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INTRODUCTION 
 

Gastric cancer (GC) is a multifactorial disease, with 

many factors affecting its development, such as 

environmental and genetic factors [1]. Research shows 

that GC is the fourth leading cause of cancer deaths 

worldwide. After being diagnosed as late stage, the 

median survival rate of GC patients is less than 1 year 

[2]. GC is a highly invasive malignant tumor with 

significant heterogeneity, which has been widely 

studied by researchers [3]. Proper diet, early diagnosis, 
and personalized treatment can reduce the incidence of 

GC and improve patient prognosis [4]. GC is relatively 

rare in the young population, with a prevalence of no 

more than 10% [5].  

Mechanistic target of rapamycin (mTOR) is a protein 

kinase regulating cell growth, survival, metabolism, and 

immunity [6, 7]. mTOR is usually assembled into 

several complexes such as mTOR complex 1/2 

(mTORC1/2). mTOR catalyzes the phosphorylation of 

multiple targets. regulating protein synthesis, nutrients 

metabolism, growth factor signaling, cell growth, and 

migration [8]. Activation of mTOR promotes tumor 

growth and metastasis.  

 

The mTOR signaling pathway has been extensively 

studied in GC. Studies have found that GLI can 

mediate mTOR-induced PD-L1 expression in GC cells 

[9]. Salidroside induces apoptosis and protective 

autophagy in GC cells through the PI3K/Akt/mTOR 

www.aging-us.com AGING 2023, Vol. 15, No. 13 

Research Paper 

Machine learning models predict the mTOR signal pathway-related 
signature in the gastric cancer involving 2063 samples of 7 centers 
 

Hao Zhang1,2,3, Huiqin Zhuo1,2,3, Jingjing Hou1,2,3, Jianchun Cai 1,2,3,& 
 
1Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine,  
Xiamen University, Xiamen 361004, Fujian, China 
2Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361004, Fujian, China 
3Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China 
 
Correspondence to: Jianchun Cai; email: caijianchun@xmu.edu.cn 
Keywords: mTOR, machine learning, cellular senescence, ming classification 
Received: March 14, 2023     Accepted: May 17, 2023  Published: June 20, 2023 

 
Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 

 

ABSTRACT 
 

Gastric cancer, as a tumor with poor prognosis, has been widely studied. Distinguishing the types of gastric cancer 
is helpful. Using the transcriptome data of gastric cancer in our study, relevant proteins of mTOR signaling pathway 
were screened to identify key genes by four machine learning models, and the models were validated in external 
datasets. Through correlation analysis, we explored the relationship between five key genes and immune cells and 
immunotherapy. By inducing cellular senescence in gastric cancer cells with bleomycin, we investigated changes in 
the expression levels of HRAS through western blot. By PCA clustering analysis, we used the five key genes for 
gastric cancer typing and explored differences in drug sensitivity and enrichment pathways between different 
clustering groups. We found that the SVM machine learning model was superior, and the five genes (PPARA, FNIP1, 
WNT5A, HRAS, HIF1A) were highly correlated with different immune cells in multiple databases. These five key 
genes have a significant impact on immunotherapy. Using the five genes for gastric cancer gene typing, four genes 
were expressed higher in group 1 and were more sensitive to drugs in group 2. These results suggest that subtype-
specific markers can improve the treatment and provide precision drugs for gastric cancer patients. 
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pathway [10]. CircNRIP1 promotes GC progression 

through the microRNA-149-5p/AKT1/mTOR pathway 

[11]. Cynaroside promotes cell proliferation, 

apoptosis, migration, and invasion through the 

MET/AKT/mTOR axis [12]. The mTOR signaling 

pathway is also closely related to aging. SHQA 

inhibits oxidative stress-induced aging and replication 

by inhibiting the Akt/mTOR pathway [13]. 

Erythromycin improves oxidative stress-induced cell 

aging through the PI3K-mTOR signaling pathway in 

chronic obstructive pulmonary disease [14]. Currently, 

there are many different perspectives on building 

machine learning models related to GC, but no model 

has been proposed from the perspective of the mTOR 

signaling pathway. We are the first to propose this 

model in GC research. 

 

Our study used machine learning to screen for 

molecules involved in the mTOR signaling pathway in 

GC transcriptome data, resulting in 5 key genes that are 

predicted to be closely related to GC immune micro-

environment and drug sensitivity. 

 

RESULTS 
 

Construction of mTOR signaling-related gene 

features in gastric cancer 

 

We identified a total of 47 key proteins involved in the 

mTOR signaling pathway. Using transcriptome data from 

TCGA-STAD, we obtained expression information for 

32 genes. Machine learning models including Extreme 

Gradient Boosting (XGB), Random Forest (RF), 

Generalized linear model (GLM) and Support Vector 

Machine (SVM) were used to predict mTOR signaling-

related features. Box plots of the top 10 most important 

genes in each model were generated (Figure 1A). Results 

from box plots of residuals and reverse cumulative 

distribution of residuals confirmed the superiority of the 

SVM model (Figure 1B, 1C). The area under the ROC 

curve for the SVM model was 0.987, while the 

performance of XGB, GLM, and RF machine learning 

techniques was inferior (ROC curve areas of 0.977, 

0.813, and 0.962, respectively) (Figure 1D). 

 

Validation of the reliability of the SVM model in the 

GSE26942, GSE54129, GSE55696, and GSE66229 

cohorts 

 

We selected the top 5 genes (PPARA, FNIP1, WNT5A, 

HRAS, and HIF1A) as feature genes in the SVM 

machine learning model and validated the model in the 

GSE26942, GSE54129, GSE55696, and GSE66229 

cohorts. The AUC values after validation in the four 

external datasets were 0.733, 1.000, 0.694, and 0.942, 

respectively (Figure 2). 

Immune features related to key molecules in the 

mTOR signaling pathway in the model 

 

We analyzed the correlation between these 5 genes  

and immune cells in 7 immune cell-related datasets 

(TIMER, CIBERSORT, CIBERSORT-ABS, 

QUANTISEQ, MCPCOUNTER, XCELL, and EPIC). 

In 4 of these datasets, the expression level of FNIP1 

was positively correlated with M2 macrophages. The 

expression level of HIF1A was positively correlated 

with M1 and M2 macrophages, neutrophils, and 

myeloid dendritic cells, which has been confirmed in 

multiple databases. In 4 or more datasets, the expression 

level of HRAS was negatively correlated with B cells, 

M2 macrophages, monocytes, and CD8+ T cells. In 5 

independent datasets, the expression level of PPARA 

was negatively correlated with CD8+ T cells. In 6 

datasets, the expression level of WNT5A was positively 

correlated with neutrophils and negatively correlated 

with CD8+ T cells (Figure 3). 

 

Analysis of feature genes 

 

We analyzed the sensitivity of these 5 genes to 

immunotherapy and found that patients with low 

expression of FNIP1 and WNT5A were more sensitive 

to CTLA4, PD1, and combination therapy, while 

patients with low expression of HIF1A were more 

sensitive to CTLA4. Patients with high expression of 

HRAS were more sensitive to CTLA4. The expression 

level of PPARA showed no significant difference in 

response to CTLA4 and PD1 treatment (Figure 4A). 

Treatment with bleomycin induced cellular senescence 

in three types of GC cells, and the expression level of 

HRAS was significantly decreased in senescent cells 

(Figure 4B, 4C). 

 

Classification efficiency of feature genes 

 

To confirm the representative role of these 5 genes in 

GC, we used these genes to classify a total of 1240 

samples from three databases (TCGA, GSE84437, 

GSE26253). The results showed that these 5 genes 

could significantly divide the samples into two 

clusters (Figure 5A). The scatter plot of principal 

component analysis confirmed this result (Figure 5B), 

confirming the significant representativeness of  

the feature genes selected by the machine learning 

model. 

 

Comprehensive analysis between different clusters 

 

The expression levels of WNT5A, FNIP1, PPARA, and 
HRAS were significantly higher in cluster 1 than in 

cluster 2, while the expression of HIF1A was lower in 

cluster 1 than in cluster 2 (Figure 6A). Using GSVA 
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analysis, we found that GRAFT_VERSUS_ 

HOST_DISEASE was the most significant pathway  

in cluster 2, while HEDGEHOG_SIGNALING_ 

PATHWAY was the most significant pathway in cluster 1 

(Figure 6B). We estimated the immune cell content and 

immune scores for the 1240 samples. Most immune cells 

showed significant differences between the two clusters, 

but there were no significant differences in T cells CD8, T 

cells CD4 memory activated, Macrophages M0, 

Macrophages M1, Eosinophils, Neutrophils, Stromal 

Score, ImmuneScore (Figure 6C). We also calculated the 

sensitivity of the two clusters to different drugs 

and presented the top 6 drugs with the most significant 

differences, showing that patients in cluster 2 were 

more sensitive to these 5 drugs than those in cluster 1 

(Figure 6D). 

 

DISCUSSION 
 

GC is a common malignant tumor in the digestive 

system [15]. Risk factors for GC include Helicobacter 

pylori infection, age, high salt intake, and insufficient 

fruit and vegetable consumption [16]. Although 

advanced diagnostic and treatment methods have 

 

 
 

Figure 1. Construction of machine learning model. (A) Top 10 characteristic genes in 4 models. (B, C) Boxplots of residual and reverse 

cumulative distribution of residual. (D) The area under ROC curve of 4 models. 
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reduced its incidence, GC remains the leading cause of 

cancer death in East Asia [17]. There is an urgent need 

for research and development of tumor markers. The 

heterogeneity of GC has driven the rapid development 

of tumor classification, from Ming classification, 

Borrmann classification, Lauren classification and 

WHO classification to various molecular classifications. 

The emergence of molecular classification has greatly 

promoted the progress of tumor treatment. 

 

In our proposed classification, these five genes play an 

important role in the disease. In renal tumors, loss of 

FLCN-FNIP1/2 induces a non-classical interferon 

response, and FNIP1 and FNIP2 are crucial for FLCN’s 

tumor suppressor function [18]. FNIP1 plays an 

important role in regulating the specificity of skeletal 

muscle fiber type, anti-fatigue and susceptibility to 

muscular dystrophy. Calmodulin 2 promotes 

angiogenesis and metastasis of GC through 

STAT3/HIF-1A/VEGF-A [19]. Lactic acid promotes 

macrophage polarization in GC through MCT-HIF1α 

signaling, affecting the components of the tumor 

microenvironment [20]. Exosomes secreted by GC cells 

under hypoxic conditions promote the progression and 

 

 
 

Figure 2. Verification of markers in 5 external data sets. 
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metastasis of GC through the MiR-301a-3p/PHD3/HIF-

1α positive feedback loop [21]. Erianin has been found 

to inhibit GC precancerous lesions by inhibiting the 

HRAS-PI3K-AKT signaling pathway [22]. HRAS 

overexpression predicts the response of gastrointestinal 

tumors to lenvatinib treatment [23]. Tipifarnib 

significantly improves disease control rate in HRAS-

mutant salivary gland cancer patients [24]. PPARα is 

associated with histological types in GC [24]. 

Activation of PPARα can inhibit cell growth and induce 

apoptosis of GC cells [25]. Blocking PPARα can 

activate the IL-6/STAT3 pathway to prevent 

acetaminophen-induced liver injury [26]. IL-10 

promotes Wnt5a-induced M2 polarization of tumor-

associated macrophages, promoting the progression of 

colorectal cancer [27]. Gambogic acid can inhibit the 

progression of GC through the miR-26a-5p/Wnt5a 

signaling pathway [28]. HEF1 regulates tumor cell 

differentiation through the Wnt5a/β-catenin signaling 

pathway in GC [29].  

 

The ultimate goal of GC classification is to better treat 

patients. We investigated the correlation between these 

5 genes and immunotherapy. Currently, there are 

 

 
 

Figure 3. The relationship between five genes and immune cells. 
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studies reporting that HIF-1α inhibitors are a promising 

method to enhance anti-tumor immunity and can 

synergize with anti-PD-1 to inhibit tumor growth  

in vivo [30]. The other 4 genes have less reported 

relevance to immunotherapy, and our study provides 

new ideas for immunotherapy in GC. Thapsigargin is 

widely known for inducing cell apoptosis [31], and 

samples in cluster 2 exhibit lower sensitivity to 

thapsigargin treatment, providing a new approach for 

GC treatment. The combination of Obatoclax Mesylate 

and nanoparticles has demonstrated strong anti-tumor 

effects in non-small cell lung cancer [32], making the 

combination with nanocarriers a promising research 

direction. 

 

Overall, the newly constructed model has strong and 

stable sensitivity and specificity. However, there are 

limitations, and our analysis is based on public 

databases, and the exploration of molecular mechanisms 

is not deep enough. We will continue to focus on these 

five key genes and carry out subsequent experimental 

verification. 

 

 
 

Figure 4. Analysis of feature genes. (A) The impact of characteristic genes on immunotherapy. (B) Bleomycin-induced cellular senescence 

(bar=250μm) (“-“represents the control group, “+” represents bleomycin induction). (C) Changes in HRAS expression levels after cellular 
senescence. 
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Figure 5. Clustering of characteristic genes. (A) Typing of characteristic genes for samples. (B) The scatter plot of PCA. 

 

 
 

Figure 6. Comprehensive analysis between different clusters. (A) The expression level of WNT5A, FNIP1, PPARA, HRAS, HIF1A. (B) The 

GSVA analysis between 2 clusters. (C) Difference in distribution of immune cells in different cohorts. (D) The sensitivity to different drugs in 
different cohorts. 
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MATERIALS AND METHODS 
 

Reagents 

 

Bleomycin (mixture) was purchased commercially (CAS 

No: ST1450) from Beyotime Biotechnology, Shanghai, 

China. Primary antibodies used in the protein expression 

analysis were purchased from Abcam (HRAS, GAPDH). 

 

Cell culture and bleomycin treatment on cells 

 

MKN28, MKN45 human gastric cells were purchased 

from BeNa Culture Collection (Suzhou, China). 

Infiltrative GC cells XGC-1 (Patent No.: 

CN103396994A) was obtained from the Zhongshan 

Hospital Xiamen University [33]. These cells were 

cultured in Roswell Park Memorial Institute (RPMI)-

1640 medium (HyClone, Logan, UT, USA) 

supplemented with fetal bovine serum (FBS, 10%, 

HyClone) and streptomycin/penicillin (1%, Solarbio, 

Beijing, China) in a moist atmosphere with 5% CO2 at 

37°C. Gastric cells were seeded with an initial cell 

density of 1 × 106 cells per 100 mm cell culture plate 

and bleomycin were added to the cells and incubated for 

48 h at 37°C in a humidified atmosphere under 5% 

CO2. Based on previous research [34], we established 

different dosage groups of 10μg/mL, 20μg/mL, 

30μg/mL, 40μg/mL, and 60μg/mL. Finally, according to 

the staining results, MKN-45 was induced into 

senescence in the 10μg/mL group, MKN-28 in the 

20μg/mL group, and XGC-1 in the 30μg/mL group. 

 

SA-β-galactosidase staining 

 

Senescent cells were analyzed using senescence 

associated β-galactosidase (SA-β-gal) staining. Cells 

were grown in six-well plates, washed, fixed, and 

stained with the SA-β-gal cellular senescence assay kit 

(Beyotime Biotechnology). The sections were examined 

under a microscope. 

 
Western blotting 
 

Total protein was separated using the RIPA lysis buffer 

(Solarbio). Protein extracts were separated by 10% 

SDS-polyacrylamide gel electrophoresis and then 

transferred to nitrocellulose membranes and was 

incubated with specific antibodies. The immunoblot 

was visualized through the enhanced chemi-

luminescence reagent kit (Beyotime Biotechnology, 

Shanghai, China).  

 

Data collection 
 

Gene expression data and clinical information were 

obtained from The Cancer Genome Atlas [35] 

(https://portal.gdc.cancer.gov/) and the Gene Expression 

Omnibus (GEO) [36] (https://www.ncbi.nlm.nih.gov/ 

geo/) (GSE84437, GSE26253, GSE26942, GSE54129, 

GSE55696, GSE66229). We followed the access rules 

of the TCGA and GEO databases during the data 

collection process. The data used in this study were 

from public databases and did not require approval from 

local ethics committees. Transform Fragments Per 

Kilobase of exon model per Million mapped fragments 

data of TCGA into Transcripts Per Kilobase of exon 

model per Million mapped reads data, then merges with 

data of GEO. 

 

Merging three datasets (GSE84437, GSE26253, 

TCGA) 

 

Using the “limma” package, we converted the TCGA 

transcriptome data from FPKM format to TPM format 

similar to that of the GEO transcriptome data. The “sva” 

package was used to merge the transcriptome data from 

both TCGA and GEO databases. 

 

Development and validation of mTOR signaling 

pathway-related signature 

 

Transcriptome data from 375 tumor tissues and 32 

adjacent paired normal tissues were analyzed in R 

software. The mTOR signaling pathway-related proteins 

were statistically collected by consulting relevant 

literature. Extreme Gradient Boosting (XGB), Random 

Forest (RF), Generalized linear model (GLM) and 

Support Vector Machine (SVM) were analyzed using 

the “caret”, “DALEX”, “ggplot2”, “randomForest”, 

“kernlab”, “pROC”, and “xgboost” packages. 

 

Immune therapy analysis 

 

Immune therapy data related to GC were downloaded 

from The Cancer Immunome Atlas (https://tcia.at/) 

database, and the differences in immune therapy 

between genes with different expression levels were 

analyzed using the “limma” package. 

 

Tumor microenvironment analysis 

 

ESTIMATE was used to calculate the stromal, immune, 

and ESTIMATE scores. Finally, the CIBERSORT 

algorithm was used to analyze the infiltration differences 

of 22 immune cells among different samples. 

 

Exploration of different molecular clusters 

 

The samples were clustered using the 
“ConsensusClusterPlus” and “limma” packages. The 

bar plot of GSVA was performed using the “reshape2”, 

“ggpubr”, “limma”, “GSEABase”, and “GSVA” 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://tcia.at/
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packages. The box plot of drug sensitivity was 

performed using the “car”, “ridge”, “preprocessCore”, 

“genefilter”, and “sva” packages. 

 

Statistical analysis 

 

Continuous variables were summarized through mean 

and standard deviations and compared through 

Wilcoxon test. Categorized variables were presented by 

frequency (n) and proportion (%), and then compared 

through ANOVA. All of which were performed through 

R software (Version 3.6.3, The R Foundation for 

Statistical Computing). P values were two-side and 

were considered to be statistically significant if they 

were lower than 0.05. 

 

Abbreviations 
 

GC: gastric cancer; FPKM: fragments perkilobase 

million; TCGA: The Cancer Genome Atlas; GEO: Gene 

Expression Omnibus; GTF: gene transfer format; 

DEGs: differentially expressed genes; GSEA: Gene set 

enrichment analysis. 
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