes were incubated with 

secondary antibodies for one hour at room temperature 

after washing three times. After washing with TBST 

solution, the PVDF membranes were visualized using 

a BeyoECL Plus Kit (Beyotime Biotechnology). Anti-

GAPDH (10494-1-AP) were purchased from 

Proteintech (Wuhan, China) while anti-ZNF141 anti-

body (TA339080) was produced by OriGene 

Technologies (Wuxi, China). 

 

Cell proliferation and plate clone formation 

 

Cell proliferation was detected using the Cell Counting 

Kit-8 (CCK8, Beyotime Biotechnology) according to 

the manufacturer’s instructions. The cells were cultured 

in a 96-well plate (2000 cells/well) at 37° C for 0, 24, 

48, and 72 h. For the plate clone formation assay, 1000 

cells were seeded into 6-well plates and cultivated for 
two weeks. The number of colonies with >100 cells was 

counted under a light microscope, and the colonies were 

visualized. 

https://cibersort.stanford.edu/
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Statistical analysis 

 

R software was used for most bioinformatics and 

statistical analyses, including RNA-seq data normalization 

and transformation, DEG analysis, survival analyses, 

ROC analysis, CIBERSORT, ESTIMATE, GSVA, and 

Spearman rank correlation analysis. For the in vitro 

experiments, all quantitative data are presented as mean ± 

standard deviation of three independent experiments. 

Differences between the three groups were analyzed with 

one-way ANOVA using GraphPad Prism 8.0 (GraphPad, 

La Jolla, CA, USA). Statistical significance was set at 

p<0.05. 

 

Data availability statement 

 
All datasets presented in this study are included in the 

article/Supplementary Material. 

RESULTS 
 

Differentially expressed ZNFs in STS 

 

The study design is illustrated in Figure 1. 

Differentially expressed ZNFs between normal tissues 

and tumor tissues were identified from GSE2719 using 

the “limma” package in R software. The heatmap 

demonstrating expression of ZNFs was presented  

in Figure 2A. A total of differentially expressed  

110 ZNFs were identified with 82 ones up-regulated 

and 28 down-regulated (Figure 2B and Supplementary 

Table 3). 

 

Construction and validation of prognostic models 

 

Patients without sufficient follow-up time length were 

excluded from this study and remaining patients were 

 

 
 

Figure 1. Framework for analyzing ZNFs in STS. 
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randomly divided into the training cohort or the testing 

cohort. Then univariate Cox regression analysis was 

accomplished to determine variables significantly 

associated with OS of patients in the TCGA training 

cohort. A total of nine differentially expressed ZNFs 

were demonstrated to be significantly associated with 

OS (HLTF, ZNF292, ZNF141, LDB3, PHF14, 

ZNF322, PDLIM1, NR3C2, and LIMS2) (Figure 2C). 

LASSO regression analysis was accomplished using 

the “glmnet” package of R software to select these 

identified ZNFs. Then the predictive model was 

established using five-fold cross-validation and we 

demonstrated the confidence interval under each 

lambda in Figure 3A. Trajectory of the coefficient for 

each gene with a value of -in(lambda) is shown in 

Figure 3B. There was a total of nine genes identified 

as the model gene signature. The formula was as 

follows:  

Risk score  (0.225   Exp HLTF) ( 0.495

Exp ZNF292) ( 0.971

Exp ZNF141) ( 0.136

Exp LDB3) (0.717

Exp PHF14)  (0.889

  Exp ZNF322) ( 0.125

Exp PDLIM1) ( 0.809

Exp NR3C2)  ( 0.098

Exp LIMS2).

=  +

 +

 + −

 +

 +

 + −

 + −

 + −



 

 

 
 

Figure 2. Differentially expressed ZNFs and univariate Cox regression analysis. Heatmap (A) and volcano plot (B) of 1,555 ZNFs in 

normal and STS tissues from GSE2719. Univariate Cox regression analysis of OS (C) and PFS (D) in TCGA training cohort. 
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Risk score of each patient was calculated and each 

patient from TCGA training cohort was divided into low-

risk group or high-risk group. Then we performed 

survival analyses, results of which revealed that in 

comparison with patients in the low-risk group, those 

belonging to the high-risk group had significantly worse 

OS (p<0.001, Figure 3C). Additionally, time-dependent 

ROC analysis was performed, results of which revealed 

that areas under ROC curve (AUC) at one, three, and five 

years were 0.807, 0.792, and 0.799, respectively (Figure 

3C). We then conducted model verification using data of 

the TCGA testing cohort (Figure 3D) and the GSE21050 

cohort (Figure 3E) to further assess the validity and 

stability of the prognostic models, results of which 

revealed that compared with those in the low-risk group, 

patients of the high-risk group had significantly poorer 

prognosis. The AUC of the model in TCGA testing 

cohort at one, three, and five years was 0.789, 0.699, and 

0.636, respectively (Figure 3D), and those of the 

GSE21050 cohort were 0.613, 0.607, and 0.577, 

respectively (Figure 3E). 

 

In a similar way, we then established and validated a 

model predicting PFS of patients with STS. Firstly, 

datasets of STS from TCGA were randomly divided 

into the training cohort or the testing cohort. Univariate 

Cox regression analysis was accomplished to evaluate 

the impacts of expression levels of ZNFs on PFS of 

patients from the training cohort. A total of nine ZNFs 

including ZIC1, RNF128, ZNF141, ZHX2, TRIM9, 

ZNF281, NR3C2, ZNHIT2, and LIMS2 were 

demonstrated to be significantly associated with PFS 

(Figure 2D). Then a subsequent LASSO regression 

analysis was performed to screen ZNFs (Figure 4A, 4B), 

results of which revealed that seven genes were 

included in the predictive model for PFS. The following 

was the formula:  

 

   (0.077      1)  ( 0.195

    141) (  0.273

      2) ( 0.041

      281)  ( 0.420

  2)  ( 0.398

  3 2)  ( 0.041

  2). 

=  +

 + −

 +

 + −

 + −

 + −



Risk score Exp ZIC

Exp ZNF

Exp ZHX

Exp ZNF

Exp ZNHIT

Exp NR C

Exp LIMS

 

 

For patients in the training cohort, patients with high 

risk had significantly shorter PFS than those with low 

risk (p<0.001, Figure 4C). AUC of the PFS model at 

one, three, and five years was 0.711, 0.725, and 0.716, 

respectively (Figure 4C). Then patients from TCGA 

testing cohort (Figure 4D) and the GSE30929 cohort 

(Figure 4E) were utilized to further validate this 

predictive model for PFS. Like in the training cohort, 

patients with high risk were demonstrated to have worse 

PFS than those with low risk. The AUC of the model in 

TCGA testing cohort was 0.681, 0.635, and 0.624 at 

one, three, and five years, (Figure 4D), and those in the 

GSE30929 cohort were 0.694, 0.679, and 0.668, 

respectively (Figure 4E).  

 

Moreover, prognostic significance of risk score and the 

aforementioned clinical variables was evaluated among 

patients from TCGA training cohort and testing cohort 

by accomplishing Cox regression analysis, results of 

which revealed that for patients from both cohorts, risk 

score was an independent predictive factor for both OS 

(p<0.01, Supplementary Figure 1A, 1B) and PFS 

(p<0.05, Supplementary Figure 2A, 2B). Thus, through 

the aforementioned statistical analyses, we identified 

prognosis-associated ZNFs and established models that 

could reliably and efficiently predict long-term 

outcomes of patients diagnosed with STS.  

 

Building predictive nomograms 

 

A clinically useful nomogram that will help physicians 

more accurately predict OS (Figure 5A) or PFS (Figure 

5B) of patients with STS was generated. According to the 

results of multivariate analysis among patients from the 

validation cohort, each variable was vested with a 

corresponding point based on the scale from the 

nomogram. A horizontal line was drawn to determine 

each variable’s point. The total score of each patient was 

obtained by adding all the points together and based on 

the total score, we could more accurately estimate the 

one-, three-, and five-year survival rates of patients with 

STS.  

 

GO enrichment analysis and GSVA analysis 

 

In order to evaluate the possible functions of 

differentially expressed ZNFs in STS, we then 

performed GO enrichment analysis using the 

“clusterProfiler” package of R software. As shown in 

Figure 6A, we revealed that ZNFs were mainly located 

in PML bodies, stress fibers, contractile actin filament 

bundles, filamentous actin, and actin filament bundles. 

As for the specific molecular functions of these ZNFs, 

we found that ZNFs were mainly involved in DNA-

binding transcriptional repressor and activator activity, 

ubiquitin-like protein transferase activity, ubiquitin-

protein transferase activity and steroid hormone 

receptor activity.  

 

In order to investigate the possible mechanisms through 

which ZNFs-based risk score model predicted prognosis 
of patients with STS, we then performed GSVA 

analysis. In the model predicting OS, the primary 

differences in the KEGG pathway between high-risk 
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Figure 3. Development and validation of the OS prediction model for STS. (A) The plot of partial likelihood deviance. (B) The 
changing trajectory of each ZNF variable. Survival curve and ROC curve for low- and high-risk subgroups in TCGA training cohort (C), TCGA 
testing cohort (D) and GSE21050 cohort (E). 
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Figure 4. Development and validation of the PFS prediction model for STS. (A) The plot of partial likelihood deviance. (B) The 
changing trajectory of each ZNF variable. Survival curve and ROC curve for low- and high-risk subgroups in TCGA training cohort (C), TCGA 
testing cohort (D) and GSE30929 cohort (E). 
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group and low-risk group were as follows: vascular 

smooth muscle contraction, phosphatidylinositol 

signaling system, inositol phosphate metabolism, adipo-

cytokine signaling pathway and inositol phosphate 

metabolism (Figure 6B), which were significantly more 

activated among patients in the low-risk group and this 

might lead to better OS. In the model predicting PFS, 

the primary differences in the KEGG pathway between 

high-risk group and low-risk group were as follows: 

histidine, tyrosine, tryptophan, arachidonic acid, fatty 

acid, and drug metabolism cytochrome P450, and 

metabolism of xenobiotics by cytochrome P450 (Figure 

6C), which were significantly more activated among 

patients in the low-risk group and this might lead to 

better PFS.  

 

Molecular subtypes and immune infiltration of STS 

based on ZNFs 

 

Thirteen genes (HLTF, LDB3, LIMS2, NR3C2, 

PDLIM1, PHF14, ZHX2, ZIC1, ZNF141, ZNF281, 

ZNF292, ZNF322, and ZNHIT2) were identified to be 

significantly associated with prognosis. Then we 

evaluated the prevalence of somatic mutations in 1,555 

ZNFs in STS. Of the 237 samples, a total of 51 (21.52%) 

ones were demonstrated to be with genetic alterations, 

primarily missense mutations, nonsense mutations, and 

multiple hits in ZNFs. PCLO was the frequent mutation 

(Figure 7A). Then through further analysis of the 13 

prognosis-related ZNFs, we demonstrated that copy 

number variation (CNV) mutations were prevalent. 

Specifically, PHF14, ZHX2, and ZNF141 showed 

widespread amplifications, while LDB3, PDLIM1, 

ZNF292, ZNF322, and ZNHIT2 showed prevalent 

deletions (Figure 7B). The locations of CNV alterations 

in the 13 prognosis-related ZNFs on the chromosomes 

are shown in Figure 7C. 

 

Consensus ClusterPlus package was adopted to divide 

STS samples from TCGA into k (k=2-9) subtypes based 

on 13 ZNFs significantly associated with prognosis. 

Best division of the CDF curve based on consensus 

scores could be achieved when k was 4. Accordingly, 

we identified four distinct subtypes (Figure 8A), 

including 34, 67, 87, and 65 cases in cluster A, B, C, 

and D, respectively (Figure 8B). It was demonstrated 

through survival analysis that cluster B had prominent 

survival advantages over other clusters and cluster D 

was found to have the worst OS (p<0.001, Figure 8B) 

and PFS (p=0.001, Figure 8C). The heatmap of the 13 

prognosis-related ZNFs for four different subtypes was 

presented in Figure 8D.  

 

Subsequently, we further evaluated the immunological 

characteristics of the four subtypes. The immune and 

stromal scores of samples in the TCGA cohort were 

quantified using the ESTIMATE algorithm, results of 

which demonstrated that in comparison with patients 

with high scores, OS (p<0.01, Supplementary Figure 

3A) and PFS (p<0.05, Supplementary Figure 3B) of 

those with low scores were significantly worse. Four 

subtypes were revealed to have significantly different 

immune scores. Immune scores of subtypes B and C 

were significantly higher than those of subtypes A and 

D (Figure 8E). Results of analysis of the immunological 

characteristics implied that unlike subtypes B and C, 

immune responses within subtypes A and D STS were 

significantly suppressed. Furthermore, we assessed the 
 

 

Figure 5. Nomogram and calibration plots for predicting one-, three-, and five-year OS (A) or PFS (B) of TCGA training cohort. 
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expression of several immune checkpoints in four 

different subtypes, results of which demonstrated that 

compared with those in subtypes A and D, expression 

levels of most immune checkpoints were significantly 

higher in subtypes B and C (Figure 8F), which was 

consistent with results of immune score analysis. Then 

the immune infiltration profile of the TCGA cohort was 

characterized with CIBERSORT. For STS samples 

from TCGA, the major constituents of TIICs were CD8 

T cells, resting CD4 memory T cells, resting mast cells, 

M2 and M0 macrophages (Figure 8G). Additionally, it 

was also observed that infiltration proportions of five 

immune cells in four subtypes were significantly 

different (Figure 8G). Significantly much more resting 

 

 
 

Figure 6. GO enrichment and GSVA analysis. (A) GO enrichment analysis of differentially expressed ZNFs. GSVA analysis for OS (B) and 
PFS (C) in low- and high-risk subgroups of TCGA training cohort. 
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Figure 7. Mutation and CNV frequency of ZNFs. (A) The 

mutation frequency of ZNFs in 237 patients with STS from TCGA 
cohort. (B) The CNV frequency of ZNFs in TCGA cohort. (C) The 
location of CNV alterations of ZNFs on chromosomes using TCGA 
cohort. 

CD4 memory T cells and mast cells were observed in 

subtype A STS than in other three subtypes. Moreover, 

it was demonstrated that CD8 T cells within subtype B 

STS were significantly more prominent while 

significantly more abundant infiltration of M2 within 

subtypes C and D STS and M0 within subtype D STS 

were detected. Therefore, given the fact that the 

dominant immune cells within subtype B were CD8+ T 

cells (the main killers of tumor cells, Philip and 

Schietinger, 2021) while the dominant immune cells 

within subtype C were M2 macrophages (the main 

tumor promoters, Najafi et al., 2019), we could explain 

why prognosis of subtype B STS was significantly 

better than that of subtype C STS. Similarly, the most 

prominent immune cells within subtype A STS were 

resting CD4 memory T cells and mast cells and the 

most prominent immune cells within subtype D STS 

were M0 and M2 macrophages, which might explain 

why patients with subtype A STS had better prognosis 

than those with subtype D STS (Supplementary Figure 

3C). Therefore, considering all the results, we could 

draw the conclusion that proportion of immune cells 

within STS would significantly affect patients’ 

prognosis. 

 
ZNF141 promoted the proliferation and viability of 

STS cells 

 

ZNF141 has been identified as an OS- and RFS-related 

ZNF, but its role in STS is still unclear. Therefore, we 

verified the effect of ZNF141 on STS cells in vitro. 

ZNF141 mRNA expression was upregulated in tumor 

tissues compared to that in normal tissues (Figure 9A). 

The results from TCGA dataset show that patients with 

high ZNF141 mRNA levels had poorer OS (Figure 9B) 

and RFS (Figure 9C) than those with low ZNF141 

mRNA levels. Subsequently, siRNAs (si-nc, si-1, and 

si-2) were transfected to A673 cells. RT-PCR and 

western blotting assays showed that ZNF141 expression 

was significantly downregulated in A673 cells 

transfected with si-1 or si-2 compared with those 

transfected with si-nc (Figure 9D). The results of the 

CCK8 showed that the proliferation of A673 cells with 

knockdown ZNF141 (si-1 or si-2) was weaker than that 

of the control group (si-nc) (Figure 9E). Plate clone 

formation assays showed that the colony numbers of 

A673 cells with ZNF141 knockdown were significantly 

reduced (Figure 9F). Next, ZNF141 overexpression 

(GV- ZNF141) or control plasmid (GV-Vector) were 

transfected to SW982 cells. The successful 

overexpression of ZNF141 in SW982 cells was verified 

by both RT-PCR and western blotting assays (Figure 

9G). CCK8 assays showed that the proliferation of 

SW982 cells with ZNF141 overexpression (OE) was 

stronger than that of the control group (NC) (Figure 9H). 

Plate clone formation assays showed that the colony 
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Figure 8. Molecular subtypes and immune infiltration. (A) Consensus matrices of TCGA cohort for k=4. OS (B) and PFS (C) for the four 

clusters in TCGA cohort. (D) Expression heatmap of ZNF prognosis-related genes in four subtypes. (E) Immune and stromal scores of four 
subtypes from the ESTIMATE algorithm. (F) The differences of immune checkpoint genes in four subtypes. (G) TIICs of four subtypes. 
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numbers of SW982 cells with ZNF141 overexpression 

were significantly increased (Figure 9I). These results 

suggested that ZNF141 promoted the proliferation and 

viability of STS cells, and we could conclude that 

ZNF141 played critical roles in promoting progression 

of STS. 

DISCUSSION 
 

ZNFs were the most abundant transcriptional 

regulatory factors within mammal cells. It has been 

reported by many previous studies that ZNFs play vital 

roles in occurrence and progression of malignant 

 

 
 

Figure 9. ZNF141 promotes the proliferation and viability of STS cells. (A) ZNF141 expression in normal tissues and STS tissues 

(GSE2719). The OS (B) and RFS (C) analysis of ZNF141 expression in TCGA cohort. (D) ZNF141 knockdown A673 cells were constructed and 
confirmed by RT-PCR and Western blotting. (E) The proliferation ability of A673 cells with ZNF141 (si-nc, si-1 or si-2) via CCK8 assays. (F) Plate 
clone formation assays of A673 cells with ZNF141 (si-nc, si-1 or si-2). (G) ZNF141 overexpression SW982 cells were constructed and confirmed 
by RT-PCR and Western blotting. (H) The proliferation ability of SW982 cells with ZNF141 overexpression or control plasmid via CCK8 assays. 
(I) Plate clone formation assays SW982 cells with ZNF141 overexpression or control plasmid. 
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tumors [9, 10, 14, 15]. However, roles of ZNFs in STS 

have not been fully investigated. In this study, we 

identified 110 ZNFs whose expression in STS was 

differentially between STS samples and normal tissues. 

We performed univariate Cox regression analysis and 

revealed that some ZNFs were significantly associated 

with OS and PFS of patients with STS. Then we 

established and validated models for OS and PFS 

using LASSO-penalized Cox regression analysis and 

these models could efficiently predict prognosis of 

patients with STS. Additionally, we used consensus 

clustering to classify subtypes of STS. As far as we 

know, this is by far the first comprehensive study 

investigating roles played by ZNFs in STS and our 

study would build a framework for future studies. 

 

Firstly, we identified 110 differentially expressed ZNFs 

among the 1555 total ZNFs. We then evaluated 

prognostic significance of these differentially expressed 

ZNFs. Subsequently, we accomplished LASSO-

penalized Cox survival analysis and established models 

predicting OS of the TCGA training cohort. Nine genes 

(HLTF, ZNF292, ZNF141, LDB3, PHF14, ZNF322, 

PDLIM1, NR3C2, and LIMS2) were selected to 

establish the OS prediction model, and seven genes 

(ZIC1, ZNF141, ZHX2, ZNF281, ZNHIT2, NR3C2, and 

LIMS2) were utilized to build the PFS prediction model. 

It was then demonstrated through ROC analysis that the 

prediction models for OS and PFS were reliable and 

efficient predicting prognosis of patients with STS, 

which was then further validated by the testing cohort 

from TCGA and GEO cohorts (GSE21050 for the OS 

model and GSE30929 for the PFS model). These 

findings suggested the clinical usefulness and efficiency 

of models predicting OS and PFS. Ultimately, we 

established OS and PFS nomograms to enable 

physicians to better predict survival of patients with 

STS at one, three, and five years.  

 

Then potential functions of ZNFs in STS and the 

possible pathways through which ZNFs exert these 

functions were investigated. It was revealed through GO 

enrichment analysis that ZNFs played vital roles in 

DNA-binding transcription activator or repressor 

activity, ubiquitin-protein transferase activity, and 

steroid hormone receptor activity. Then we performed 

GSVA analysis and demonstrated that high-risk groups 

and low-risk groups were different in terms of the 

following pathways: amino acid and fatty acid 

metabolism, adipocytokine signaling pathway, and drug 

metabolism cytochrome P450. Previous studies reported 

that amino acid metabolism was an important factor 

promoting the formation immunosuppressive tumor 
microenvironment and resistance of cancer cells to 

drugs [22, 23]. Additionally, it has also been reported 

that growth and survival of tumor cells are significantly 

affected by fatty acid metabolism and enzymes 

regulating synthesis of fatty acid are potential targets 

treating malignant tumors [24]. Similarly, it has also 

been reported that cytochrome P450 is important in 

growth of tumors and could regulate resistance of tumor 

cells to drugs [25]. However, the roles of these 

pathways in STS should be further evaluated to improve 

survival of patients with STS.  

 

Next, based on 13 prognosis-related ZNFs, four sub-

types with significantly distinct prognosis and 

remarkably different immune infiltration characteristics 

were identified. Of these four subtypes, patients with 

subtype B had a significantly prominent survival 

advantages while OS and PFS of patients with subtype 

D were the worst. Then immune cell infiltration 

characteristics of the four subtypes were analyzed, 

results of which revealed that subtypes A and D were 

with low immune scores while subtypes B and C were 

with high immune scores. Then through CIBERSORT, 

we revealed distinct characteristics of TIICs among the 

four subtypes. Subtype A is dominated by resting CD4 

memory T cells and resting mast cells, subtype B by 

CD8 T cells, subtype C by M2 macrophages, and 

subtype D by M0 and M2 macrophages. These TIICs 

have different effects on tumor prognosis. According to 

some previously published studies, resting mast cells 

and CD4 memory T cells are predictors for better 

prognosis [26], which was in line with our finding that 

resting mast cells were positively correlated with 

prognosis. Moreover, CD8 T cells are killers that 

specially kill tumor cells [27], while M2 cells are tumor 

promoters [28], and M0 macrophages are strongly 

associated with poor outcomes [26]. These TIICs also 

play different roles in STS, which further influence the 

prognosis of the four subtypes. Therefore, making more 

precise treatment plans according to the characteristics 

of the four subtypes will be beneficial for improving the 

prognosis of patients with STS. 

 

Moreover, ZNF141 was related to both OS and RFS, 

but the role of ZNF141 in STS remains unclear. The 

role of ZNF141 in STS cells was preliminarily 

explored. Our results suggest that ZNF141 promotes the 

proliferation and viability of STS cells. Recent studies 

suggest that ZNF141 is a potential marker of extranodal 

NK/T-cell lymphoma [29]. Therefore, we could 

conclude that ZNF141 played critical roles in promoting 

progression of STS and may serve as a potential 

prognostic biomarker. Obviously, further research needs 

to be explored. 

 

In conclusion, we performed a comprehensive study 
investigating prognostic significance and possible 

functions of differentially expressed ZNFs in STS. 

Predictive models that could efficiently and reliably 
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predict OS and PFS were also developed and validated. 

Additionally, four subtypes of STS with significantly 

distinct prognosis and remarkably different immune 

infiltration characteristics were identified. Taking all 

these results together, we identified some potential 

targets for developing novel treatment strategies that 

may improve prognosis of patients with STS.  
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Univariate and multivariate Cox regression analysis of OS in TCGA training (A) and testing cohorts (B). 
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Supplementary Figure 2. Univariate and multivariate Cox regression analysis of PFS in TCGA training (A) and testing cohorts (B). 
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Supplementary Figure 3. Survival curve of immune score and tumor-infiltrating immune cells. OS (A) and PFS (B) curve of 
patients with high- or low- immune scores in the TCGA cohort. (C) OS curve of eosinophils and mast cells resting in the TCGA cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3. 

 

Supplementary Table 1. Symbols and categories of the 1,555 ZNFs. 

 

Supplementary Table 2. The sequences of primer and 
siRNA oligonucleotides. 

ZNF141 F 5’- GACGGTCCACAGATCGGAG-3’ 

 R 5’- TGACTCAGGAGCGAAAATTGTT -3’ 

GAPDH F 5’- ACAACTTTGGTATCGTGGAAG -3’ 

 R 5’- GCCATCACGCCACAGTTTC -3’ 

si-1 SS 

AS 

5’-GUGUCAAAGUUGUUAGUAA-3’ 

5’-UUACUAACAACUUUGACAC-3’ 

si-2 SS 

AS 

5’-GAGAUGUGAUGUUGGAGAA-3’ 

5’-UUCUCCAACAUCACAUCUC-3’ 

 

Supplementary Table 3. Differentially expressed ZNFs in GSE2719. 

 


