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INTRODUCTION 
 
Lung cancer is the most common malignancy and the 
leading cause of cancer-related deaths worldwide [1], 
posing a threat to human health. Lung adenocarcinoma 
(LUAD) is the main pathologic subtype of lung 
cancer. Nowadays, immunotherapy represented by anti-
PD-1/PD-L1 has yielded a considerable clinical benefit 
for patients with various cancer types [2–5], including 
lung cancer. However, most patients showed minimal 
or no efficacy to immunotherapy, which is far from the 
clinical need [6]. It is necessary to screen patients 
sensitive or resistant to immunotherapy. An elevated  

PD-L1 expression, high tumor mutation burden (TMB), 
and microsatellite instability-high (MSI-H)/deficient 
mismatch repair (dMMR) are considered to be positive 
indicators for immunotherapy [7]. However, it is 
insufficient to screen suitable candidates for 
immunotherapy using these approved biomarkers. 
Therefore, it is urgently recommended to develop 
comprehensive indexes to predict the survival 
probability and clinical response to agents. 
 
The tumor microenvironment (TME) has attracted 
increasing attention due to its crucial roles in 
angiogenesis, metastasis, and the therapeutic response 
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ABSTRACT 
 
The present study aims to construct a predictive model for prognosis and immunotherapy response in lung 
adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, 
and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules 
related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were 
employed to develop a predictive signature based on genes of the hub module. Moreover, the association 
between the predictive signature and immunotherapy response was also investigated. As a result, seven genes 
(FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated 
fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened 
Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The 
gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, 
glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients 
with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage 
presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS 
exhibited a potent predictive value for OS and immunotherapy response in LUAD. 
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[8–10]. The TME is mainly composed of immune cells 
(lymphocytes, dendritic cells, macrophages), stromal 
cancer-associated fibroblasts (CAFs), endothelial cells, 
extracellular matrix (ECM), and soluble signaling 
molecules [11–14]. As an essential component of TME, 
CAFs exhibit heterogeneity and versatility in function 
[8]. CAFs have been reported to elicit carcinogenesis and 
facilitate progression through multiple pathways. First, 
CAFs can facilitate tumor growth, angiogenesis, invasion, 
and metastasis by CAF-derived soluble molecules, and 
recruit suppressive immune cells by TGF-β and 
hepatocyte growth factor (HGF) [15]. Moreover, CAFs 
can degrade ECM by releasing matrix metalloproteinases 
(MMPs) and generating new matrix proteins, thus 
remodeling the TME in favor of immune evasion [16, 17]. 
 
Basic and translational research had verified the efficacy 
of a promising targeted therapy against CAFs [18, 19]. 
Pioneering studies have created a CAF-related gene risk 
signature (CAFRS) to predict the survival rate of 
gastrointestinal cancers [20, 21]. So far, a predictive 
model composed of CAF-related genes has not yet been 
constructed or validated in LUAD. Herein, we performed 
a weighted gene co-expression network analysis 
(WGCNA) to screen highly correlated gene modules and 
constructed a Cox regression model composed of CAFs-
related genes to predict the prognosis and the 
immunotherapy response in LUAD. To gain a more 
powerful and reliable predictive model, we developed a 
novel prognostic nomogram that combined clinical 
features and risk score calculated by the CAFRS. 
 
MATERIALS AND METHODS 
 
Data acquisition and preprocessing 
 
The transcriptome and somatic mutational profiles  
and clinical data of LUAD were extracted from TCGA-
GDC (https://portal.gdc.cancer.gov/). GSE41271, with 
clinical information obtained from GEO, was treated  
as the external testing group. The immune-related 
functional gene sets were downloaded from GSEA 
(http://www.gsea-msigdb.org/gsea/index.jsp). The 
transcriptome profiling and clinical variables of the 
IMvigor210 cohort were curated from a freely available 
software and data package that can be downloaded from 
http://research-pub.gene.com/IMvigor210CoreBiologies. 
Raw count data were first transformed into the TPM 
value. Our study did not require approval from the ethics 
committee, as it used open-access data retrieved from the 
TCGA or GEO database. 
 
Abundance of tumor-infiltrating immune cells 
 
The MCPcounter algorithm was utilized to quantify 11 
immune/stromal cells (T cells, CD8+ T cells, cytotoxic 

lymphocytes, NK cells, B lymphocytes, monocytes, 
macrophage, myeloid dendritic cells, neutrophils, 
endothelial cells, and CAFs) [22, 23]. The fractions of 
intratumoral immune/stromal cells using distinct 
algorithms, including MCPcounter, were obtained from 
TIMER online (http://timer.cistrome.org/) [24]. In 
addition, the proportions of the 16 immune cell types 
were evaluated via the CIBERSORT algorithm [25]. 
 
Selection of hub modules related to immune or 
stromal cells 
 
The R package of WGCNA was employed to construct 
the weight co-expression network based on the gene 
expression matrix of TCGA-LUAD. Briefly, a 
similarity matrix containing the expression levels of 
paired genes was generated and then converted into the 
adjacency matrix based on the adjacency between the 
paired genes. Parameter β was then defined and used to 
construct a weighted proximity matrix that matched the 
gene distribution. We performed hierarchical clustering 
with the minimum size to build dynamic trees. Module 
eigengenes (MEs) and clustering heatmaps were used to 
characterize the hub modules. The correlation analysis 
between the module genes and fraction of 
immune/stromal cells was calculated using Pearson’s 
test [26, 27]. Through this, the hub gene modules 
related to the infiltrating immune/stromal cells were 
identified. 
 
Construction and validation of CAFRS 
 
A total of 457 LUAD patients from TCGA were 
randomly partitioned into the training and testing 
cohorts using the R “caret” package, according to the 
1:1 ratio. Then, the candidate genes related to the 
immune/stromal cells were incorporated into the 
univariate Cox regression to identify the survival-
related genes, followed by a LASSO regression analysis 
to exclude the overfitting genes. Based on the screened 
survival-related genes, a multivariate Cox regression 
analysis using forward and backward regression 
analyses was employed to construct the predictive 
model in the training cohort. The risk score of each 
patient was calculated using the following formula: 
Σgene expression level × regression coefficient. 
 
LUAD patients from TCGA training, TCGA testing, 
and GEO cohorts were divided into high- and low-risk 
groups using the median value of the TCGA training 
cohort as the cutoff. Kaplan–Meier survival curves 
between high- and low-risk subgroups and time-
dependent receiver operating characteristic (ROC) 
curves in three independent cohorts were plotted  
using R packages of “survival,” “survminer,” and 
“timeROC”. Moreover, the risk score and survival 
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status of each individual were shown by the risk curves, 
patients’ survival scatter plots, and heatmaps. 
 
Mutation landscape, gene set variation analysis 
(GSVA), and single sample gene set enrichment 
analysis (ssGSEA) 
 
The R “maftools” package was used to analyze the 
mutation landscape of the top 15 genes and Epidermal 
growth factor receptor (EGFR) between the high- and 
low-risk subgroups. The survival difference of the 
subgroups stratified by the TP53 status and risk scores 
were computed. Referring to the hallmark gene set, the 
expression matrix of all genes was converted into the 
enrichment score of key oncogenic pathways/ 
phenotypes using the R “gsva” package (method = 
“gsva”). Then, differentially expressed scores of the 
pathways/phenotypes were determined between the 
high- and low-risk subgroups using the R “limma” 
package. Similarly, the gene expression matrix was 
respectively converted into the proportions of immune 
cells and scores of immune functions using the R 
“gsva” package (method = “ssgsea”) and analyzed 
between the low- and high-risk subgroups using the 
Wilcox.test and presented as bar plots. 
 
Prediction of the clinical response to immunotherapy 
or chemotherapy 
 
Charoentong et al. [28] created a scoring scheme  
based on the gene sets of immune effector/suppressor 
cells, immune checkpoints, and the major 
histocompatibility complex to quantify the clinical 
response to immunotherapy, which was termed the 
immunophenoscore (IPS). In our study, the IPS of 
each patient was calculated. Furthermore, the 
following independent dataset was analyzed in our 
study: advanced urothelial carcinoma treated with anti-
PD-L1 (IMvigor210) [29]. The proportion of different 
immunotherapy responses, including the complete 
response (CR), partial response (PR), stable disease 
(SD), and progressive disease (PD), were compared 
between high- and low-risk subgroups. Meanwhile, 
Kaplan–Meier curves of the overall survival (OS) 
stratified by CAFRS and ROC curves were delineated 
to present the predictive performance in OS and 
response to immunotherapy. 
 
To identify the potential compounds that benefit from 
CAFRS, we calculated the half maximal inhibitory 
concentration (IC50) of compounds obtained from  
the Genomics of Drug Sensitivity Cancer website 
(https://www.cancerrxgene.org/) in LUAD patients using 
the R “pRRophetic” package and compared the IC50 
values of compounds in the high- and low-risk subgroups. 
A low IC50 indicated a sensitive drug response. 

Construction and validation of a nomogram for OS 
 
Based on the independent prognostic variables, 
including risk signature and other clinical variables  
(P < 0.05), a novel nomogram was constructed  
for LUAD patients in the TCGA group using the  
R package “rms.” Calibration curves for the survival 
probability of 1, 3, and 5 years were plotted  
to ascertain the precision and accuracy of the  
synthesis model. The nomogram’s diagnostic capacity 
compared to other clinical variables was tested via  
the area under the curve (AUC) value of the ROC 
curves. 
 
Expression verification of hub genes 
 
A total of eight paired LUAD tumor and adjacent 
nontumor specimens were collected from the lung 
cancer center in West China Hospital. All patients 
provided their informed consent, and this work was 
approved by the Institutional Research Ethics 
Committee of West China Hospital. A quantitative 
real-time PCR (qRT-PCR) was employed to detect the 
mRNA expression of four candidate genes 
(SERPINE2, FGF10, LSAMP, PDE5A). Briefly, the 
total RNA was extracted from paired lung cancer 
tissues using TRIzol reagent (Invitrogen, USA). cDNA 
was synthesized from the total RNA using reverse 
transcription kits (TaKaRa, Japan). qRT-PCR was 
performed according to the manufacturer’s protocol 
using the TB Green Premix Ex Taq (TaKaRa, Japan). 
The primer sequences were obtained from Primer 
Bank (https://pga.mgh.harvard.edu/primerbank). The 
forward primer sequences of SERPINE2, FGF10, 
LSAMP, and PDE5A were as follows: 5`-TGGT 
GATGAGATACGGCGTAA-3`, 5`-CATGTGCGGAG 
CTACAATCAC-3`, 5`-AGAGTTCAGCCGGATCGG 
AA-3`, and 5`-GCAGAGTCCTCGTGCAGATAA-3`. 
The corresponding reverse primer sequences were as 
follows: 5`-GTTA GCCACTGTCACAATGTCTTT-
3`, 5`-CAGGATGCTGTACGGGCAG-3`, 5`-CGTGC 
CTCGGTTAAAATCCAC-3`, and 5`-GTCTAAGAG 
GCCGGTCAAATTC-3`. The product length of these 
primers was 101 bp, 138 bp, 105 bp, and 83 bp, 
respectively. 
 
Statistical analysis 
 
All data were processed under R language (Version 
3.6.1), and all statistical methods were conducted using 
the corresponding R packages. The Wilcox test was 
applied to compare the nonnormally distributed 
numerical variables, such as the gene expression level, 
proportion of immune/stromal cells, and scores of 
calculated pathways/phenotypes. When P < 0.05, the 
results were considered statistically different. 
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RESULTS 
 
Construction of the weighted co-expression network 
and identification of the hub module 
 
Through data preprocessing, a total of 16, 306 genes 
with large fluctuation (SD > 0.8) and 425 out of 477 
patients were selected for further analysis. The fraction 
of intratumoral immune/stromal cells were quantified 
using the MCPcounter algorithm. Using Pearson’s 
correlation coefficient, we performed a co-expression 
analysis between the above candidate genes and 
infiltration of the immune/stromal cells. The threshold 
soft power was calculated, and value 5 was regarded as 
the optimal value to construct the hierarchical clustering 
tree (Figure 1A, 1B). A total of 17 modules were 
merged into 11 modules based on the module-
separating threshold of 0.25 (Figure 1C, 1D). Finally, 
we chose the pink module (closely related to CAFs) 
containing 580 genes for the subsequent predictive 
model construction due to the highest correlation 
coefficient (R = 0.82, P <0.001) with CAFs (Figure 1E). 
 
Determination of the CAFRS and validation of the 
predictive capability 
 
The TCGA cohorts were randomized into training (n = 
229) and internal validation (n = 228) subgroups. Clinical 
features of these two cohorts and GEO-GSE41271 
cohorts were listed in Table 1. The predictive model was 
first constructed in the training cohort. A total of 580 
CAFs-related genes were first incorporated into the 
univariate Cox regression analysis, and 31 survival-related 
genes were determined. To avoid overfitting of the 
predictive model, the survival-related genes were assessed 
using a LASSO regression analysis (Figure 2A, 2B), and 
19 genes were screened out for the subsequent 
multivariate Cox regression analysis. Finally, seven genes 
(FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, 
FRMD6) were identified and used to establish a predictive 
model (Figure 2C). The risk scores of CAFRS were 
calculated as follows: risk score = -0.420 × FGF10 + 
0.199 × SERINE2 + -0.441 × LSAMP + 0.423 × 
STXBP5 + -0.527 × PDE5A + 0.466 × GLI2 + 0.331 × 
FRMD6. In addition, Kaplan–Meier curves showed that 
patients with a high expression of SERINE2, STXBP5, 
GLI2, and FRMD6 had a poor prognosis, while those 
with a low expression of FGF10, LSAMP, and PDE5A 
had a favorable prognosis (Supplementary Figure 1A–
1G). The ROC curves illustrated that the three-year AUC 
of CAFRS reached 0.694, which is greater than that of 
each gene (Supplementary Figure 1H). 
 
To validate the accuracy and reliability of the predictive 
model, patients from three independent cohorts were 
divided into low- and high-risk subgroup using the 

median value as the cutoff. The Kaplan–Meier survival 
curves found that patients with high-risk scores had a 
poorer outcome than those with low-risk scores, 
regardless of whether the TCGA training, TCGA testing, 
or GEO cohort was used (Figure 2D–2F). The ROC 
analysis revealed that the AUC values of 1-, 3-, and 5-
year OS in the TCGA training cohort were 0.708, 0.785, 
and 0.720, respectively (Figure 2G), while the AUC 
values were 0.625, 0.607, and 0.642 for the 1-, 3-, and 5-
year OS, respectively, in the TCGA testing cohort 
(Figure 2H). In the GEO cohort, the AUC values of the 
1-, 3-, and 5-year OS were 0.598, 0.604, and 0.643, 
respectively (Figure 2I). The distribution of the patients` 
risk scores, survival status, and expression heatmaps of 
the prognostic genes in these three cohorts are shown in 
Supplementary Figure 1I–1K. 
 
In addition, the riskscore was positively correlated with 
the expressions of poor prognostic genes-FRMD6, GLI2, 
SERPINE2 and STXBP5, but negatively correlated with 
the expressions of favorable prognostic genes-LSAMP 
and PDEA5 (Figure 3A). The expression profiling of the 
seven genes composed of the predictive model 
demonstrated distinct clustering which corresponds to 
low- and high-risk subgroup (Figure 3B). 
 
Mutation landscape associated with CAFRS 
 
The top 15 genes with high mutation rates (TP53, TTN, 
MUC16, RYR2, CSMD3, LRP1B, ZFHX4, USH2A, 
KRAS, XIRP2, FLG, SPTA1, NAV3, ZNF536, 
COL11A1) combined with EGFR were displayed as 
waterfall plots in both the high- and low-risk subgroups. 
Patients with mutations of these genes accounted for 
94.32% and 88.24% in the high- and low-risk 
subgroups, respectively. Of note, the mutation rate of 
TP53 was 59% and 38% in the high- and low-risk 
subgroups, respectively, whereas the mutation rate of 
EGFR was 10% and 15% in the high- and low-risk 
subgroups, respectively (Figure 3C, 3D). As illustrated 
by the Kaplan–Meier curves, patients with a TP53 
mutation had a shorter OS than those with the TP53 
wild type (Figure 3E). Moreover, a combination of the 
risk score and TP53 mutation status could improve the 
predictive performance for OS because patients with the 
TP53 mutation type and high-risk scores had the worst 
outcome, while patients with the TP53 wild type and 
low-risk scores had a survival advantage (Figure 3F). 
 
Clinical characteristics associated with CAFRS 
 
As illustrated in Figure 4A, the high- and low-risk 
clustering was remarkably associated with the 
pathologic TNM stage and survival status. In particular, 
the proportion of patients with stage III+IV was higher. 
in the high-risk group than that in the low-risk group, 



www.aging-us.com 4990 AGING 

 
 

Figure 1. Sample clustering and identification of CAFs-related module eigengenes (MEs) based on TCGA-LUAD. (A, B) Analysis 
of the average connectivity of 1-20 soft threshold power. (C) Gene clustering dendrogram containing 17 MEs. (D) Merged gene clustering 
dendrogram containing 11 MEs. (E) A heatmap showing module-trait relationships. Each row and each column correspond to a module 
eigengene and immune/stromal cells, respectively. 
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Table 1. Patients’ characteristics of TCGA-training, TCGA-testing and 
GSE41271. 

Characteristics TCGA-training TCGA-testing GSE41271 
Number of cases 229 228 180 
Age 65.41±10.25 64.44±9.91 63.62±10.44 
Gender    

Female/male 119/110 130/98 90/90 
TNM stage    

I/II/III/IV 119/55/40/11 128/49/34/13 97/29/50/4 
T stage    

T1/T2/T3/T4 83/119/17/9 72/125/20/8 NA 
Lymph node    

N0/N1 146/78 149/73 NA 
Metastasis    

M0/M1 167/11 140/12 176/4 
 

while the reverse was true for patients with stage I+II 
Patients with stage III+IV had a remarkably higher 
riskscore than those with stage I+II (P<0.01, Figure 4B, 
4C). Similarly, the proportion of patients dead was 
higher in the high-risk group than that in the low-risk 
group, while the reverse was true for patients alive. 
Patients dead had a remarkably higher riskscore than 
those alive (P<0.001, Figure 4D, 4E) 
 
Phenotype characteristics associated with CAFRS 
 
To explore the underlying mechanism by which CAFRS 
affects carcinogenesis and progression of LUAD, we 
analyzed the association of the risk score with the 
pathways/phenotypes. Through a differential GSVA score 
analysis between the low- and high-risk subgroups, 16 of 
50 hallmark gene sets were observed to be remarkably 
altered (P < 0.01). In particular, the G2M checkpoint, 
epithelial-mesenchymal transition (EMT), hypoxia, 
glycolysis, PI3K-Akt signaling pathways were greatly 
enriched in the high-risk subgroup, while the fatty acid 
and bile acid metabolisms were enriched in the low-risk 
subgroup (Figure 5A). In addition, “Toll like receptor 
signaling pathway”, “Small cell lung cancer”, “pathways 
in cancer” and “Cytokine-cytokine receptor interaction” 
were significantly activated in the high-risk group when 
Kyoto Encyclopedia of Genes and Genomes (KEGG) was 
taken as the reference gene set (Figure 5B). 
 
We quantified the proportion of intratumoral immune 
cells using the CIBERSORT algorithm and scored the 
immune functions using the ssGSEA method. Based on 
the matrix of immune cells and immune functions, the 
differential analysis between the high- and low-risk 
subgroups was performed using the Wilcox.test, and the 
results were presented as bar plots. As shown in Figure 
5C, 5D, the high-risk subgroup was characterized by 

decreased infiltration of the CD4+ T cell memory 
resting and enrichment score of type II IFN response (P 
< 0.001), which indicated an immunosuppressive TME. 
 
The role of CAFRS in predicting the benefits of 
immunotherapy and chemotherapy 
 
Immunotherapy, represented by anti-PD-L1/anti-CTLA-
4, has caused a breakthrough in antitumor treatment. In 
addition to PD-L1, TMB, and MSI-H/dMMR, the IPS 
was strongly recommended to predict the response to 
immunotherapy. Herein, the IPS was significantly 
higher in the low-risk subgroup compared with the 
high-risk subgroup (P < 0.001), indicating that patients 
in the low-risk subgroup were more susceptible to 
immunotherapy (Figure 6A). Furthermore, patients in 
the IMvigor210 cohort were divided into high- and low-
risk subgroups using the median value of the CAFRS 
risk score. Patients in the low-risk subgroup exhibited a 
marked clinical response advantage and prolonged 
survival rate. The proportions of CR, PR, SD, and PD 
were 10%, 19%, 25%, and 46% in the low-risk 
subgroup, respectively, compared with the proportions 
of 7%, 10%, 18%, and 65% in the high-risk subgroup 
(Figure 6C). Similarly, the risk score of patients with 
CR was significantly lower than that of patients with 
PR, SD, and PD (Figure 6D). When the clinical 
response was dichotomized into response (CR + PR) 
and non-response (SD + PD) groups, the ratio of 
response to non-response was 29/71 in the low-risk 
subgroup. However, it fell to 17/83 in the high-risk 
subgroup. The risk score of the non-response group was 
significantly higher than that of the response group 
(Supplementary Figure 2A, 2B). In addition, the 
Kaplan–Meier curves revealed that patients in the low-
risk subgroup survived longer than those in the high-
risk subgroup (Figure 6E), which is in agreement with 
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the results obtained from three independent cohorts. The 
AUC values of the ROC curves at 6 months, 12 months, 
and 18 months were 0.588, 0.642, and 0.624, 
respectively (Figure 6F), suggesting that this CAFRS 
can predict the prognosis of LUAD. Moreover, the 
established risk score is a poor prognostic factor for OS, 
independent of TMB, TNM stage, sex, chemotherapy, 
and immune subtype in the IMvigor210 cohort 
(Supplementary Figure 2C). 
 
We investigated the differences between the IC50 
values for common drugs between the low- and high-
risk subgroups. As shown in Figure 6G–6I, the CAFRS 

score was markedly negatively associated with the IC50 
values for paclitaxel and 5-fluorouracil (common 
chemotherapeutic agents) and positively associated with 
the IC50 values for erlotinib (common EGFR tyrosine 
kinase inhibitor [TKI]). Moreover, the low-risk 
subgroup presented remarkably higher IC50 values for 
paclitaxel and 5-fluorouraci but had lower IC50 values 
for erlotinib (Supplementary Figure 2D–2F). This 
indicated that LUAD patients with low-risk scores were 
more sensitive to erlotinib therapy but benefited little 
from conventional chemotherapy, which is likely due to 
drug resistance. In summary, CAFRS could predict 
anticancer drug responses in patients with LUAD. 

 

 
 

Figure 2. The construction of predictive model for overall survival based on CAFs-related genes. (A) Partial likelihood deviance 
of variables displayed by the Lasso regression model. The red dotted gray lines and two vertical lines represented the partial likelihood of 
deviance values, respectively. (B) Lasso coefficient profiles of 30 OS-related genes in TCGA training cohort. (C) Forest plot of CAFs-related 
risk signature (CAFRS) consisting of 7 genes identified by the multivariate Cox regression model. (D–F) Kaplan-Meier curves of patients from 
TCGA training, TCGA testing and GEO cohorts stratified by low- and high-risk subgroups. (G–I) Receiver operating characteristic (ROC) 
curves with 1-, 3-, and 5- year AUC values in the TCGA training, TCGA testing and GEO cohorts. 
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Figure 3. The landscape of genetic alterations stratified by CAFs-related risk signature (CAFRS). (A) A correlation diagram of risk 
score and expression levels of 7 CAFRS genes. (B) Principal component analysis of seven CAFRS genes to classify patients into low-risk and 
high-risk clusters. (C, D) Oncoplots depicting the top 15 mutational genes and EGFR between low- and high-risk subgroups. (E) Kaplan-Meier 
curves of all LUAD patients stratified by TP53 (with highest mutation rate) status. (F) Kaplan-Meier curves of all LUAD patients stratified by 
TP53 status and CAFRS scores. 
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Nomogram construction combined with clinical 
characteristics and CAFRS 
 
The univariate and multivariable Cox regression analyses 
indicated that the CAFRS and TNM stages were 
independent prognostic factors for LUAD (Figure 7A). To 
explore a more accurate and reliable prediction tool, we 
established a nomogram to predict the survival probability 
of 1-, 3- and 5-year OS for LUAD (Figure 7B). During 
the 1-, 3- and 5-year OS, the calibration curves of the 
nomogram exhibited excellent concordance with the 

actual survival rate in two independent cohorts (TCGA-
LUAD, GSE41271) (Figure 7C, 7D). The 5-year survival 
rate of stages I+II and the low-risk subgroup in the TCGA 
and GEO cohorts was up to 58.8% and 82.9%. However, 
the number of stages III+IV and the high-risk subgroup 
decreased, reaching 30% and 21.3%, respectively 
(Figure 7E, 7F). Moreover, compared with the single 
TNM stage or CRAFS, the merged nomogram had a 
better predictive performance in OS. The 5-year AUC 
value of the nomogram reached 0.742 and 0.702 in the 
TCGA and GEO cohorts, respectively, which is 

 

 
 

Figure 4. The association of CAFs-related risk signature (CAFRS) with clinicopathologic features. (A) The heatmap illustrating the 
correlation between CAFRS and Age, Gender, TNM stage and survival status. (B) The fraction of patients with distinct TNM stage in low- and 
high-risk subgroup. (C) The riskscores between stage I+II and stage III+IV subgroups. (D) The fraction of patients with distinct survival status in 
low- and high-risk subgroup. (E) The riskscores between alive and dead patients. (**P < 0.01, ***P < 0.001). 
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Figure 5. The association of CAFs-related risk signature (CAFRS) with oncogenic pathways and immune cells/functions.  
(A) The bar plots showing the GSVA scores of hallmark pathways (Fifty items) between the low- and high-risk subgroups. Red bar plots 
represent activated pathways in the high-risk subgroup. (B) The bubble plot indicating the activated and repressed pathways between low- 
and high-risk subgroup, referring to the KEGG gene set. (C) The fraction of tumor infiltrating immune cells between low- and high-risk 
subgroups (D) Immune function scores between low- and high-risk subgroup. (*P < 0.05, **P < 0.01, ***P < 0.001). 
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greater than that of the TNM stage and CAFRS 
(Figure 7G, 7H). 
 
mRNA verification of differential expression of 
CAFRS genes 
 
As shown in Figure 8A, four out of seven genes in the 
CAFRS were differentially expressed between the 

cancer and paratumor tissues from LUAD patients in 
TCGA. To prove the reliability of the CAFRS, the 
mRNA levels of these four genes were detected using a 
qRT-PCR. Consistent with the transcriptome data, 
SERPINE2 was more highly expressed in lung cancer 
tissues compared with that in paratumor tissues, while a 
low expression of FGF10, LSAMP, and PDE5A was 
found in lung cancer tissue (Figure 8B–8E). 

 

 
 

Figure 6. The role of CAFs-related risk signature (CAFRS) in predicting drug response. (A, B) The immunophenotype score (IPS) and 
one of its constituents-immune checkpoint score between low- and high-risk subgroups from TCGA cohort. (C) The proportion of patients 
with clinical response to anti-PD-1 immunotherapy in low- and high-risk subgroups from IMvigor210 cohort. SD, stable disease; PD, 
progressive disease; CR, complete response; PR, partial response. (D) The riskscore of CAFRS in the CR, PR, SD and PD subgroups. (E) Kaplan-
Meier curves of patients from IMvigor210 cohort stratified by low- and high-risk subgroups. (F) The ROC curves illustrating the AUC values at 
6-, 12- and 18-month. (G–I) The plots illustrating correlations of IC50 values for Paclitaxel, 5-FU and Erlotinib with CAFRS scores in TCGA 
cohort. (*P < 0.05, **P < 0.01, ***P < 0.001). 
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DISCUSSION 
 
Over the past two decades, increasing evidence has 
indicated that cancer is not just a disease of altered genes 
but also a crosstalk between tumor cells and their TME, 
suggesting that TME plays a key role in carcinogenesis 
and progression [30]. Targeting TME could assist 
traditional therapies and improve clinical responses to 
agents in numerous cancer types [31]. However, the 

prevailing components of TME and proportions of 
immune or stromal cells vary among different cancer 
types. Herein, based on the bulk RNA-seq from TCGA, 
we identified 11 hub modules using the WGCNA 
method, analyzed their correlations with intratumoral 
immune/stromal cells, and proved CAFs to be the 
principal components of TME in LUAD. Similarly, a 
recent single-cell RNA-seq research has shown that 
CAFs are a major constituent with diverse molecular 

 

 
 

Figure 7. The predictive performance of CAFRS in combination with TNM stage in OS for LUAD patients. (A) The forest plot of 
multivariate Cox regression analysis for OS of TCGA-LUAD. (B) Nomogram of predicting 1-, 3-, and 5- year OS for TCGA-LUAD. (C, D) 
Calibration curves of the nomogram at 1-, 3-, and 5-year for LUAD patients from TCGA and GSE41271. Gray line indicates the ideal curve. The 
green, blue and red lines indicate bias-corrected curve at 1-, 3-, and 5-year. Dots are quartiles of our data set. (E, F) Kaplan-Meier curves of 
LUAD patients from TCGA and GSE41271 stratified by TNM stage and riskscore. (G, H) The ROC curves of TCGA and GSE41271 illustrating the 
AUC values of nomogram, CAFRS and TNM stage at 5-year. 
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properties in breast [32], pancreatic [33], and lung 
cancer [34]. Moreover, CAFs derived from lung cancer 
are functionally heterogeneous, and classifications based 
on CAFs could predict an individual`s response to 
targeted therapy [35]. 
 
In the present study, we constructed a potent predictive 
model for prognosis and immunotherapy response using 
only seven genes, among which SERPINE2, STXBP5, 
GLI2, and FRMD6 were shown to be adverse prognostic 
factors for OS, while FGF10, LSAMP, and PDE5A were 
favorable prognostic factors. Some of these genes have 
been reported to exhibit not only tumor-promoting or 
tumor-inhibiting activities but also predictive indicators 
for survival or treatment outcomes in multiple cancer 
types. For example, serine proteinase inhibitor clade E 

member 2 (SERPINE2, also known as plasminogen 
activator inhibitor type 1) acted as oncogenes and 
promoted the proliferation, metastasis, or stemness 
behavior in various types of cancers [36–38]. As a 
biomarker of immunosuppression and fibrosis, 
SERPINE2 could serve as a poor prognostic factor for 
pancreatic cancer. Blocking the SERPINE2-related 
signaling pathway could overcome the resistance of 
chemo- or immunotherapy against pancreatic cancer [39]. 
Consistent with our study, increased SERPINE2 
expression was correlated with a dismal prognosis of 
LUAD, and a high serum SERPINE2 concentration 
predicted a poor response to radiotherapy [40]. Zinc 
finger transcription factor GLI2 functions as the primary 
activator of the hedgehog signaling pathway, which is 
closely correlated with embryonic development and 

 

 
 

Figure 8. mRNA expression of SERPINE2, FGF10, LSAMP, PDE5A in paired lung cancer tissues. (A) The bar plots showing 
expression levels of seven genes composing the CAFRS from TCGA- LUAD. The asterisks represent the statistical P values (***P < 0.001).  
(B–E) Paired dot plots show four differentially expressed genes composing the CAFRS, further detected by qRT-PCR in paired lung cancer 
tissues. (***P < 0.001). 
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regeneration. However, the postnatal activation of the 
hedgehog pathway is characterized as contributing to 
tumorigenesis and progression of multiple cancer types 
[41–43]. Additionally, GLI2 induced chemoresistance in 
colorectal cancer through HIF-1α and TGF-β2 signaling 
pathways [44]. LSAMP inhibited cell migration via EMT 
and lower expression of indicated poorer prognosis for 
lung cancer [45]. PDE5A also belongs to a protective 
factor for the prognosis of colon cancer [46, 47]. The 
protumor role or anti-tumor role of FRMD6 varies 
among different cancer types. In lung cancer, FRMD6 
promoted the tumor growth and invasion via mTOR 
pathway, while FRMD6, as a tumor suppressor inhibited 
the carcinogenesis and progression of prostate cancer and 
glioma [48–50]. Here, FRMD6 is a poor independent 
prognostic factor for lung cancer, in favor of the 
protumor role in lung cancer. Taken together, the 
protumor/anti-tumor roles of these predictive genes were 
based on increased/decreased property in expression or 
adverse/favorable property in prognosis. The exact role 
and mechanism underlying the lung carcinogenesis and 
progression remains unclear and further in-depth research 
is required. 
 
Genetic mutations are considered initiating factors  
in tumorigenesis. To some extent, TMB reflects the 
prognosis and treatment outcome of cancer patients, 
especially for immunotherapy [51, 52]. Here, we 
investigated the relationship between CAFRS score and 
mutation frequency. and found TP53 mutation occurred 
more frequently in patients with high risk score, s, in 
agreement with a previous study that suggested TP53 
mutation a poor prognostic factor [53]. Moreover, 
mutant TP53, but not wild TP53, binds to TANK 
binding protein kinase 1 (TBK1) and prevents the 
formation of TBK1-STING-IRF3 complex, which is 
required for the phosphorylation of IRF3 [54]. 
Phosphorylated IRF-3 then translocates to the nucleus 
and initiates the expression of type I IFN, which reflects 
the innate antitumor immunity. In summary, TP53 
mutation contributed to immune evasion and patients 
with TP53 mutation are considered unsuitable for 
immunotherapy strategies [55]. 
 
Here, ssGSEA results indicated that the low-risk group 
was characterized by an increased number of T cells 
CD4+ memory resting, which has been reported to 
facilitate the initiation of antitumor immunity [56]. 
Patients with low risk score were more likely to 
undergo activation of type II IFN response, which 
reflects the antitumor immunity. In terms of the 
immunotherapeutic effect, the low-risk group had a 
higher IPS, indicating that these patients are more likely 
to benefit from immunotherapy. Moreover, IMvigor210, 
including 298 patients with urothelial cancer, was 
designed to investigate whether the PD-L1 expression 

affects the efficacy of immunotherapy. In our study, the 
proportion of CR and/or PR in the low-risk group was 
significantly higher than that in the high-risk group, 
indicating that patients with low risk score are more 
likely to benefit from immunotherapy. Similarly, Zheng 
et al. [57] constructed a four-gene CAFRS that could 
accurately predict the prognosis and therapeutic 
response to chemical agents and immune checkpoint 
inhibitors (ICIs) in gastric cancer. Patients with high-
risk score were less likely to benefit from ICIs therapy 
in gastric cancer, but the result was not verified in an 
independent cohort with immunotherapy data. In 
addition, enrichment analyses proved that multiple 
oncogenic pathways/phenotypes such as PI3K/AKT, 
glycolysis, hypoxia and EMT were significantly 
activated in patients with high risk score. Taken 
together, enrichment analyses revealed the mechanism 
by which CAFRS score affect the prognosis and 
immunotherapy response. 
 
Previous studies have shown that the combined strategy 
with clinical features could greatly enhance the 
accuracy and robustness in predicting the survival 
chance and treatment outcome [58, 59]. Here, we drew 
a nomogram by incorporating the CAFRS score and 
TNM stage which were both independent prognostic 
factors. The nomogram is a practical and portable tool 
for calculating the survival probability at each time 
point (e. g 1-year, 3-year, 5-year). Each continuous or 
categorial variable corresponds to its coefficient in the 
scoring scheme, we simply add the score value of every 
variable to get the combined score of a patient. A higher 
nomogram score indicates worse prognosis. The ROC 
curves indicated that the nomogram tool is more reliable 
than the single CAFRS score and TNM stage. 
 
In conclusion, due to the crucial role of CAFs in lung 
cancer carcinogenesis and progression, we developed a 
risk signature CAFRS based on 580 CAF-related 
genes. The constructed CAFRS could predict both the 
survival chance and clinical response to chemo- and 
immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. The predictive performance of the model and seven composing genes. (A–G) Kaplan-Meier curves of 
patients stratified by expression profiling of 7 genes composing the CAFRS (H) Receiver operating characteristic (ROC) curves illustrating AUC 
values of 7 genes composing CAFRS at 3-year. (I–K) Distributions of survival status, risk score and expression profiles among patients from 
TCGA training, TCGA testing and GEO cohorts. 
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Supplementary Figure 2. The role of CAFRS in predicting the therapeutic response to drug therapy. (A) The proportion of 
patients with clinical response to anti-PD-1 immunotherapy in low- and high-risk subgroup from IMvigor210 cohort. SD, stable disease; PD, 
progressive disease; CR, complete response; PR, partial response. (B) Riskscores calculated by CAFRS in the CR+PR and SD+PD subgroups.  
(C) The forest plot of multivariate Cox regression for combined riskscore and clinical variables in IMvigor210 cohort. (D–F) Variations of 
responses to Paclitaxel, Erlotinib, 5-FU between low- and high-risk subgroups, respectively. 
 


