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INTRODUCTION 
 

Osteosarcoma is the most prevalent bone malignancy 

among adolescents, with a high incidence rate of  

8–11/1,000,000/year in the 15–19 years age group [1, 2]. 

It primarily affects the long bones, including the femur, 

tibia, and humerus [3]. The second peak of osteosarcoma 

occurrence is after the age of 50 years [4]. Most patients 

with osteosarcoma have lung metastases when first 

diagnosed, and their 5-year survival rate is less than 20% 

[5]. However, the 5-year survival rate of osteosarcoma 

patients without lung metastases is almost 70% [6]. 

Despite treatment options such as surgery and chemo-

therapy, the 5-year survival rates are overall dismal 

because of the genetic complexity and instability of these 

tumors [7, 8]. High-throughput technologies have been 

used in recent oxidative stress (OS) studies, which have 

revealed differentially expressed genes (DEGs) such as 

COL1A2 and matrix metalloproteases (MMPs) between 

osteosarcoma and normal samples [9, 10]. These sequence 

www.aging-us.com AGING 2023, Vol. 15, No. 11 

Research Paper 

Construction and validation of an oxidative-stress-related risk 
model for predicting the prognosis of osteosarcoma 
 

Hanning Wang1,*, Juntan Li1,*, Xu Li1,& 
 
1Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, 
P.R. China 
*Equal contribution 
 
Correspondence to: Xu Li; email: likyokucmu@163.com, https://orcid.org/0000-0002-6994-227X 
Keywords: osteosarcoma, prognosis, immune microenvironment, single cell sequencing, nomogram 
Received: February 2, 2023      Accepted: May 15, 2023 Published: June 2, 2023 

 
Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Background: Osteosarcoma is the most common bone malignancy in teenagers, and warrants effective 
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diseases. 
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GSE39055 was applied for external validation. The patients were classified into the high- and low-risk groups 
based on the median risk score of each sample. ESTIMATE and CIBERSORT were applied for the evaluation of 
tumor microenvironment immune infiltration. GSE162454 of single-cell sequencing was employed for analyzing 
OS-related genes. 
Results: Based on the gene expression and clinical data of 86 osteosarcoma patients in the TARGET database, 
we identified eight OS-related genes, including MAP3K5, G6PD, HMOX1, ATF4, ACADVL, MAPK1, MAPK10, and 
INS. In both the training and validation sets, the overall survival of patients in the high-risk group was 
significantly worse than that in the low-risk group. The ESTIMATE algorithm revealed that patients in the high-
risk group had higher tumor purity but lower immune score and stromal score. In addition, the CIBERSORT 
algorithm showed that the M0 and M2 macrophages were the predominant infiltrating cells in osteosarcoma. 
Based on the expression analysis of immune checkpoint, CD274(PDL1), CXCL12, BTN3A1, LAG3, and IL10 were 
identified as potential immune therapy targets. Analysis of the single cell sequencing data also revealed the 
expression patterns of OS-related genes in different cell types. 
Conclusions: An OS-related prognostic model can accurately provide the prognosis of osteosarcoma patients, 
and may help identify suitable candidates for immunotherapy. 
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data provide a method for early diagnosis and treatment, 

as well as enable accurate prognosis to improve the 

outcomes of osteosarcoma patients. 

 

OS is characterized by excessive production of reactive 

oxygen species (ROS) that cannot be effectively 

quenched by the cellular antioxidative mechanisms  

[11, 12]. OS is the underlying pathological basis of 

degenerative diseases, such as Alzheimer’s disease [13], 

diabetes [14], and arthritis [15], and cancers, including 

bladder cancer [16] and breast cancer [17]. Cancer cells 

are characterized by increased aerobic glycolysis and 

high levels of ROS [18]. While the high metabolic rates 

promote cellular migration, survival, and proliferation, 

ROS-induced oxidative DNA damage initiates 

oncogenic transformation and subsequent tumor 

progression. Given the metabolic and signaling 

aberrations caused by increased ROS levels, the 

pathways involved in ROS production are promising 

therapeutic targets for cancer [19]. An increase in 

oxidative stress and decrease in antioxidant status is 

observed in primary bone sarcomas [20]. Several 

studies have also revealed the anti-cancer potential of 

differential ROS production pathways for treating 

osteosarcoma in vitro and in vivo [21–23]. 

 

The human immune system has evolved to eradicate 

pathogens and tumor cells [24], mainly through effector 

cells such as basophils, macrophages, neutrophils, 

eosinophils, and natural killer (NK) cells [25]. In 

contrast, the humoral immune system is less involved  

in anti-tumor responses, and may even promote  

tumor growth under certain conditions. The tumor 

microenvironment (TME) is a complex network of  

tumor cells, stromal cells, and immune cells. The non-

tumor cell populations also have diverse and complex 

regulatory effects on tumor progression. For instance, an 

abundance of cancer-associated fibroblasts (CAFs) in the 

TME is conducive to tumor growth [26], whereas high 

levels of tumor-associated macrophages (TAMs) are 

associated with lower metastasis and improved survival 

in osteosarcoma [27]. Therefore, the role of TME in 

osteosarcoma prognosis warrants further investigation. 

 

To this end, we retrieved the clinical and transcriptomic 

data of osteosarcoma patients from the Therapeutically 

Applicable Research to Generate Effective Treatments 

(TARGET) database. The OS-related genes were screened 

using univariate Cox regression, and a prognostic model 

was constructed following LASSO and multivariable Cox 

regression analyses. The accuracy and generalizability of 

the risk model was validated in an external cohort. The 

correlation between the risk score and TME was evaluated, 

and a predictive nomogram was constructed by combining 

the clinical characteristics and risk score. The flow chart of 

the study is shown in Figure 1. 

 

 
 

Figure 1. Flowchart of this study. 
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MATERIALS AND METHODS 
 

Data sources 

 

The mRNA sequencing data and clinical information  

86 osteosarcoma patients were retrieved from the 

TARGET database (https://ocg.cancer.gov/programs/ 

target) to construct an OS-related risk model. A total of 

817 OS-related genes were obtained from GeneCards 

database (https://www.genecards.org/). In addition, the 

GSE21257 and GSE39055 datasets including 90 

osteosarcoma samples was downloaded from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) to 

validate the risk model. Normalization of fragments per 

kilobase of exon model per million mapped fragments 

(FPKM) was performed in the TARGET-OS dataset 

and Limma package was used to normalize gene 

expression [28]. The R package sva was used to 

eliminate batch effect of different databases [29]. The 

clinical data of patients in the TARGET-OS and 

validation cohorts are summarized in Table 1. The 

GSE162454 dataset containing the single-cell 

sequencing data of six osteosarcoma samples was also 

retrieved from the GEO database [30]. 

 

Construction of prognostic model based on OS-

related genes 

 

The potential OS-related genes were identified in the 

TARGET dataset (training cohort) through univariate 

Cox regression analysis. The GLMNET package [31] 

from R was then used to perform the least absolute 

shrinkage and selection operator (LASSO) analysis to 

remove genes that may lead to overfitting [31, 32]. The 

seed number for Lasso regression is set to 666, and the 

penalty coefficient is 0.0868. Finally, the prognostically 

significant OS-related genes were screened by 

multivariable Cox regression analysis. The coefficients, 

hazard ratios (HR), and p values of different genes are 

listed in Table 2. The risk score of each sample from 

TARGET-OS was calculated using the Predict 

algorithm, and the patients were divided into high-risk 

and low-risk groups on the basis of the median risk 

score. The Kaplan–Meier method was used to evaluate 

the difference in the survival status of both risk groups, 

and receiver operating characteristic (ROC) curves for 

1-, 3-, and 5-year survival were plotted using the 

survival ROC package in R to identify the diagnostic 

value of the risk model [33]. 

 

Validation of OS-related risk model 

 

The performance of the OS-related model was validated 

in GSE21257 and GSE39055. The risk score for the 

validation cohort was calculated using the same 

algorithm as that used for the training cohort, and the 

samples were divided into the high- and low-risk groups 

on the basis of the median score for the training cohort. 

The efficacy of the risk model was evaluated by the 

Kaplan–Meier method and ROC curve analysis as 

described. 

 

Gene set enrichment analysis 

 

The DEGs between the high- and low-risk groups in 

the TARGET cohort were screened using the Limma 

package. The significantly enriched gene ontology 

pathways, namely biological processes (BPs), cellular 

components (CCs), and molecular functions (MFs), 

associated with DEGs were identified by gene set 

variation analysis (GSVA) packages in R software 

with |log2FC|>1 and adj. P value < 0.05 as thresholds 

[34]. 

 

Immune analysis based on OS-related genes 

 

The Estimation of Stromal and Immune cells in 

Malignant Tumor tissues (ESTIMATE) package in R 

software was used to calculate tumor purity, stromal 

score, and immune score in the two risk groups [35]. 

The CIBERSORT algorithm was used to calculate the 

proportion of 22 infiltrating immune cell populations in 

the training and verification cohorts [36] and in the 

high- and low-risk groups. Some potential immune 

checkpoints such as PD1 (PDCD1), PDL1 (CD274), 

IL10, CTL4, BTN3A1, CXCL12, and LAG3, and 

calculated the CYT score (GZMA and PRF1) were 

displayed using boxplots to illustrate their expression 

across high- and low-risk groups, revealing potential 

immune therapeutic targets. The gene mutation data was 

obtained from the TCGA database, and the maftools 

package was used to visualize the mutation data. 

 

Construction of a predictive nomogram based on the 

risk model 

 

The prognostic model was integrated with the clinical 

characteristics including gender, race, metastasis, and 

risk score to build a nomogram using the Survminer 

package in R. The predictive accuracy of the nomogram 

was validated by C-index and comparison of the fitting 

degree between the observed and optimized values was 

performed. 

 

OS-related gene expression in single-cell sequencing 

database 

 

The expression of OS-related genes at the single cell 

level was analyzed in the GSE162454 dataset. Six 
osteosarcoma samples were analyzed using the Seurat 

package (Version 4.0) [37]. Poor quality cells (genes 

>8000, genes <500, or >10% genes mapping to 

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1. Clinical information of training and validation cohorts. 

 TARGET-OS GSE21257 GSE39055 

Samples 86 52 38 

Age 14.5 16.7 13.5 

Female percent 43.0% 36.5% 44.8% 

Metastasis percent 25.6% 64.1% Na 

Survival time 4.11 5.71 4.41 

 

Table 2. Eight genes obtained after multivariable Cox regression analysis. 

Gene Coefficient HR HR.95L HR.95H P value 

MAP3K5 −1.817 0.162 0.057 0.465 0.0007 

G6PD −0.662 0.516 0.228 1.167 0.1120 

HMOX1 −0.523 0.593 0.408 0.861 0.0061 

ATF4 0.8396 2.315 1.130 4.746 0.0218 

ACADVL 1.4825 4.404 2.073 9.357 0.0001 

MAPK1 −1.135 0.321 0.138 0.746 0.0083 

INS 32.215 9.79E+13 1295.499 7.41E+24 0.0117 

MAPK10 −1.540 0.214 0.057 0.795 0.0213 

 

mitochondrial genome) were excluded. The expression 

data were transformed to the log scale and normalized 

for scaling the sequencing depth. T-Stochastic neighbor 

Embedding (T-SNE) plots were used to visualize cell 

clusters. 

 

Immunohistochemistry and hematoxylin-eosin 

staining 

 

OS-related genes were experimentally verified by 

immunohistochemistry (IHC). Three osteosarcoma tissues 

and peri-tumor tissues were collected from patients at 

First Affiliated Hospital of China Medical University. A 

consent form was signed by each participant. The present 

study was approved by the ethics committee of the 

hospital with the registration number 2019-285-2. 

 

Hematoxylin-eosin (HE) staining was performed to 

identify histology type of tissues. Tissues were fixed and 

paraffinized before IHC staining. Antigens were retrieved 

using citrate antigen retrieval buffer. Endogenous 

peroxidase was blocked by 3% hydrogen peroxide 

solution, incubated at room temperature for 25 min in the 

dark. In the histochemical area, 3% BSA (Bovine Serum 

Albumin, Servicebio) was added dropwise to cover the 

tissue evenly, and it was sealed at room temperature for 

30 min. Sections were incubated overnight at 4°C in a 

humidified chamber with corresponding antibodies. 

Antibody applications were as follows: ACADVL 

(Proteintech, 1:200), ATF4 (Servicebio, 1:2000), 
HMOX1 (Servicebio, 1:500), MAPK10 (Servicebio, 

1:200), INS (Servicebio, 1:200). Secondary antibody 

(HRP-labeled) corresponding to the primary antibody 

was added to cover the tissue area and slides were 

incubated at room temperature for 50 minutes. Freshly 

prepared DAB (3,3′-Diaminobenzidine) chromogenic 

were used for color development in the IHC area. Nuclei 

were counterstained with hematoxylin for about 3 min. 

Finally, microscopic examination and image acquisition 

analysis were performed. 

 

Statistical analysis 
 

Statistical analyses were performed using the R software 

(Version 4.1.3). Two-tailed Student’s t-test and Wilcox 

test were performed to compare gene expression or 

scores between two independent groups. Kaplan–Meier 

survival analysis, LASSO regression analysis, and 

multivariable Cox regression analysis were performed to 

identify prognostic genes. Forest plots of nomogram 

were visualized using forest algorithm. P value < 0.05 

was considered statistically significant. 

 

Availability of data and materials 
 

The source data and R code of the manuscript was 

uploaded in OSF (https://doi.org/10.17605/OSF.IO/238HP). 

 

RESULTS 
 

Identification of OS-related genes in osteosarcoma 
 

A total of 817 OS-related genes were identified from 
the GeneCards database, and their expression matrix 

was extracted from the TARGET database. Thereafter, 

89 OS-related genes were identified by univariate cox 

https://doi.org/10.17605/OSF.IO/238HP
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regression analysis, using p < 0.05 as the cut off 

(Supplementary Table 1); of these, 12 genes were 

screened on the basis of their predictive value using 

LASSO regression (Supplementary Figure 1 and 

Supplementary Table 2). 

 

Construction of an OS-related prognostic model 

 

A multivariable Cox regression model was constructed, 

and eight prognostic OS-related genes were obtained 

using the stepwise regression function (Table 2). The 

risk score of each patient was calculated, and the 

patients were stratified into high-risk and low-risk 

groups depending on the median score. The patients in 

the low-risk group showed better overall survival 

compared with those in the high-risk group (Figure 2A, 

p < 0001). The time-dependent ROC curve was then 

plotted to evaluate the predictive efficiency of the 

prognostic model. The areas under curve (AUCs) for  

1-, 3-, and 5-year survival were 0.89, 0.91, and 0.91, 

 

 
 

Figure 2. Construction of OS-related prognostic model for osteosarcoma in the TARGET cohort. (A) Kaplan-Meier curves 

showing the overall survival in the high-risk and low-risk groups (p < 0.0001). (B) AUCs for 1-, 3-, and 5-year survival according to the ROC 
curves. (C) The risk score curve of each patient. (D) The distribution of survival status. (E) The heatmap of eight OS-related genes between 
the high- and low-risk groups. (F, G, H) Risk scores in the gender, site, and metastasis subgroups. 
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respectively (Figure 2B), suggesting that the model can 

accurately predict the overall survival of osteosarcoma 

patients. The risk score distribution of patients in the 

high- and low-risk groups is shown in Figure 2C and 

2D, and the expression levels of OS-related genes in 

each patient are shown in the form of a heatmap in 

Figure 2E. We calculated the risk score in different 

subgroups, and did not observe any significant effect of 

gender or the site of osteosarcoma on risk scores 

(Figure 2F and 2G). However, patients with metastasis 

had a higher risk score than those without metastasis 

(p = 0.036, Figure 2H). 

 

Validation of prognostic model 

 

To validate the predictive ability of the OS-related 

prognostic model, the independent dataset GSE21257 

and GSE39055 were used for the validation of our risk 

model. The patients in the validation cohort were also 

grouped into the high- and low-risk groups based on the 

median score in the training cohort. As shown in Figure 

3A, and 3B, compared with low-risk group, the high-

risk group had lower survival time. The K-M plot of 

validation group was shown in Figure 3, there was 

significant difference in high and low risk group  

(p = 0.007). The areas under the curve for prediction of 

1-, 3-, and 5-years survival of patients were 0.63, 0.66 

and 0.65, respectively (Figure 3D). 

 

Survival analysis and functional enrichment of the 

prognostic OS genes 

 

Based on the expression level of each gene in the 

prognostic model, the patients were divided into  

high- and low-expression groups. The survival curves 

corresponding to the genes are shown in Figure 4A-4H .

 

 
 

Figure 3. Validation of OS-related genes in the GSE21257 and GSE39055 cohort. (A) Validation group was divided into high- and 

low-risk groups using the median risk score as the cutoff value. (B) the relationship between risk score and survival time and status of 
patients. (C) K-M plot of high and low risk groups in validation group (p = 0.007). (D) AUCs for 1-, 3-, and 5-year survival according to 
ROC curves. 
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Low expression levels of ACADVL (p = 0.028), ATF4 

(p = 0.00047), and INS (p = 0.027) were associated with 

improved survival, whereas high expression of HMOX1 

(p = 0.0033) and MAPK10 (p = 0.036) showed better 

prognosis. To further explore the underlying molecular 

mechanisms of the prognostic model, we identified 106 

differentially enriched GO terms between the high- and 

low-risk groups in the TARGET database with 

|log2FC|>1 and adj. p value < 0.05 as the cut-offs. The 

top 50 enriched GO terms obtained from GSVA are 

shown in Figure 4I, and these included many immune-

related terms such as immune response, positive and 

negative regulation of T cells, and leukocyte-mediated 

cytotoxicity. This suggested that the OS-related 

prognostic genes have an impact on TME and immune 

infiltration in osteosarcoma. 

 

 
 

Figure 4. (A–H) Kaplan-Meier survival analysis of eight OS-related genes. (I) Results of GSVA in the high- and low-risk groups. Abbreviations: 

GO: gene ontology; BP: biological process; CC: cellular components; MF: molecular functions. 
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TARGET database with |log2FC|>1 and adj.p value 

< 0.05 as the cut-offs. The top 50 enriched GO terms 

obtained from GSVA are shown in Figure 4I, and these 

included many immune-related terms such as immune 

response, positive and negative regulation of T cells, 

and leukocyte-mediated cytotoxicity. This suggested 

that the OS-related prognostic genes have an impact on 

TME and immune infiltration in osteosarcoma. 

Validation of survival signatures of OS-related genes 

 

We performed IHC among OS-related genes with 

significantly difference using corresponding antibodies. 

The IHC results illustrated that the expression of 

AVADVL, ATF4, INS and MAPK10 was higher in 

osteosarcoma tissues compared to normal tissues 

(Figure 5). However, the expression of HMOX1 was 

 

 
 

Figure 5. Hematoxylin eosin (HE) staining and immunohistochemistry (IHC) staining of normal and osteosarcoma tissue. 
Scale bar, 100 μm (left panel) and 50 μm (right panel). 
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lower in osteosarcoma tissues, which was in line with 

the prediction of Kaplan-Meier survival curve. 

 

Estimation of tumor immune microenvironment 

 

We calculated the stromal score, immune score, and 

tumor purity in each sample in the TARGET and 

GSE21257 datasets using the ESTIMATE algorithm. 

We also compared the abovementioned parameters 

between the high- and low-risk groups, and found that 

patients in the high-risk group with lower stromal score 

had better overall survival, compared with those with 

higher stromal scores (p < 0.0001, Figure 6A, 6D). 

However, a higher immune score was associated with 

 

 
 

Figure 6. (A–C) Stromal score, immune score, and tumor purity in the high- and low-risk groups in the TARGET cohort. (D–F) Stromal score, 

immune score, and tumor purity in the high- and low-risk groups in the validation cohort. (G) Kaplan-Meier analysis combining risk score 
and stromal score. (H) Kaplan-Meier analysis combining risk score and immune score. 
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better overall survival as opposed to a lower immune 

score in the high-risk group (p < 0.0001, Figure 6B, 

6E). High risk group of training and validation group 

had higher tumor purity than low risk group (Figure 6C, 

6F). Thus, OS-related prognostic genes are associated 

with the immune microenvironment of osteosarcoma, 

and may be able to predict the efficacy of immuno-

therapy. Then risk score was combined with stromal 

score and immune score as shown in Figure 6G and 6H, 

which illustrated the survival relationship of tumor 

immune microenvironment score. 

 

Tumor-infiltrating immune cells using OS-related 

risk score 

 

Immune-related pathway GSVA revealed that 

macrophages were well enriched between high- and 

low-risk groups (Figure 7A). The CIBERSORT 

 

 
 

Figure 7. Immune analysis based on high- and low-risk groups. (A) Immune-related pathway GSVA between high- and low-risk 

groups. (B) Box plot of 22 immune cells in the high- and low-risk groups of the training cohort. (C) Box plot of 22 immune cells in the high- 
and low-risk groups of the validation cohort. 
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algorithm was used to evaluate the infiltration of 22 

immune cell populations in the TARGET and 

GSE21257 osteosarcoma samples (Figure 7B and 7C). 

M0 and M2 macrophages were the top 2 infiltrating cell 

types in both cohorts. In the TARGET cohort, there was 

a significant difference in the abundance of infiltrating 

gamma delta T cells between the high- and low-risk 

groups (Figure 7B). In contrast, significant differences 

were observed in the infiltration of plasma cells, CD8 T 

cells, CD4 naïve T cells, CD4 memory T cells, 

regulatory T cells, and M2 macrophages between the 

high- and low-risk groups in the GSE21257 cohort 

(Figure 7C). These results suggested that the OS-related 

model is associated with the immunological status of 

the osteosarcoma microenvironment. 

 

Sensitivity to immunotherapy and tumor mutation 

burden analysis 

 

To explore sensitivity to immunotherapy, we 

performed further expression analysis for the possible 

immunotherapy target. The expression of several 

representative immune checkpoint genes is shown in 

Figure 8A–8H. We found that the expression of CD274 

(PDL1), CXCL12, BTN3A1, LAG3, and IL10 was 

significantly decreased in the high-risk group of our 

model. No significant difference was found in the term 

of PDCD1(PD1), CTLA4 and CYT score. Figure 8I 

showed the gene mutation profiles of the high- and 

low-risk groups. With the application of maftools 

package, it can be observed that the proportion of 

mutated genes is not high, with p53 being the most 

frequently mutated gene. There is no significant 

difference between the high- and low-risk groups in 

terms of gene mutations. 

 

Construction and validation of the nomogram 

 

We constructed a nomogram by integrating the OS-

related prognostic model and clinical characteristics 

including gender, race, and metastasis status. As shown 

in Figure 9A, each item was assigned a score and the 

total score of each patient predicted the probability of 

survival in 1, 3, and 5-years. The Forest plot of the 

nomogram revealed that metastasis and risk score 

showed significant prognostic value in the cohort 

(Figure 9B). The accuracy of the nomogram was 

validated in the TARGET cohort (Figure 9C and 9D), 

and the results indicated a good fit between the 

predicted and actual 3- and 5-year survival rates. 

 

Single cell expression of OS-related mRNAs 

 
We identified 23 immune cell subpopulations in the 

GSE162454 dataset by TSNE analysis at first. Based on 

the specific markers, we identified NK/T cells, CAFs 

(cancer associated fibroblasts), endothelial cells, plasma 

cells, osteoblastic cells, osteoclasts, B cells, M2 TAMs 

(tumor associated macrophages), M1 TAMs, monocytes 

and mast cells (Figure 10A). The expression of marker 

genes for different cell clusters was displayed in dot 

plot format in Figure 10B. The expression of OS-related 

genes was compared in different cell types. Because of 

the dropout sign of single-cell sequencing, INS was not 

detected in the GSE162454 dataset. As shown in Figure 

10C, HMOX1 were expressed at higher levels in TAMs 

and osteoclasts. ATF4 and ACADVL are highly 

expressed in myeloid cells as well as other cell types, 

which was suggestive of their roles in osteosarcoma 

progression. 

 

DISCUSSION 
 

Nearly 10 million adolescents are diagnosed with 

osteosarcoma each year [38]. Because of the anatomical 

features of bone tissues, chemotherapeutics have not 

achieved satisfactory response in bone malignancies 

[39]. OS, which is reflected in the excessive 

accumulation of ROS, frequently initiates tumorigenesis 

by promoting lipid oxidation and DNA damage [40]. 

Therefore, it is crucial to identify the OS-related genes 

in osteosarcoma and other cancers to increase the 

repertoire of therapeutic targets. In the present study, we 

analyzed the high-throughput RNA-sequencing data and 

clinical information of 86 osteosarcoma patients, and 

identified eight prognosis-related genes, including 

MAP3K5, G6PD, HMOX1, ATF4, ACADVL, 

MAPK1, MAPK10, and INS. An OS-related risk model 

was developed for predicting patient prognosis. With 

the combination of expressions of these eight genes, the 

risk scores had better prognostic performance than with 

individual gene expressions. Because the OS-related 

prognostic genes were enriched in immune-related 

functions, we analyzed the relationship between the risk 

model and the immunological characteristics of the 

TME, and observed significant differences in the 

infiltrating immune cell populations between the high- 

and low-risk groups. Furthermore, analysis of single 

cell sequencing results indicated that the OS-related 

genes were expressed in different cell types, which 

offers insights into potential treatment strategies for 

osteosarcoma. 

 

In the field of osteosarcoma, multiple gene sets related 

to patient prognosis, such as ferroptosis-related genes, 

immune-related genes, and lipid metabolism genes, 

have been found [41–43]. However, whether OS-related 

genes can predict patient outcomes has not been 

investigated. In this study, the risk scores of patients 

were calculated based on the expressions of eight OS-

related genes, and patients were divided into high- and 

low-risk groups according to the median number. The 
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difference in survival time between the two groups was 

statistically significant. 

 

MAP3K5 is a serine/threonine kinase that mediates the 

MAP kinase signal transduction pathway [44] in 

different cancer types, such as pancreatic cancer [45], 

prostate cancer [46], and thyroid cancer [47]. It is also a 

ferroptosis-related gene associated with increased ROS 

accumulation [48]. G6PD is the first and the rate-

limiting enzyme in the pentose phosphate pathway, as 

well as an antioxidant enzyme involved in the ribose 5-

phosphate pathway for nucleotide synthesis. Wang et al. 

found that G6PD inhibition upregulated ROS levels in 

osteosarcoma cells and induced endoplasmic reticulum 

(ER) stress, which is consistent with the decreased 

survival rates observed in the G6PDlow group in our 

cohort. HMOX1 is a cytoprotective enzyme and its 

overexpression in U-2OS cells has been reported to 

significantly decrease cell proliferation rates by 

inducing ferroptosis [49]. Further, ATF4 is a master 

 

 
 

Figure 8. Immunotherapy sensitivity and tumor mutation burden analysis. (A–H) Expression levels of representative immune 

checkpoints between high and low risk group. (I) Tumor mutation analysis of high and low risk group. 
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transcriptional regulator of amino acid metabolism and 

stress responses [50], and induces apoptosis in response 

to persistent stress conditions through post-

transcriptional modifications. ACADVL is an inner 

mitochondrial membrane protein and catalyzes the first 

step of the mitochondrial fatty acid beta-oxidation 

pathway [51]. However, there are currently no reports 

on the possible role of ACADVL in osteosarcoma. 

The mitogen-activated protein kinase (MAPK) family 

of proteins integrate various upstream signals to 

regulate multiple cellular functions, including 

proliferation, differentiation, and survival. MAPK1 is 

overexpressed in breast cancer [52], lung cancer [53], 

ovarian cancer [54], and other malignancies. Several 

studies have shown that MAPK1 is targeted by non-

coding RNAs to modulate the invasion and proliferation 

 

 
 

Figure 9. Construction and validation of the nomogram in the TARGET cohort. (A) Nomogram combining OS-related risk score 

and clinical characteristics for predicting 1-, 3-, and 5-year overall survival of osteosarcoma patients. (B) Forest plot showing results of 
multivariable cox regression of the nomogram. (C, D) The calibration curves for 3- and 5-year overall survival probability. 
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of osteosarcoma cells [55, 56]. MAPK10 is also 

associated with the prognosis of renal cell carcinoma 

[57] and hepatocellular carcinoma [58]. INS encodes 

insulin, a peptide hormone that plays a vital role in the 

regulation of carbohydrate and lipid metabolism, and is 

aberrantly expressed in various diseases. Gene 

expression microarray analysis in a previous study 

identified INS as one of the core genes in osteosarcoma 

with pulmonary metastasis [59]. In this study, we found 

significant differences between the prognosis of patients 

with low and high expression levels of ACADVL, 

ATF4, HMOX1, INS, and MAPK10, indicating that 

these genes are potential therapeutic targets of osteo-

sarcoma. 

 

 
 

Figure 10. Single-cell sequencing dataset analysis. (A) The TSNE plot of 12 cell clusters of GSE162454. (B) Dot plot showing the 

expression levels of marker gene in single cell sequencing data. (C) violin plot of OS-related genes in different cell types. Abbreviations: CAF: 
cancer associated fibroblasts; TAM: tumor associated macrophages. 
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We further validated the OS-related risk model in an 

external cohort, and the ROC curve analysis showed 

high predictive accuracy of the model in both the 

training and validation cohorts. In addition, the 

nomogram integrating the risk score and clinical 

characteristics also reliably predicted the prognosis of 

osteosarcoma. 

 

The immune microenvironment has been illustrated to 

have a significant effect on the prognosis of several 

diseases. Previous studies have shown that lower 

immune scores are associated with worse prognosis in 

osteosarcoma [60, 61]. GO analysis based on the risk 

score in our study illustrated several immune related 

terms. We found that the high-risk group had 

significantly higher tumor purity but lower stromal 

score and immune score in both the training and 

validation sets, which correlated with a worse 

prognosis. Myeloid cells, including macrophages, 

microglia, myeloid-derived suppressor cells, dendritic 

cells and neutrophils [62], are the predominant 

infiltrating immune cell populations in the TME, and 

regulate immune and therapeutic responses [63]. Xiao 

et al. developed a macrophage-associated risk model for 

osteosarcoma, which included MAP3K5 as one of the 

prognosis-related genes [61]. Our results also found that 

the potential sensitive immune checkpoint such as 

PDL1, CXCL12, BTN3A1, LAG3, and IL10, were 

differently expressed between high- and low- risk 

groups, which provide new therapy target. 

 

Analysis of a single cell sequencing dataset also showed 

that most of the OS-related genes were highly expressed 

in myeloid cells in addition to their high expression in 

osteoblasts and osteoclasts. This warrants further 

investigation of the function of these genes in 

osteosarcoma. To summarize, our OS-related risk model 

is a potential indicator of the prognosis of osteosarcoma 

patients. 

 

Our study has some limitations that ought to be 

considered. First, the sample size in our study was small 

compared with that in other similar studies. Second, the 

clinical data of the patients were not sufficient, and 

some key information such as the tumor stage and 

pathological type could not be included in the 

nomogram. Third, this study was based on sequencing 

data and bioinformatics analysis, and the results will 

have to be validated through in vitro and in vivo studies. 

 

CONCLUSIONS 
 

We constructed a prognostic risk model for osteo-

sarcoma based on eight OS-related genes. The model 

could accurately predict patient prognosis and its 

performance was validated in an external cohort. In 

addition, the risk groups classified on the basis of the 

gene risk score showed significant differences in the 

immune microenvironment, some immune checkpoints 

showed difference between high and low risk groups. 

OS-related genes were highly expressed in myeloid 

cells. In conclusion, OS-related genes possibly regulate 

the immune responses in osteosarcoma, and may predict 

patient response to immunotherapies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. LASSO regression analysis with optimal lambda. 
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Supplementary Tables 
 

Supplementary Table 1. 89 OS-related genes in osteosarcoma identified by univariate cox regression analysis. 

Gene HR HR.95L HR.95H p-value 

CAT 0.332  0.164  0.671  0.002  

HMOX1 0.721  0.530  0.981  0.037  

MAPK1 0.388  0.178  0.848  0.018  

G6PD 0.376  0.188  0.752  0.006  

TXN2 0.422  0.204  0.871  0.020  

GPX1 0.636  0.412  0.980  0.040  

ACADVL 2.886  1.374  6.065  0.005  

MAP3K5 0.286  0.120  0.682  0.005  

CCL2 0.553  0.363  0.842  0.006  

INS 15608084289545.4  15654.959  15561349814940800000000  0.004  

ATF4 1.845  1.087  3.131  0.023  

EIF2AK3 2.416  1.197  4.878  0.014  

FMO3 0.388  0.157  0.964  0.041  

IL10 0.020  0.001  0.629  0.026  

ACE 0.305  0.095  0.981  0.046  

PPARG 0.426  0.257  0.708  0.001  

NUDT1 1.965  1.146  3.369  0.014  

TLR4 0.495  0.261  0.938  0.031  

MAOB 1.519  1.015  2.274  0.042  

SFXN4 3.580  1.593  8.042  0.002  

ATM 1.735  1.054  2.857  0.030  

VCAM1 0.589  0.405  0.858  0.006  

GPX7 2.302  1.262  4.197  0.007  

KCNJ5 0.189  0.061  0.587  0.004  

CD36 1.601  1.156  2.217  0.005  

CYP2C19 5205.861  6.620  4093638.921  0.012  

MB 1.169  1.015  1.347  0.030  

BLVRB 0.519  0.312  0.862  0.011  

MAP2K4 0.523  0.287  0.953  0.034  

EME2 4.008  1.028  15.627  0.046  

AGTR1 0.516  0.294  0.903  0.020  

CYGB 1.624  1.034  2.549  0.035  

MRPS23 0.309  0.114  0.837  0.021  

PIK3CG 0.289  0.112  0.748  0.010  

ADH5 0.344  0.147  0.807  0.014  

CBS 2.188  1.269  3.771  0.005  

ANXA5 0.461  0.223  0.952  0.036  

TERT 4.444  2.120  9.314  0.000  

MAP2K7 2.826  1.346  5.931  0.006  

EGFR 0.610  0.401  0.928  0.021  

TPD52 2.577  1.509  4.399  0.001  

NDUFV1 2.627  1.082  6.378  0.033  

TLR2 0.357  0.162  0.786  0.011  

CYP11B2 402875.664  13.324  12181370764.833  0.014  
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PGD 0.364  0.183  0.726  0.004  

MAPKAPK3 0.508  0.275  0.940  0.031  

INSR 2.307  1.231  4.326  0.009  

NDUFB9 1.478  1.053  2.074  0.024  

CRAT 0.471  0.278  0.798  0.005  

TNFRSF1A 0.360  0.199  0.653  0.001  

PTPN1 0.432  0.189  0.984  0.046  

LOX 1.745  1.222  2.491  0.002  

SUOX 0.294  0.090  0.959  0.042  

BMP2 1.363  1.007  1.844  0.045  

ALDH1A1 0.619  0.399  0.959  0.032  

NOL3 1.999  1.190  3.359  0.009  

RPS27A 2.068  1.044  4.096  0.037  

AOC3 2.115  1.299  3.443  0.003  

CYP2C8 2.816  1.142  6.942  0.025  

MYC 2.246  1.439  3.505  0.000  

CYP2A6 0.001  0.000  0.706  0.040  

PRNP 0.506  0.285  0.898  0.020  

PAH 69.244  1.223  3921.661  0.040  

CYP27A1 0.584  0.375  0.910  0.018  

FAAH 1.696  1.115  2.580  0.014  

OGDH 0.288  0.126  0.660  0.003  

NDUFB10 0.529  0.290  0.966  0.038  

TG 2.133  1.092  4.166  0.027  

PTS 2.438  1.203  4.942  0.013  

MAPKAP1 0.257  0.085  0.771  0.015  

CASP1 0.588  0.358  0.967  0.036  

AS3MT 34.423  4.283  276.687  0.001  

CHEK1 1.916  1.056  3.477  0.032  

ADRB1 2.475  1.362  4.497  0.003  

EPHX2 2.183  1.140  4.180  0.019  

SCARB1 1.571  1.093  2.258  0.015  

PXN 0.390  0.164  0.924  0.032  

PRKD2 0.377  0.146  0.975  0.044  

KCNMA1 2.430  1.382  4.272  0.002  

UGT1A6 4651.907  3.283  6591366.350  0.023  

TREM2 0.661  0.453  0.965  0.032  

IGF1R 1.584  1.142  2.196  0.006  

MUC1 1.457  1.106  1.921  0.008  

PTGIS 1.500  1.069  2.105  0.019  

ITGAM 0.424  0.233  0.773  0.005  

KRAS 0.446  0.204  0.976  0.043  

MSR1 0.604  0.370  0.986  0.044  

PTPN3 1.973  1.076  3.618  0.028  
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Supplementary Table 2. OS-related gene expression set obtained after lasso regression. 

id TXN2 MAP3K5 G6PD HMOX1 ATF4 CAT ACADVL MAPK1 INS EIF2AK3 CCL2 MAPK10 

1 6.12 4.11 4.93 7.20 8.54 6.11 6.66 6.40 2.77 5.52 4.87 3.68 

2 6.39 3.84 5.51 8.24 9.14 5.30 8.13 5.80 2.77 4.42 7.48 3.08 

3 6.13 3.91 5.62 6.75 7.95 6.30 8.47 6.07 2.77 5.04 4.67 2.97 

4 7.13 3.79 4.87 4.69 8.43 5.59 7.85 6.38 2.77 5.42 3.31 3.33 

5 6.22 3.11 5.22 4.15 8.38 6.77 6.60 6.09 2.77 4.67 3.83 3.08 

6 6.17 3.54 5.45 5.70 8.09 5.48 7.28 5.60 2.77 5.72 3.22 2.99 

7 6.60 4.56 4.66 5.80 9.94 5.39 7.16 6.20 2.87 5.32 2.99 2.90 

8 5.57 3.41 5.60 5.31 7.59 5.62 6.70 6.54 2.77 5.58 3.19 3.42 

9 6.47 3.79 5.73 6.75 9.30 5.52 9.03 5.67 2.77 4.94 5.04 2.97 

10 6.92 4.82 5.48 9.44 8.81 6.08 7.95 6.24 2.77 4.47 4.14 3.75 

11 6.91 3.92 4.88 6.29 9.37 6.12 7.97 7.25 2.77 5.17 4.75 2.97 

12 5.15 3.52 5.37 5.95 9.93 4.88 7.78 6.36 2.77 5.22 2.84 2.91 

13 6.51 3.54 5.05 7.92 8.49 6.56 7.71 7.11 2.77 5.35 4.34 2.94 

14 6.62 3.28 4.94 5.97 9.20 5.39 8.80 6.77 2.77 5.87 3.39 2.98 

15 6.48 3.28 4.48 6.40 9.62 4.86 7.51 7.05 2.77 5.63 3.07 4.60 

16 6.99 4.34 5.37 9.99 9.27 5.76 8.37 6.14 2.77 4.82 6.01 3.17 

17 5.83 3.81 5.73 4.86 7.75 5.75 6.86 6.13 2.77 5.14 3.06 3.03 

18 6.48 5.00 5.72 6.00 8.07 6.40 7.47 6.32 2.77 4.76 6.43 2.96 

19 6.49 3.75 5.17 6.96 9.58 5.84 8.15 6.93 2.76 5.12 3.55 3.18 

20 7.92 6.01 4.68 6.24 9.72 6.36 7.71 7.67 2.77 4.93 3.47 2.99 

21 6.47 4.71 5.20 10.35 8.05 7.15 7.81 6.58 2.77 4.55 7.25 2.94 

22 7.25 3.87 5.76 7.05 8.31 5.74 7.23 5.81 2.77 4.25 6.28 3.24 

23 6.55 3.90 5.05 6.71 8.39 6.10 7.51 6.29 2.76 4.70 4.15 3.99 

24 5.92 3.74 5.13 7.53 8.44 5.84 7.31 6.62 2.77 5.48 4.74 2.95 

25 6.32 3.96 5.44 6.59 9.22 6.27 7.22 6.79 2.77 5.77 4.74 2.95 

26 6.60 3.92 4.86 6.00 8.59 6.34 6.78 6.44 2.77 4.83 4.09 3.15 

27 6.43 4.58 5.64 9.58 8.13 6.36 7.07 6.70 2.77 4.33 5.03 3.65 

28 7.04 3.69 5.02 5.84 10.56 5.85 6.84 6.66 2.76 3.70 3.42 3.58 

29 6.78 4.20 6.28 6.99 9.23 5.58 7.75 6.28 2.76 4.64 5.39 4.12 

30 7.23 3.39 5.79 6.31 9.64 6.04 8.40 6.77 2.78 5.54 3.66 3.86 

31 5.59 3.65 4.90 8.92 9.08 5.90 7.26 6.35 2.77 5.13 4.33 3.42 

32 6.91 4.14 5.81 7.61 8.36 5.98 7.67 7.17 2.77 5.57 3.52 3.08 

33 6.75 4.32 5.33 6.56 9.29 5.38 7.73 6.07 2.77 5.14 5.03 3.18 

34 6.06 3.34 5.13 6.11 9.32 4.67 7.51 5.84 2.77 5.93 3.21 2.93 

35 6.50 3.57 5.16 6.23 8.58 5.80 7.50 5.66 2.76 5.06 4.39 2.93 

36 6.72 5.07 6.89 8.91 8.60 6.39 7.21 6.22 2.77 5.06 5.46 3.35 

37 7.12 3.41 5.21 6.22 9.34 6.58 7.30 6.13 2.77 3.98 3.86 3.88 

38 6.70 4.47 4.51 5.19 8.83 4.71 7.77 5.53 2.76 4.76 3.23 3.00 

39 6.38 3.37 5.40 4.78 8.76 5.20 8.02 6.41 2.77 4.76 3.11 3.38 

40 6.84 4.08 5.56 9.65 9.51 5.54 7.76 6.45 2.77 4.66 7.13 3.37 

41 6.66 3.75 5.81 6.89 8.45 6.41 7.31 6.06 2.77 4.70 4.88 2.97 

42 6.60 4.16 5.75 8.96 8.21 5.87 7.92 6.04 2.77 4.79 6.27 3.10 

43 7.26 4.04 6.49 8.30 9.29 6.08 7.92 6.06 2.76 4.67 5.12 3.49 

44 6.16 3.97 5.68 6.13 7.67 5.84 6.87 6.06 2.77 4.48 4.43 3.34 

45 6.29 3.63 5.36 8.31 7.82 5.58 7.25 6.80 2.77 4.65 4.15 3.43 

46 5.87 3.97 5.46 6.90 9.09 6.81 8.08 6.05 2.76 5.27 3.75 2.97 
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47 6.68 3.94 5.11 7.01 9.32 6.25 6.82 6.51 2.77 5.18 4.21 2.93 

48 7.04 4.16 5.04 6.34 9.20 6.07 7.70 6.61 2.77 4.79 4.38 3.39 

49 7.04 4.43 5.81 6.63 8.56 5.86 7.11 6.93 2.77 5.40 5.07 3.60 

50 6.78 3.15 5.54 6.68 8.48 6.05 8.23 6.18 2.77 5.13 4.74 2.97 

51 6.72 4.13 5.61 5.31 9.40 5.55 6.19 6.18 2.77 4.81 4.41 3.01 

52 6.74 3.83 5.19 7.17 9.58 5.71 7.98 6.03 2.77 5.38 4.36 3.00 

53 7.47 4.28 5.43 5.97 8.71 5.49 8.13 5.28 2.77 3.50 3.59 4.08 

54 6.95 3.74 6.29 8.93 9.02 5.82 7.66 6.21 2.77 5.09 3.97 3.00 

55 7.60 4.31 6.01 6.81 10.15 5.50 7.47 6.37 2.76 5.00 4.75 4.29 

56 6.55 3.78 4.95 6.18 8.77 5.48 6.57 7.02 2.77 5.22 4.53 3.63 

57 5.48 4.03 5.39 5.10 8.00 5.67 7.72 6.00 2.77 5.09 3.99 3.08 

58 6.37 3.67 5.84 5.73 8.85 6.01 7.48 6.81 2.77 4.03 4.90 3.18 

59 6.32 3.64 6.14 9.41 8.44 6.10 7.63 6.33 2.77 4.13 5.72 3.03 

60 7.77 5.23 7.33 6.85 9.68 5.34 7.65 5.80 2.77 3.69 7.09 3.09 

61 6.23 3.11 5.73 5.53 8.62 6.07 6.96 7.81 2.77 4.48 3.68 4.80 

62 7.21 3.67 6.63 7.03 8.33 5.43 7.35 5.39 2.77 3.37 5.21 3.81 

63 7.33 4.24 5.79 6.87 8.36 5.90 6.92 6.39 2.77 4.21 7.27 2.93 

64 6.95 3.56 6.01 7.80 9.42 5.95 7.80 6.27 2.77 4.99 5.73 3.23 

65 6.49 3.80 4.71 6.65 8.74 5.80 7.78 6.08 2.77 4.83 3.92 2.94 

66 6.80 4.21 5.47 5.21 7.83 6.43 7.17 5.48 2.77 4.68 4.77 2.95 

67 6.20 5.08 5.28 6.50 8.69 4.82 6.93 6.47 2.77 5.26 4.74 2.96 

68 6.89 3.57 5.67 8.12 9.34 4.93 7.95 5.56 2.77 6.16 4.27 3.11 

69 6.15 5.14 6.63 6.07 8.53 5.94 8.59 6.52 2.77 5.66 4.33 3.20 

70 7.44 4.88 5.21 6.24 9.27 6.29 8.12 6.59 2.76 5.63 5.68 3.24 

71 5.73 3.32 4.42 8.36 8.82 5.89 6.94 5.72 2.77 5.23 5.05 3.23 

72 6.76 3.26 5.69 8.65 8.33 5.69 7.71 6.66 2.77 4.68 4.66 3.03 

73 6.76 3.80 7.09 8.26 9.01 6.10 8.18 6.30 2.77 5.31 5.48 2.98 

74 7.12 4.02 5.79 8.12 9.69 4.22 7.62 6.41 2.77 4.72 6.94 3.16 

75 6.70 4.43 6.36 8.24 8.77 5.63 7.50 6.06 2.77 4.56 6.13 3.34 

76 7.19 3.80 6.18 8.38 8.53 5.39 7.44 6.13 2.77 4.59 5.36 3.08 

77 6.92 3.58 5.96 7.89 10.56 5.28 8.08 6.48 2.76 5.67 3.77 3.29 

78 6.88 3.85 6.99 9.26 9.08 6.03 7.17 6.94 2.76 5.02 6.37 3.33 

79 6.16 4.46 5.90 6.58 8.27 6.79 7.66 6.97 2.77 4.73 4.42 3.06 

80 6.70 4.83 5.34 7.89 8.77 6.54 8.53 6.66 2.76 4.32 6.84 3.04 

81 6.93 3.76 4.97 6.30 9.48 6.64 7.78 6.34 2.77 5.12 5.96 2.99 

82 6.32 3.41 4.82 6.75 8.94 5.66 7.95 6.12 2.77 4.62 5.12 2.90 

83 6.50 4.25 5.37 5.46 9.00 6.13 6.99 6.07 2.77 5.19 7.73 3.09 

84 6.68 4.29 6.19 6.19 8.26 6.09 6.51 6.36 2.77 4.32 4.18 3.00 

85 6.97 4.17 5.47 9.51 8.98 6.02 8.15 6.29 2.76 4.75 4.77 2.95 

86 6.88 5.08 5.57 7.06 8.15 5.19 7.69 6.90 2.76 3.93 5.34 3.06 

 

 


