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INTRODUCTION 
 

The lung parenchyma or alveolar region of the lung is 

where the gas exchange takes place and corresponds to 

80-90% of the total lung volume. The remaining non-

parenchyma consists of the conducting airways, trachea, 
bronchi and bronchioles, as well as blood vessels. The 

alveolar epithelium is composed by alveolar type I 

(ATI) and alveolar type II (ATII) cells, both with 

distinct functional specialization and structural 

differentiation [1]. ATI cells comprise the major gas 

exchange surface of the alveolus and are key for the 

maintenance of the permeability barrier of the alveolar 

membrane. ATII are the progenitor cells for ATI and 

also responsible for surfactant production and 

homeostasis [2]. ATI cells are more sensitive to injuries 

that ATII [3]. Once ATI cells are damaged, adjacent 

ATII are stimulated to proliferate and transdifferentiate 

www.aging-us.com AGING 2023, Vol. 15, No. 11 

Research Paper 

Short telomeres in alveolar type II cells associate with lung fibrosis 
in post COVID-19 patients with cancer 
 

Paula Martínez1, Raúl Sánchez-Vazquez1, Arpita Saha1, Maria S. Rodriguez-Duque2,6  
Sara Naranjo-Gonzalo3, Joy S. Osorio-Chavez4, Ana V. Villar-Ramos5,6,7, Maria A. Blasco1 
 
1Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 
E-28029, Spain  
2Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain 
3Servicio de Cirugía Torácica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain 
4Servicio de Neumología Hospital Universitario Marqués de Valdecilla, Santander E-39008, Spain 
5Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Cantabria, Santander E-39011, Spain 
6Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander E-39011, Spain 
7Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander E-39011, Spain 
 
Correspondence to: Maria A. Blasco; email: mblasco@cnio.es 
Keywords: ATII cells, lung fibrosis, telomeres, COVID-19, SARS-CoV2 
Received: March 30, 2023    Accepted: May 10, 2023  Published: June 7, 2023 

 
Copyright: © 2023 Martínez et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 

 

ABSTRACT 
 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 
2019 (COVID-19) pandemic. The severity of COVID-19 increases with each decade of life, a phenomenon that 
suggest that organismal aging contributes to the fatality of the disease. In this regard, we and others have 
previously shown that COVID-19 severity correlates with shorter telomeres, a molecular determinant of aging, 
in patient’s leukocytes. Lung injury is a predominant feature of acute SARS-CoV-2 infection that can further 
progress to lung fibrosis in post-COVID-19 patients. Short or dysfunctional telomeres in Alveolar type II (ATII) 
cells are sufficient to induce pulmonary fibrosis in mouse and humans. Here, we analyze telomere length and 
the histopathology of lung biopsies from a cohort of alive post-COVID-19 patients and a cohort of age-matched 
controls with lung cancer. We found loss of ATII cellularity and shorter telomeres in ATII cells concomitant with 
a marked increase in fibrotic lung parenchyma remodeling in post- COVID-19 patients compared to controls. 
These findings reveal a link between presence of short telomeres in ATII cells and long-term lung fibrosis sequel 
in Post-COVID-19 patients. 
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into ATI. ATII cells with self-renewal capacity function 

as progenitors for the lung parenchyma restoring the 

epithelium after lung injury [1]. Thus, it is conceivable 

that cumulative damage to ATI or ATII cells could be at 

the origin of exhaustion of the regenerative potential of 

lungs and lung degenerative diseases.  

 

Telomeres are specialized structures at the chromosome 

ends, which are essential for chromosome-end 

protection and genomic stability. Vertebrate telomeres 

consist of tandem repeats of the TTAGGG DNA 

sequence bound by a six-protein complex known as 

shelterin, which prevents chromosome end-to-end 

fusions, telomere fragility, and the induction of a 

persistent DNA damage response [4, 5]. As cells divide 

and DNA has to be replicated, telomeres become 

progressively shorter owing to the so-called “end 

replication problem” [6, 7]. Thus, telomere shortening 

occurs associated with increasing age in humans [8], 

mice [9] and other species, and the rate of telomere 

shortening has been shown to correlate with species 

lifespan [10]. When telomeres become critically short 

this results in loss of telomere protection and telomere 

damage, leading to activation of a persistent DNA 

damage response and loss of cellular viability by 

induction of apoptosis and/or senescence [4, 5].  

 

Idiopathic pulmonary fibrosis (IPF) is a rare lung 

disease characterized by progressive loss of functional 

lung cells and fibrosis of the lung parenchyma. IPF can 

be both a sporadic and a familial disease. The familial 

cases are linked to mutations in surfactant related genes 

or in telomere maintenance genes [11–13]. Sporadic 

cases of IPF, not associated with telomere maintenance 

genes mutations, also show shorter telomeres in blood 

and in ATII cells compared to age-matched controls, 

with 25% of the patients showing telomeres as short as 

the telomerase mutation carriers [14, 15].  

 

Of importance, induction of telomere dysfunction 

specifically in alveolar type II (ATII) cells, and not in 

other cell types including fibroblast, basal cells or Clara 

cells, is sufficient to induce progressive and lethal 

pulmonary fibrosis in lung parenchyma in mice, which 

is concomitant with induction of telomeric DNA 

damage, cell death and cellular senescence [16–20]. 

Indeed, in fibrotic human lungs as well as in mouse 

models for lung fibrosis, senescent ATII are observed 

[1, 2, 17, 21, 22], in line with the notion that telomere 

shortening or telomere dysfunction could be at the 

origin of this degenerative lung disease.  

 

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is responsible for the coronavirus 

disease 2019 (COVID-19) pandemic. COVID-19 

severity has been associated to increasing age of the 

infected patients, suggesting a component of aging in 

the disease [23, 24]. In this regard, we and others have 

shown that the severity of the COVID-19 disease is 

associated with higher abundance of shorter telomere 

length in patient’s leukocytes [23, 25, 26], raising the 

hypothesis that short telomeres maybe contributing to 

the COVID-19 disease.  

 

Of interest, the SARS-CoV-2 virus uses the 

angiotensin-converting enzyme 2 (ACE2) as the 

receptor for cellular entry [27, 28]. In normal human 

lungs, Type II alveolar (ATII) epithelial cells constitute 

the majority of ACE2-expressing lung cells (83%) 

although only 1.4% of ATII cells express ACE2 

indicating that ACE2 expression does take place in a 

special small population of ATII cells. The remaining 

17% of ACE2-expressing cells in the lung include type 

I alveolar (ATI), airway epithelial cells, fibroblast, 

macrophages and endothelial cells [29]. The fact that 

SARS-CoV-2 targets ATII cells in the lung explains the 

severe alveolar damage in severe COVID-19 patients 

[29]. Of interest, lung injury is a predominant feature of 

acute SARS-CoV-2 infection. The abnormal imaging 

pattern of COVID-19 patients with severe pneumonia 

suggests that these patients are likely at an increased 

risk of progression to post-COVID-19 development of 

lung fibrosis with permanent functional impairment. 

Indeed, post-COVID-19 pulmonary fibrosis is being 

considered as a major sequelae of the pandemic [30]. 

 

Here, we set to address whether short telomeres in the 

lungs of post- COVID-19 patients could be at the origin 

of virus-induced pulmonary fibrosis. To this end, we 

performed histopathological analysis of lung biopsies 

from a cohort of 19 alive post-COVID-19 patients and 

79 age-matched controls, and found marked fibrotic 

lung parenchyma remodeling with fibroblast pro-

liferation, airspace destruction and reduced ATII 

abundance in post-COVID-19 patients compared to 

controls. Most relevant, post-COVID-19 patients 

presented with shorter telomeres in ATII cells compared 

to age-matched controls. These findings suggest a role 

for short telomeres in the origin of severe COVID-19 

sequelae, such as pulmonary fibrosis. 

 

RESULTS 
 

Cohort of COVID-19 patients and age-matched 

controls 

 

In order to study a potential role of short telomeres in 

the origin of the post-viral lung fibrosis sequel 

presented by a percentage of COVID-19 patients, 

paraffin-embedded lung samples from post-COVID-19 

and COVID-19-free patients were obtained from the 

University Hospital of Marques de Valdecilla in 
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Santander, Spain. In all cases, lung samples 

corresponded to biopsies from non-tumoral areas of the 

lungs from lung cancer patients. The samples used for 

the analysis were confirmed to correspond to normal, 

non-tumoral tissue by using pathological analysis. 

Cancer patients were used owing to the fact that normal 

lung biopsies were readily available. A total of 35 

females and 63 males of ages ranging from 42 to 84 

years old were included in the study (Table 1). Nineteen 

patients, 5 females and 14 males, passed the COVID-19 

disease previous to lung surgery, while the rest of the 

patients never had the COVID-19 disease. The clinical 

and demographic characteristics of patients under the 

study are summarized in Table 2. Of note, histo-

pathological analysis of lung samples post-surgery 

showed that 59% of COVID-19 patients (11 out of 19) 

and 19% of control patients (15 out of 79) presented 

lung fibrosis (Tables 1, 2). It should be pointed out that 

none of the COVID-19 patients had fibrosis prior to 

SARS CoV-2 infection based on either chest 

radiographs or CT scans performed before infection. 

None of the COVID-19 patients had CT lung 

pannalization characteristic of the usual interstitial 

pneumonia. Of note, echocardiographic findings are 

suggestive of pulmonary hypertension in only one 

patient from control group.  

 

Progressive telomere shortening with age in lung 

parenchyma 

 

To address the potential role of telomere length in 

COVID-19 associated lung pathologies, we analyzed 

telomere length in a single-cell manner in lung cells 

from the lung parenchyma by using Quantitative 

telomere Fluorescence In Situ Hybridization (Q-FISH), 

a technique that allows quantification of individual 

telomere fluorescence spots per interphasic nuclei in 

tissue sections, which in turn serve to quantify telomere 

length [31]. To distinguish between ATII and non-ATII 

cells in the lung parenchyma, we combined the Q-FISH 

technique with an immunofluorescence staining using 

specific antibody against prosurfactant protein C (pro-

SPC), a bona fide marker of ATII cells. First, we 

represented the distribution of the mean telomere spot 

intensity per nucleus in ATII and non-ATII cells from 

each control and COVID-19 samples (Supplementary 

Figure 1). Linear regression analysis between average 

of mean telomere spot intensity per nucleus and 

patient’s age, revealed a significant telomere shortening 

with increasing age in both ATII and non-ATII lung 

cells, something that has been described for other cell 

types previously but not for lung cell populations in 

humans [32–35] (Figure 1A, 1B). In agreement with 

telomere shortening with increasing patient age in lung 

cells, we also observed statistically significant increase 

in the abundance of short telomeres (ie, telomere 

fluorescence below 20th percentile of all telomeres in 

control samples) and a significant decrease in the 

abundance of long telomeres (ie, telomere fluorescence 

above 80th percentile of all telomeres in control 

samples) only in ATII cells but not in non-ATII cells 

(Figure 1C–1F). This observation could be explained by 

the fact that the progenitor nature of ATII cells could 

lead to a higher proliferative history compared to non-

ATII cells within the lung parenchyma and a 

consequently higher rate of telomere shortening 

associated to cell division with age. Consistent with this 

notion, we found a higher rate of decrease of telomere 

length, a higher rate of increase in the abundance of 

short telomeres, as well as a higher rate of decrease in 

the abundance of long telomeres with age in ATII cells 

compared with non-ATII cells in the linear regression 

models (Figure 1A–1F).  

 

COVID-19 patients present shorter telomeres in 

ATII cells than age-matched controls 

 

In order to assess the potential correlation between 

telomere length in lung tissue and COVID-19 disease, 

we compared the average mean telomere intensity per 

nucleus of COVID-19 patients with that of controls both 

in ATII and non-ATII cells within the lung parenchyma 

(Figure 2A–2H). We performed the analysis in age-

matched individuals within an age interval from 62 to 

84 year old in which most of COVID-19 patients are 

found (18 out of 19 COVID-19 samples). First, we used 

the Kolmogorov-Smirnov (KS) test to assess whether 

the cumulative frequency distribution of patient’s age 

from control and COVID-19 groups were different. The 

KS test revealed similar age distribution in control and 

COVID-19 patients ruling out bias in the potential 

differences in telomere length due to different ages 

between both groups (Figure 2A).  

 

Then, we compared the mean telomere intensity per 

nucleus in ATII cells in both control and COVID-19 

patients and found a significant 6% lower mean 

telomere fluorescence intensity in ATII cells from 

COVID-19 patients compared to those from controls 

(Figure 2C). In accordance with this, we also found a 

significant 42% decrease in the abundance of long 

telomeres above the 80th percentile in the telomeres of 

control samples (Figure 2D). We also found a 30% 

increase in the abundance of short telomeres below 20th 

percentile of control samples although this difference 

did not reach statistical significance (Figure 2E). 

Interestingly, although we also observe a similar trend 

in telomere length, long and short telomere abundance 

in non-ATII cells, none of these comparisons reached 

statistical significance (Figure 2F–2H). These 

observations support the fact that SARS-Cov2 mainly 

infects ATII cells, and thus can lead to increased 
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Table 1. Control and COVID-19 patients 
under study. 

  Sex Age (years) Biopsy Fibrosis 

Controls     

Control 1 Male 45 B20-4315 No 

Control 2 Female 59 B20-16593 No 

Control 3 Female 83 B20-20700 No 

Control 4 Male 78 B21-1572 No 

Control 5 Male 65 B21-2679 No 

Control 6 Male 84 B21-2688 No 

Control 7 Female 80 B21-470 No 

Control 8 Female 62 B21-571 No 

Control 9 Female 66 B21-613 No 

Control 10 Female 63 B21-1042 No 

Control 11 Male 54 B21-1132 No  

Control 12 Female 71 B21-1599 No 

Control 13 Male 60 B21-2199 Yes 

Control 14 Male 78 B21-2358 Yes 

Control 15 Male 66 B21-2679 No 

Control 16 Female 69 B21-2739 No 

Control 17 Male 68 B21-4443 No 

Control 18 Male 77 B21-7920 No 

Control 19 Male 73 B21-7869 No 

Control 20 Male 73 B21-8659 No 

Control 21 Male 69 B21-9201 No 

Control 22 Female 76 B21-9647 No 

Control 23 Male 64 B21-11060 No 

Control 24 Male 64 B21-11606 Yes 

Control 25 Female 70 B21-12024 No 

Control 26 Male 68 B21-12168 Yes 

Control 27 Male 72 B21-12186 Yes 

Control 28 Male 73 B21-12752 No 

Control 29 Male 66 B21-13359 No 

Control 30 Female 66 B21-14681 No 

Control 31 Female 62 B21-14588 No 

Control 32 Male 58 B21-15032 No 

Control 33 Female 42 B21-15986 No 

Control 34 Male 59 B21- 16407 No 

Control 35 Female 84 B21- 16496 No 

Control 36 Male 60 B21- 18388 No 

Control 37 Male 47 B21- 18468 No 

Control 38 Female 50 B21- 18433 No 

Control 39 Female 68 B21- 18891 No 

Control 40 Female 63 B21-19598 No 

Control 41 Male 66 B21-20680 No 

Control 42 Male 77 B21-20835 No 

Control 43 Male 72 B21-21282 No 

Control 44 Male 66 B21-22922 No 

Control 45 Male 66 B21-23007 No 

Control 46 Male 80 B21-23575 No 

Control 47 Male 70 B21-23641 No 

Control 48 Female 61 B21-24222 No 

Control 49 Female 72 B21-24182 No 

Control 50 Male 74 B21-25026 Yes 

Control 51 Female 66 B21-25449 Yes 

Control 52 Male 79 B21-26566 No 

Control 53 Male 72 B21-26640 No 

Control 54 Female 74 B21-27377 No 

Control 55 Male 73 B21-27275 No 

Control 56 Male 77 B21-27490 No 

Control 57 Male 68 B21-27550 No 
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Control 58 Female 53 B22-398 No 

Control 59 Male 60 B22-1485 No 

Control 60 Male 79 B22-1607 No 

Control 61 Female 74 B22-2114 No 

Control 62 Male 57 B22-2267 Yes 

Control 63 Female 68 B22-3903 No 

Control 64 Male 71 B22-4103 No 

Control 65 Female 73 B22-5408 Yes 

Control 66 Male 72 B22-5333 Yes 

Control 67 Female 58 B22-5843 No 

Control 68 Male 74 B22-5932 No 

Control 69 Male 71 B22-6089 No 

Control 70 Male 69 B22-6592 Yes 

Control 71 Female 58 B22-7124 Yes 

Control 72 Male 71 B22-7226 No 

Control 73 Male 66 B22-8331 Yes 

Control 74 Male 79 B22-8447 Yes 

Control 75 Female 63 B22-8816 No 

Control 76 Male 70 B22-9475 No 

Control 77 Female 83 B22-9599 No 

Control 78 Female 63 B22-9988 No 

Control 79 Male 82 B22-10535 Yes 

Covids     

Covid 1 Female 82 B20-15688 Yes 

Covid 2 Male 67 B20-9722 Yes 

Covid 3 Female 69 B20-8325 Yes 

Covid 4 Male 66 B21-1539 No 

Covid 5 Male 73 B21-6981 No 

Covid 6 Male 77 B21-10260 Yes 

Covid 7 Male 65 B21-11564 Yes 

Covid 8 Male 72 A21-6 Yes 

Covid 9 Male 66 B21-5757 No 

Covid 10 Male 79 B21-13286 Yes 

Covid 11 Female 48 B21- 18230 No 

Covid 12 Male 79 B21-25575 Yes 

Covid 13 Male 62 B22-508 No 

Covid 14 Male 64 B22-1037 Yes 

Covid 15 Female 64 B22-4011 No 

Covid 16 Male 76 B22-6717 Yes 

Covid 17 Male 64 B22-8708 No 

Covid 18 Female 84 B22-9363 Yes 

Covid 19 Male 72 B22-10050 No 

Results from histopathological diagnose of lung 
fibrosis post-surgery are indicated. 

 

turn-over of the remaining progenitor ATII cells in an 

attempt to regenerate the COVID-19 induced lung 

damage, which in turn accelerates telomere shortening in 

these cells. Short/dysfunctional telomeres in ATII cells 

impair lung damage repair and are sufficient to trigger 

interstitial pulmonary fibrosis in mouse models [17].  

 

COVID-19 patients present lung fibrosis 

 

In line with the above, a potential outcome of SARS-

CoV-2 infection is the induction of fibrosis-like 

phenotypes in the lung, suggesting that the viral 

infection maybe exhausting the regenerative potential 

of lung tissue [36–39]. Indeed, histopathological 

analysis of lung samples post-surgery showed that the 

incidence of lung fibrosis was 3-fold higher among 

COVID-19 than in control patients, 59% and 19%, 

respectively (Table 2). We further analyzed the lung 

fibrotic pathologies in a subset of our patient cohorts 

by performing Masson trichrome and Sirius red 

staining for histological evaluation of collagen fibers 

and by immunohistochemical staining of α-smooth 

muscle actin (SMA), a marker of activated fibroblasts 

and myofibroblasts that secrete extracellular 

components required for wound repair [40]. 

Quantitative analysis of Masson trichrome,  
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Table 2. Clinical data of patients.  

Variable COVID19 Surgical controls 

Number 19 79 

Gender (F/M) 5/14 35/64 

Age (years) 70±9 68±9 

Current smoking (yes/no) 3/16 23/56 

COVID19 mild/severe 11/8 - 

Pre-COVID19 lung fibrosis diagnosed by molecular 

imaging (yes/no) 
0/19 - 

Post-surgery lung fibrosis diagnosed by 

histopathology (yes/no) 
11/8 15/64 

Pulmonary Hypertension (yes/no) 0/19 1/78 

Concomitant diseases  

 (C/R/D) 

6/3/2 

 

21/24/11 

 

CT scan with ground opacity (yes/no) 7/12 - 

CT scan pulmonary effusion 13/6 - 

Pulmonary function test (positive/negative) 13/6 - 

Respiratory bronchiolitis 5/14 28/51 

Treatment with immunosuppressants or 

immunomodulators (yes/no) 
5/14 6/73 

Patient demographic and clinical characteristics are presented as mean ± standard 
deviation. F, female; M, male; C, cardiovascular; R, Respiratory; D, diabetes, - not 
performed. 

 

Sirius red and SMA revealed that histopathologically 

diagnosed with pulmonary fibrosis post-surgery in 

control and COVID-19 patient cohorts present 

significant higher collagen depots and increased 

presence of activated fibroblasts and/or myofibroblasts 

as compared to control lungs (Figure 3A–3D).  

 

We next compared telomere length and the percentage 

of long and short telomeres in ATII cells in 

histopathological diagnosed fibrotic and no-fibrotic 

patients within the age range of 62- to 84-year-old 

(Table 1 and Figure 4). The results clearly showed that 

non-fibrotic COVID-19 patients showed a 7-fold higher 

rate of telomere shortening than their age-matched non-

fibrotic controls (Figure 4A). In contrast, the rate of 

telomere shortening was similar when comparing 

fibrotic controls with fibrotic COVID-19 patients 

(Figure 4B). Non-fibrotic COVID-19 patients present 

shorter mean telomere length, increased percentage of 

short telomeres and lower percentage of long telomeres 

in ATII cells as compared to age-matched non-fibrotic 

control patients (Figure 4C–4G), supporting the notion 

that short telomeres are a risk factor for SARS-CoV2 

infection [23, 25, 26]. It should be pointed out that the 

difference in short telomeres between non-fibrotic 

COVID-19 and control patients is even observed in a 

COVID-cohort younger than its correspondent control-

cohort (mean age of 66 and 71 in COVID-19 and 

controls, respectively) (Figure 4C). No significant 

differences were detected in mean telomere length and 

the percentage of long/short telomeres between fibrotic 

control and fibrotic COVID-19 cohorts (Figure 4D–4F), 

in agreement with the notion that short telomeres 

associate with pulmonary fibrosis [14, 15]. 
 

Decreased number of alveolar type II cells in the 

lungs of COVID-19 patients 
 

As the SARS-CoV-2 virus in known to infect mainly 

ATII cells [29, 41], we set to analyze the percentage of 

ATII cells in control and COVID-19 samples by 

immune staining of Pro-surfactant protein C (Pro-SPC) 

as a specific marker of ATII cells. The results clearly 

show a significant lower number of ATII cells in 

COVID-19 patients compared to control lung samples 

(Figure 5A, 5B). Since ATII cells constitute the alveolar 

regenerative stem cells, this observation supports the 

notion that SARS-CoV-2 infection induces a 

regenerative/proliferative response that leads to further 

telomere shortening in ATII cells that may contribute to 

ATII exhaustion.  
 

DISCUSSION 
 

There is growing evidence of histopathological changes 

consistent with lung fibrosis in autopsied individuals 

infected with SARS-CoV-2 who died with COVID-19 

[42–44]. However, lung samples with histopathological 
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Figure 1. Progressive telomere shortening with age in lung cells. (A–F) Linear regression and Pearson correlation analyses between 

telomere intensity in pro-SPC positive (A) and pro-SPC negative cells (B), between percentage of short telomeres in pro-SPC positive (C) and 
pro-SPC negative cells (D), and between percentage of long telomeres in pro-SPC positive (E) and pro-SPC negative cells (F) and age in lung 
section from patients under study including control and COVID-19 samples. The Pearson r coefficient and the P value are indicated. 
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Figure 2. COVID-19 patients present shorter telomeres in the alveolar type II cells than controls. (A) Box and Whisker plot 
representation of control and COVID-19 patients’ age within 62 and 84 years old. Differences in age distributions between both control and 
COVID-19 sample groups was analyzed by Kolmogorov-Smirnov test. The p-value is indicated. (B) Representative images of telomere 
quantitative fluorescence in situ hybridization (q-FISH) combined with immunofluorescence against Pro-SPC in a control and a COVID-19 lung 
samples. (C–H) Box and Whisker plot representation of mean telomeric spot intensity per nucleus (C, F), percentage of long telomeres above 
80th percentile (D, G) and percentage of short telomeres below 20th percentile (E, H) in alveolar type II (ATII) (C–E) and in non-ATII cells  
(F–H) in lung sections from control and COVID-19 patients within 62 and 84 year-old age interval. Statistical significance in (C–H) was assessed 
using unpaired Student’s t test with Welch’s correction and the p-value is indicated. The percent increase or decrease between control and 
COVID-19 samples are indicated in each plot.  
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Figure 3. Collagen depots in patients diagnosed with lung fibrosis post-surgery. (A) Representative images of Masson trichrome, 
Sirius red (polarized light and bright field) and smooth muscle actine (SMA) staining in non-fibrotic and fibrotic lungs. (B–D) Quantification of 
Masson trichrome (B), Sirius red (C) and SMA (D) positive stained lung area in non-fibrotic (NF) and fibrotic (F) lung samples. The samples 
analyzed correspond to Control 1-23 and COVID-19 1-9 (Table 1). Statistical significance was assessed using Student’s t test and the p-value is 
indicated. 
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Figure 4. Higher rate of telomere shortening with age in COVID-19 patients. (A, B) Linear regression analyses between telomere 

intensity in pro-SPC positive cells and age in lung section from control and COVID-19 patients not presenting lung fibrosis (A) or being 
histopathologically diagnosed with lung fibrosis (B) post-surgery. The slope of the linear regression is shown. (C) Mean age of control and 
COVID-19 patients within 62 and 84 year-old interval presenting or not lung fibrosis post-surgery. (D–F) Mean telomeric spot intensity per 
nucleus (D), percentage of long telomeres above 80th percentile (E) and percentage of short telomeres below 20th percentile (F) in alveolar 
type II in lung sections from control and COVID-19 patients within 62 and 84 year-old age interval. Statistical significance in (C–F) was 
assessed using unpaired Student’s t test and the p-value is indicated. 
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information in post-COVID-19 survivors is highly 

limited. There are few case reports of post-COVID-19 

patients that died from diseases other than acute 

COVID-19 whose lung histopathology examination 

revealed extensive lung fibrotic changes with interstitial 

pattern (https://pesquisa.bvsalud.org/global-literature-

on-novel-coronavirus-2019-ncov/resource/pt/covidwho-

1857241). In particular, there is one case report of a 

post-COVID-19 patient that died of lung failure as the 

consequence of widespread pulmonary fibrosis without 

a previous history of pulmonary illness [45]. These 

findings of histologically-proven lung fibrosis long after 

SARS-CoV2 infection resolution provide strong 

evidence of long-lasting lung fibrosis sequel in post-

COVID-19 patients. 

 

Here, we analyze lung biopsies from a cohort of alive 

post-COVID-19 patients and a cohort of patients who 

had not passed the disease, which we used as controls. 

We found significantly higher incidence of fibrotic lung 

parenchyma remodeling with fibroblast proliferation 

and myofibroblast differentiation, airspace obliteration 

and reduced ATII abundance in post-COVID-19 

patients compared to controls. These findings suggest 

that the previous SARS-CoV-2 infection was causative 

of PF development. We also found that post-COVID-19 

patients as well as control patients that present lung 

fibrosis post-surgery show significantly shorter 

telomeres than age matched controls in the lung 

parenchyma, specifically in ATII cells. These 

observations might reflect that the SARS-CoV-2 

infection of ATII cells induces telomere shortening as a 

consequence of enhanced proliferative response to 

regenerate the alveolar damage leading to exhaustion of 

the regenerative potential of the lung tissue. In this 

regard, telomere exhaustion in ATII cells will be more 

likely to happen in older patients, which already have 

shorter telomeres in the organism as the consequence of 

aging, in agreement with our previous findings in mice 

[46]. This may explain the higher mortality caused by 

SARS-CoV-2 infection at older ages. Indeed, we and 

others had previously showed that presence of short 

telomeres can influence the severity of COVID-19 

pathologies, i.e. patients presenting more severe 

COVID-19 pathologies have shorter telomeres in 

leukocytes at different ages compared to the patients 

with milder disease [23, 25, 26].  

 

These findings are also in line with previous 

observations showing shorter telomeres in ATII cells, 

but not in non-ATII cells, in fibrotic areas compared to 

non-fibrotic ones in PF patients [47]. Although we 

cannot rule out that a different outcome might have 

been observed in COVID-19 patients not having cancer, 

the fact that both cohorts, controls and COVID-19 

patients, had lung cancer supports our statement that 

short telomeres in ATII cells associate with lung 

fibrosis in post-COVID-19 patients. 

 

In conclusion, here we reveal a link between short 

telomere length in ATII cells and post-viral lung 

fibrosis outcome in post-COVID-19 patients. In 

particular, our results suggest a model in which the 

long-term maintenance of interstitial lung fibrosis in 

post-COVID-19 patients is triggered by short telomere 

length in ATII cells, which in turn could be the result of 

increased ATII turnover as the consequence of the viral 

infection, and/or pre-existing short telomeres in the 

 

 
 

Figure 5. Decreased number of alveolar type II cells in the lungs of COVID-19 patients. (A, B) Representative images of 
prosurfactant protein C (pro-SPC) immunostaining, a marker of alveolar type II cells (ATII) (A) and quantification of pro-SpC positive cells in 
the lungs of control and COVID-19 patients (B) Statistical significance was assessed using Student’s t test and the p-value is indicated.  

https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1857241
https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1857241
https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1857241
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patient associated to increasing age. As short telomeres 

can be elongated by telomerase, and telomerase 

activation strategies have been shown by us to have 

therapeutic effects in diseases associated to short 

telomeres, such as pulmonary fibrosis [21, 48], it is 

tempting to speculate that such telomerase activation 

therapies could improve tissue pathologies in post-

COVID-19 patients such as lung fibrosis after over-

coming the viral infection. Assuming at least 10% of 

COVID-19 survivors develop long COVID-19, and given 

that the global incidence reported by the World health 

Organization (WHO) surpasses 600 million confirmed 

cases at the time of writing, it is clear that long COVID-

19 has become a major public health concern that needs 

research (https://covid19.who.int/) [49]. 

 

MATERIALS AND METHODS 
 

Patient data and lung sampling 

 

Samples and data from a retrospective cohort of patients 

with passed COVID-19 previously to lung surgery were 

obtained. Patients were recruited from the University 

Hospital of Marques de Valdecilla in Santander, Spain. 

This study presents 19 COVID-19 subjects (5 females 

and 14 males) and 79 controls undergoing tumor 

resection surgery in which tumor and some of the 

healthy tissue near it were taken out. Patients were 

matched for age and sex (35 females and 64 males of 

ages ranging from 42 to 84 years old) (Table 1). The 

biopsies were obtained near the patient’s tumor and 

corresponded to healthy tissue as confirmed by 

pathological analysis. The lung samples were paraffin-

embedded.  

 

Histopathological and immunostaining analyses 

 

Tissue samples were fixed in 10% buffered formalin, 

dehydrated, embedded in paraffin wax and sectioned at 

2.5 µm. Tissue sections were deparaffinized in xylene 

and re-hydrated through a series of graded ethanol until 

water. Immunohistochemistry (IHC) were performed on 

de-paraffined tissue sections processed with 10 mM 

sodium citrate (pH 6.5) cooked under pressure for 2 

min. IHC staining of Prosurfactant Protein C (SP-C) 

and Smooth Muscle Actin (SMA) in lung sections was 

performed with anti-proSPC (1:2000; Merck, AB3786) 

and with anti-SMA (DAKO, IR611). Histopathological 

analysis of paraffin-embedded lungs was performed in 

lung sections stained with nuclear fast red and Masson’s 

trichrome using standard procedures. To quantify 

collagen deposition Sirius red staining was performed 

on deparaffinised slides with picro-sirius red solution 

for 1 h. The slides were counterstained with 

hematoxylin and analyzed by light microscopy. Fiji 

open-source image processing software package v1.48r 

(http://fiji.sc) was used for the quantification of lung 

collagen areas. 

 

Immunofluorescence and quantitative fluorescence 

In Situ hybridization (Q-FISH) analysis 

 

Lung samples were fixed in 10% formalin, paraffine-

embedded and cut in 2.5-µm sections, which were 

mounted in superfrost plus portaobjects. Immuno-

fluorescence was performed on deparaffinized samples 

processed with Tris-EDTA and cooked under pressure 

for 2 min for antigen retrieval. Tissues were 

permeabilized with 0.5% Triton X-100 in PBS for 3 h 

at room temperature. Samples were blocked in PBS 

with 4% BSA for 3h and incubated overnight at 4° C 

with pro-SPC antibody (1:100; Abcam ab90716). 

Slides were washed three times for 15 min with PBS 

with 0.1% Tween 20 and incubated with the secondary 

antibody Alexa Fluor 488 anti-rabbit (1:1000; 

Invitrogen A11008) for 1h at room temperature. 

Samples were washed three times for 15 min with PBS 

with 0.1% Triton X-100 and then fixed for 20 min in 

4% paraformaldehyde in PBS. Quantitative FISH was 

performed as described before [50] with some 

modifications: samples were not treated with pepsin 

and were subjected directly to dehydration steps, 

formamide concentration during incubation with the 

probe and washes was reduced from 70% to 50% and 

incubation of the sample with the probe was reduced 

to 30 min. Telomere PNA probe labeled with CY3 

(Panagene) was used. Nuclei were counterstained in a 

4µg/ml DAPI/PBS solution before mounting with 

Vectashield (Vector Laboratories H-1000). 

Deparaffinized lung sections underwent antigen 

retrieval in 10 mM sodium citrate buffer and 

permeabilization was performed in PBS 0.5% Triton 

X-100 for 1.5 hours.  

 

Immunofluorescence images were obtained using a 

confocal laser-scanning microscope (Leica TSC SP8) 

using a Plan Apo 63Å-1.40 NA oil immersion objective 

(HCX). Maximal projection of z-stack images generated 

using advanced fluorescence software (LAS) were 

analyzed with Definiens XD software package. The 

DAPI images were used to detect telomeric signals 

inside each nucleus. 

 

Abbreviations 
 

ATI: alveolar type I cells; ATII: alveolar type II cells; 

IPF: Idiopathic pulmonary fibrosis; SARS-CoV-2: 

severe acute respiratory syndrome coronavirus 2; 

COVID-19: coronavirus disease 2019; ACE2: 

angiotensin-converting enzyme 2; Q-FISH: Quantitative 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Distribution of mean telomeric spot intensity per nucleus in lung tissue sections from controls and 
from COVID-19 patients. (A, B) Box and Whisker plot representation of mean telomeric spot intensity per nucleus in alveolar type II cells 

(AT2) pro-SPC positive (A) and in non-AT2 cells pro-SPC negative (B) in lung sections of control and COVID-19 patients. The ends of the box 
are the upper and lower quartiles so that the box spans the interquartile range. The middle line represents the median and bars the standard 
deviation. 

 

 


